File: qrpt.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (643 lines) | stat: -rw-r--r-- 17,048 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
/* linalg/qrpt.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_permute_vector.h>
#include <gsl/gsl_blas.h>

#include <gsl/gsl_linalg.h>

#include "apply_givens.c"

/* Factorise a general M x N matrix A into
 *
 *   A P = Q R
 *
 * where Q is orthogonal (M x M) and R is upper triangular (M x N).
 * When A is rank deficient, r = rank(A) < n, then the permutation is
 * used to ensure that the lower n - r rows of R are zero and the first
 * r columns of Q form an orthonormal basis for A.
 *
 * Q is stored as a packed set of Householder transformations in the
 * strict lower triangular part of the input matrix.
 *
 * R is stored in the diagonal and upper triangle of the input matrix.
 *
 * P: column j of P is column k of the identity matrix, where k =
 * permutation->data[j]
 *
 * The full matrix for Q can be obtained as the product
 *
 *       Q = Q_k .. Q_2 Q_1
 *
 * where k = MIN(M,N) and
 *
 *       Q_i = (I - tau_i * v_i * v_i')
 *
 * and where v_i is a Householder vector
 *
 *       v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)]
 *
 * This storage scheme is the same as in LAPACK.  See LAPACK's
 * dgeqpf.f for details.
 * 
 */

int
gsl_linalg_QRPT_decomp (gsl_matrix * A, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  if (tau->size != GSL_MIN (M, N))
    {
      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
    }
  else if (p->size != N)
    {
      GSL_ERROR ("permutation size must be N", GSL_EBADLEN);
    }
  else if (norm->size != N)
    {
      GSL_ERROR ("norm size must be N", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      *signum = 1;

      gsl_permutation_init (p); /* set to identity */

      /* Compute column norms and store in workspace */

      for (i = 0; i < N; i++)
        {
          gsl_vector_view c = gsl_matrix_column (A, i);
          double x = gsl_blas_dnrm2 (&c.vector);
          gsl_vector_set (norm, i, x);
        }

      for (i = 0; i < GSL_MIN (M, N); i++)
        {
          /* Bring the column of largest norm into the pivot position */

          double max_norm = gsl_vector_get(norm, i);
          size_t j, kmax = i;

          for (j = i + 1; j < N; j++)
            {
              double x = gsl_vector_get (norm, j);

              if (x > max_norm)
                {
                  max_norm = x;
                  kmax = j;
                }
            }

          if (kmax != i)
            {
              gsl_matrix_swap_columns (A, i, kmax);
              gsl_permutation_swap (p, i, kmax);
              gsl_vector_swap_elements(norm,i,kmax);

              (*signum) = -(*signum);
            }

          /* Compute the Householder transformation to reduce the j-th
             column of the matrix to a multiple of the j-th unit vector */

          {
            gsl_vector_view c_full = gsl_matrix_column (A, i);
            gsl_vector_view c = gsl_vector_subvector (&c_full.vector, 
                                                      i, M - i);
            double tau_i = gsl_linalg_householder_transform (&c.vector);

            gsl_vector_set (tau, i, tau_i);

            /* Apply the transformation to the remaining columns */

            if (i + 1 < N)
              {
                gsl_matrix_view m = gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i+1));

                gsl_linalg_householder_hm (tau_i, &c.vector, &m.matrix);
              }
          }

          /* Update the norms of the remaining columns too */

          if (i + 1 < M) 
            {
              for (j = i + 1; j < N; j++)
                {
                  double x = gsl_vector_get (norm, j);

                  if (x > 0.0)
                    {
                      double y = 0;
                      double temp= gsl_matrix_get (A, i, j) / x;
                  
                      if (fabs (temp) >= 1)
                        y = 0.0;
                      else
                        y = x * sqrt (1 - temp * temp);
                      
                      /* recompute norm to prevent loss of accuracy */

                      if (fabs (y / x) < sqrt (20.0) * GSL_SQRT_DBL_EPSILON)
                        {
                          gsl_vector_view c_full = gsl_matrix_column (A, j);
                          gsl_vector_view c = 
                            gsl_vector_subvector(&c_full.vector,
                                                 i+1, M - (i+1));
                          y = gsl_blas_dnrm2 (&c.vector);
                        }
                  
                      gsl_vector_set (norm, j, y);
                    }
                }
            }
        }

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_QRPT_decomp2 (const gsl_matrix * A, gsl_matrix * q, gsl_matrix * r, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  if (q->size1 != M || q->size2 !=M) 
    {
      GSL_ERROR ("q must be M x M", GSL_EBADLEN);
    }
  else if (r->size1 != M || r->size2 !=N)
    {
      GSL_ERROR ("r must be M x N", GSL_EBADLEN);
    }
  else if (tau->size != GSL_MIN (M, N))
    {
      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
    }
  else if (p->size != N)
    {
      GSL_ERROR ("permutation size must be N", GSL_EBADLEN);
    }
  else if (norm->size != N)
    {
      GSL_ERROR ("norm size must be N", GSL_EBADLEN);
    }

  gsl_matrix_memcpy (r, A);

  gsl_linalg_QRPT_decomp (r, tau, p, signum, norm);

  /* FIXME:  aliased arguments depends on behavior of unpack routine! */

  gsl_linalg_QR_unpack (r, tau, q, r);

  return GSL_SUCCESS;
}


/* Solves the system A x = b using the Q R P^T factorisation,

   R z = Q^T b

   x = P z;

   to obtain x. Based on SLATEC code. */

int
gsl_linalg_QRPT_solve (const gsl_matrix * QR,
                       const gsl_vector * tau,
                       const gsl_permutation * p,
                       const gsl_vector * b,
                       gsl_vector * x)
{
  if (QR->size1 != QR->size2)
    {
      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
    }
  else if (QR->size1 != p->size)
    {
      GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN);
    }
  else if (QR->size1 != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (QR->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      gsl_vector_memcpy (x, b);

      gsl_linalg_QRPT_svx (QR, tau, p, x);
      
      return GSL_SUCCESS;
    }
}

int
gsl_linalg_QRPT_svx (const gsl_matrix * QR,
                     const gsl_vector * tau,
                     const gsl_permutation * p,
                     gsl_vector * x)
{
  if (QR->size1 != QR->size2)
    {
      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
    }
  else if (QR->size1 != p->size)
    {
      GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN);
    }
  else if (QR->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      /* compute sol = Q^T b */

      gsl_linalg_QR_QTvec (QR, tau, x);

      /* Solve R x = sol, storing x inplace in sol */

      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);

      gsl_permute_vector_inverse (p, x);

      return GSL_SUCCESS;
    }
}

/* Find the least squares solution to the overdetermined system 
 *
 *   A x = b 
 *  
 * for M >= N using the QRPT factorization A P = Q R. Assumes
 * A has full column rank.
 */

int
gsl_linalg_QRPT_lssolve (const gsl_matrix * QR, const gsl_vector * tau, const gsl_permutation * p,
                         const gsl_vector * b, gsl_vector * x, gsl_vector * residual)
{
  const size_t N = QR->size2;
  int status = gsl_linalg_QRPT_lssolve2(QR, tau, p, b, N, x, residual);
  return status;
}

/* Find the least squares solution to the overdetermined system 
 *
 *   A x = b 
 *  
 * for M >= N using the QRPT factorization A P = Q R, where A
 * is assumed rank deficient with a given rank.
 */

int
gsl_linalg_QRPT_lssolve2 (const gsl_matrix * QR, const gsl_vector * tau, const gsl_permutation * p,
                          const gsl_vector * b, const size_t rank, gsl_vector * x, gsl_vector * residual)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (M < N)
    {
      GSL_ERROR ("QR matrix must have M>=N", GSL_EBADLEN);
    }
  else if (M != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (rank == 0 || rank > N)
    {
      GSL_ERROR ("rank must have 0 < rank <= N", GSL_EBADLEN);
    }
  else if (N != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else if (M != residual->size)
    {
      GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN);
    }
  else
    {
      gsl_matrix_const_view R11 = gsl_matrix_const_submatrix (QR, 0, 0, rank, rank);
      gsl_vector_view QTb1 = gsl_vector_subvector(residual, 0, rank);
      gsl_vector_view x1 = gsl_vector_subvector(x, 0, rank);
      size_t i;

      /* compute work = Q^T b */
      gsl_vector_memcpy(residual, b);
      gsl_linalg_QR_QTvec (QR, tau, residual);

      /* solve R_{11} x(1:r) = [Q^T b](1:r) */
      gsl_vector_memcpy(&(x1.vector), &(QTb1.vector));
      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, &(R11.matrix), &(x1.vector));

      /* x(r+1:N) = 0 */
      for (i = rank; i < N; ++i)
        gsl_vector_set(x, i, 0.0);

      /* compute x = P y */
      gsl_permute_vector_inverse (p, x);

      /* compute residual = b - A x = Q (Q^T b - R x) */
      gsl_vector_set_zero(&(QTb1.vector));
      gsl_linalg_QR_Qvec(QR, tau, residual);

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_QRPT_QRsolve (const gsl_matrix * Q, const gsl_matrix * R,
                         const gsl_permutation * p,
                         const gsl_vector * b,
                         gsl_vector * x)
{
  if (Q->size1 != Q->size2 || R->size1 != R->size2)
    {
      return GSL_ENOTSQR;
    }
  else if (Q->size1 != p->size || Q->size1 != R->size1
           || Q->size1 != b->size)
    {
      return GSL_EBADLEN;
    }
  else
    {
      /* compute b' = Q^T b */

      gsl_blas_dgemv (CblasTrans, 1.0, Q, b, 0.0, x);

      /* Solve R x = b', storing x inplace */

      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, R, x);

      /* Apply permutation to solution in place */

      gsl_permute_vector_inverse (p, x);

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_QRPT_Rsolve (const gsl_matrix * QR,
                        const gsl_permutation * p,
                        const gsl_vector * b,
                        gsl_vector * x)
{
  if (QR->size1 != QR->size2)
    {
      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
    }
  else if (QR->size1 != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (QR->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match x size", GSL_EBADLEN);
    }
  else if (p->size != x->size)
    {
      GSL_ERROR ("permutation size must match x size", GSL_EBADLEN);
    }
  else
    {
      /* Copy x <- b */

      gsl_vector_memcpy (x, b);

      /* Solve R x = b, storing x inplace */

      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);

      gsl_permute_vector_inverse (p, x);

      return GSL_SUCCESS;
    }
}


int
gsl_linalg_QRPT_Rsvx (const gsl_matrix * QR,
                      const gsl_permutation * p,
                      gsl_vector * x)
{
  if (QR->size1 != QR->size2)
    {
      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
    }
  else if (QR->size2 != x->size)
    {
      GSL_ERROR ("matrix size must match x size", GSL_EBADLEN);
    }
  else if (p->size != x->size)
    {
      GSL_ERROR ("permutation size must match x size", GSL_EBADLEN);
    }
  else
    {
      /* Solve R x = b, storing x inplace */

      gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);

      gsl_permute_vector_inverse (p, x);

      return GSL_SUCCESS;
    }
}



/* Update a Q R P^T factorisation for A P= Q R ,  A' = A + u v^T,

   Q' R' P^-1 = QR P^-1 + u v^T
   = Q (R + Q^T u v^T P ) P^-1
   = Q (R + w v^T P) P^-1

   where w = Q^T u.

   Algorithm from Golub and Van Loan, "Matrix Computations", Section
   12.5 (Updating Matrix Factorizations, Rank-One Changes)  */

int
gsl_linalg_QRPT_update (gsl_matrix * Q, gsl_matrix * R,
                        const gsl_permutation * p,
                        gsl_vector * w, const gsl_vector * v)
{
  const size_t M = R->size1;
  const size_t N = R->size2;

  if (Q->size1 != M || Q->size2 != M)
    {
      GSL_ERROR ("Q matrix must be M x M if R is M x N", GSL_ENOTSQR);
    }
  else if (w->size != M)
    {
      GSL_ERROR ("w must be length M if R is M x N", GSL_EBADLEN);
    }
  else if (v->size != N)
    {
      GSL_ERROR ("v must be length N if R is M x N", GSL_EBADLEN);
    }
  else
    {
      size_t j, k;
      double w0;

      /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0) 

         J_1^T .... J_(n-1)^T w = +/- |w| e_1

         simultaneously applied to R,  H = J_1^T ... J^T_(n-1) R
         so that H is upper Hessenberg.  (12.5.2) */

      for (k = M - 1; k > 0; k--)
        {
          double c, s;
          double wk = gsl_vector_get (w, k);
          double wkm1 = gsl_vector_get (w, k - 1);

          gsl_linalg_givens (wkm1, wk, &c, &s);
          gsl_linalg_givens_gv (w, k - 1, k, c, s);
          apply_givens_qr (M, N, Q, R, k - 1, k, c, s);
        }

      w0 = gsl_vector_get (w, 0);

      /* Add in w v^T  (Equation 12.5.3) */

      for (j = 0; j < N; j++)
        {
          double r0j = gsl_matrix_get (R, 0, j);
          size_t p_j = gsl_permutation_get (p, j);
          double vj = gsl_vector_get (v, p_j);
          gsl_matrix_set (R, 0, j, r0j + w0 * vj);
        }

      /* Apply Givens transformations R' = G_(n-1)^T ... G_1^T H  
         Equation 12.5.4 */

     for (k = 1; k < GSL_MIN(M,N+1); k++)
        {
          double c, s;
          double diag = gsl_matrix_get (R, k - 1, k - 1);
          double offdiag = gsl_matrix_get (R, k, k - 1);

          gsl_linalg_givens (diag, offdiag, &c, &s);
          apply_givens_qr (M, N, Q, R, k - 1, k, c, s);

          gsl_matrix_set (R, k, k - 1, 0.0);    /* exact zero of G^T */
        }

      return GSL_SUCCESS;
    }
}

/*
gsl_linalg_QRPT_rank()
  Estimate rank of triangular matrix from QRPT decomposition

Inputs: QR  - QRPT decomposed matrix
        tol - tolerance for rank determination; if < 0,
              a default value is used:
              20 * (M + N) * eps(max(|diag(R)|))

Return: rank estimate
*/

size_t
gsl_linalg_QRPT_rank (const gsl_matrix * QR, const double tol)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;
  gsl_vector_const_view diag = gsl_matrix_const_diagonal(QR);
  double eps;
  size_t i;
  size_t r = 0;

  if (tol < 0.0)
    {
      double min, max, absmax;
      int ee;

      gsl_vector_minmax(&diag.vector, &min, &max);
      absmax = GSL_MAX(fabs(min), fabs(max));
      ee = (int) (log(absmax) / M_LN2); /* can't use log2 since its not ANSI */

      eps = 20.0 * (M + N) * pow(2.0, (double) ee) * GSL_DBL_EPSILON;
    }
  else
    eps = tol;

  /* count number of diagonal elements with |di| > eps */
  for (i = 0; i < GSL_MIN(M, N); ++i)
    {
      double di = gsl_vector_get(&diag.vector, i);
      if (fabs(di) > eps)
        ++r;
    }

  return r;
}

int
gsl_linalg_QRPT_rcond(const gsl_matrix * QR, double * rcond, gsl_vector * work)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (M < N)
    {
      GSL_ERROR ("M must be >= N", GSL_EBADLEN);
    }
  else if (work->size != 3 * N)
    {
      GSL_ERROR ("work vector must have length 3*N", GSL_EBADLEN);
    }
  else
    {
      gsl_matrix_const_view R = gsl_matrix_const_submatrix (QR, 0, 0, N, N);
      int status;

      status = gsl_linalg_tri_rcond(CblasUpper, &R.matrix, rcond, work);

      return status;
    }
}