File: rqrc.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (965 lines) | stat: -rw-r--r-- 31,761 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
/* linalg/rqrc.c
 * 
 * Copyright (C) 2020 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>

/*
 * this module contains routines for the QR factorization of a matrix
 * using the recursive Level 3 BLAS algorithm of Elmroth and Gustavson with
 * additional modifications courtesy of Julien Langou.
 */

static int unpack_Q1(gsl_matrix_complex * Q);
static int unpack_Q2(const gsl_matrix_complex * QR, const gsl_matrix_complex * T, gsl_matrix_complex * Q);
static int aux_ULH(const gsl_matrix_complex * L, gsl_matrix_complex * U);
static int aux_mLU(gsl_matrix_complex * A);
static int aux_ApUBH(const gsl_matrix_complex * U, const gsl_matrix_complex * B, gsl_matrix_complex * A);

/*
gsl_linalg_complex_QR_decomp_r()
  QR decomposition using Level 3 BLAS recursive algorithm of:
  
Elmroth, E. and Gustavson, F.G., 2000. Applying recursion to serial and parallel
  QR factorization leads to better performance. IBM Journal of Research and Development,
  44(4), pp.605-624.

Inputs: A - matrix to be factored, M-by-N with M >= N
        T - N-by-N upper triangular factor of block reflector

Return: success/error

Notes:
1) on output, upper triangle of A contains R; elements below the diagonal
are columns of V. The matrix Q is

Q = I - V T V^H

where T is upper triangular. Note that diag(T) = tau
*/

int
gsl_linalg_complex_QR_decomp_r (gsl_matrix_complex * A, gsl_matrix_complex * T)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  if (M < N)
    {
      GSL_ERROR ("M must be >= N", GSL_EBADLEN);
    }
  else if (T->size1 != T->size2)
    {
      GSL_ERROR ("T matrix must be square", GSL_ENOTSQR);
    }
  else if (T->size1 != N)
    {
      GSL_ERROR ("T matrix does not match dimensions of A", GSL_EBADLEN);
    }
  else if (N == 1)
    {
      /* base case, compute householder transform for single column matrix */

      gsl_complex * T00 = gsl_matrix_complex_ptr(T, 0, 0);
      gsl_vector_complex_view v = gsl_matrix_complex_column(A, 0);

      *T00 = gsl_linalg_complex_householder_transform(&v.vector);
      return GSL_SUCCESS;
    }
  else
    {
      /*
       * partition matrices:
       *
       *       N1  N2              N1  N2
       * N1 [ A11 A12 ] and  N1 [ T11 T12 ]
       * M2 [ A21 A22 ]      N2 [  0  T22 ]
       */
      int status;
      const size_t N1 = N / 2;
      const size_t N2 = N - N1;
      const size_t M2 = M - N1;

      gsl_matrix_complex_view A11 = gsl_matrix_complex_submatrix(A, 0, 0, N1, N1);
      gsl_matrix_complex_view A12 = gsl_matrix_complex_submatrix(A, 0, N1, N1, N2);
      gsl_matrix_complex_view A21 = gsl_matrix_complex_submatrix(A, N1, 0, M2, N1);
      gsl_matrix_complex_view A22 = gsl_matrix_complex_submatrix(A, N1, N1, M2, N2);

      gsl_matrix_complex_view T11 = gsl_matrix_complex_submatrix(T, 0, 0, N1, N1);
      gsl_matrix_complex_view T12 = gsl_matrix_complex_submatrix(T, 0, N1, N1, N2);
      gsl_matrix_complex_view T22 = gsl_matrix_complex_submatrix(T, N1, N1, N2, N2);

      gsl_matrix_complex_view m;

      /*
       * Eq. 2: recursively factor
       *
       * [ A11 ] = Q1 [ R11 ]
       * [ A21 ]      [  0  ]
       *                                          N1
       * Note: Q1 = I - V1 T11 V1^H, where V1 = [ V11 ] N1
       *                                        [ V21 ] M2
       */
      m = gsl_matrix_complex_submatrix(A, 0, 0, M, N1);
      status = gsl_linalg_complex_QR_decomp_r(&m.matrix, &T11.matrix);
      if (status)
        return status;

      /*
       * Eq. 3:
       *
       * [ R12 ] := Q1^H [ A12 ] = [ A12 ] - [ V11 W ]
       * [ A22 ]         [ A22 ]   [ A22 ]   [ V21 W ]
       *
       * where W = T11^H (V11^H A12 + V21^H A22), and using T12 as temporary storage
       */
      gsl_matrix_complex_memcpy(&T12.matrix, &A12.matrix);                                            /* W := A12 */
      gsl_blas_ztrmm(CblasLeft, CblasLower, CblasConjTrans, CblasUnit, GSL_COMPLEX_ONE,
                     &A11.matrix, &T12.matrix);                                                       /* W := V11^H * A12 */
      gsl_blas_zgemm(CblasConjTrans, CblasNoTrans, GSL_COMPLEX_ONE, &A21.matrix, &A22.matrix,
                     GSL_COMPLEX_ONE, &T12.matrix);                                                   /* W := W + V21^H * A22 */
      gsl_blas_ztrmm(CblasLeft, CblasUpper, CblasConjTrans, CblasNonUnit, GSL_COMPLEX_ONE,
                     &T11.matrix, &T12.matrix);                                                       /* W := T11^H * W */
      gsl_blas_zgemm(CblasNoTrans, CblasNoTrans, GSL_COMPLEX_NEGONE, &A21.matrix, &T12.matrix,
                     GSL_COMPLEX_ONE, &A22.matrix);                                                   /* A22 = A22 - V21 * W */
      gsl_blas_ztrmm(CblasLeft, CblasLower, CblasNoTrans, CblasUnit, GSL_COMPLEX_ONE, &A11.matrix,
                     &T12.matrix);                                                                    /* tmp = V11 * W */
      gsl_matrix_complex_sub(&A12.matrix, &T12.matrix);                                               /* R12 := A12 - V11 * W */

      /*
       * Eq. 4: recursively factor
       *
       * A22 = Q2~ R22
       *
       *              N1 M2
       * Note: Q2 = [ I   0  ] N1
       *            [ 0  Q2~ ] M2
       */
      status = gsl_linalg_complex_QR_decomp_r(&A22.matrix, &T22.matrix);
      if (status)
        return status;

      /*
       * Eq. 13: update T12 := -T11 * V1^H * V2 * T22
       *
       * where:
       *
       *        N1                N2
       * V1 = [ V11 ] N1   V2 = [  0  ] N1
       *      [ V21 ] N2        [ V22 ] N2
       *      [ V31 ] M-N       [ V32 ] M-N
       *
       * Note: V1^H V2 = V21^H V22 + V31^H V32
       * Also, V11, V22 are unit lower triangular
       */

      m = gsl_matrix_complex_submatrix(&A21.matrix, 0, 0, N2, N1);                                 /* V21 */
      gsl_matrix_complex_conjtrans_memcpy(&T12.matrix, &m.matrix);                                 /* T12 := V21^H */

      m = gsl_matrix_complex_submatrix(A, N1, N1, N2, N2);                                         /* V22 */
      gsl_blas_ztrmm(CblasRight, CblasLower, CblasNoTrans, CblasUnit, GSL_COMPLEX_ONE,
                     &m.matrix, &T12.matrix);                                                      /* T12 := V21^H * V22 */

      if (M > N)
        {
          gsl_matrix_complex_view V31 = gsl_matrix_complex_submatrix(A, N, 0, M - N, N1);
          gsl_matrix_complex_view V32 = gsl_matrix_complex_submatrix(A, N, N1, M - N, N2);

          gsl_blas_zgemm(CblasConjTrans, CblasNoTrans, GSL_COMPLEX_ONE, &V31.matrix, &V32.matrix,
                         GSL_COMPLEX_ONE, &T12.matrix);                                            /* T12 := T12 + V31^T * V32 */
        }

      gsl_blas_ztrmm(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, GSL_COMPLEX_NEGONE,
                     &T11.matrix, &T12.matrix);                                                    /* T12 := -T11 * T12 */
      gsl_blas_ztrmm(CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit, GSL_COMPLEX_ONE,
                     &T22.matrix, &T12.matrix);                                                    /* T12 := T12 * T22 */

      return GSL_SUCCESS;
    }
}

/* Solves the square system A x = b for x using the QR factorisation,
 *
 *  R x = Q^H b
 *
 * where Q = I - V T V^H
 */

int
gsl_linalg_complex_QR_solve_r (const gsl_matrix_complex * QR, const gsl_matrix_complex * T,
                               const gsl_vector_complex * b, gsl_vector_complex * x)
{
  const size_t N = QR->size2;

  if (QR->size1 != N)
    {
      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
    }
  else if (T->size1 != QR->size1 || T->size2 != QR->size2)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (N != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (N != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      /* compute Q^H b = [I - V T^H V^H] b */

      /* x := V^H b */
      gsl_vector_complex_memcpy(x, b);
      gsl_blas_ztrmv(CblasLower, CblasConjTrans, CblasUnit, QR, x);

      /* x = T^H * x */
      gsl_blas_ztrmv(CblasUpper, CblasConjTrans, CblasNonUnit, T, x);

      /* x = V * x */
      gsl_blas_ztrmv(CblasLower, CblasNoTrans, CblasUnit, QR, x);

      /* x = b - V * x */
      for (i = 0; i < N; ++i)
        {
          gsl_complex * xi = gsl_vector_complex_ptr(x, i);
          gsl_complex bi = gsl_vector_complex_get(b, i);
          GSL_REAL(*xi) = GSL_REAL(bi) - GSL_REAL(*xi);
          GSL_IMAG(*xi) = GSL_IMAG(bi) - GSL_IMAG(*xi);
        }

      /* Solve R x = Q^H b, storing x in-place */
      gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);

      return GSL_SUCCESS;
    }
}

/* Find the least squares solution to the overdetermined system 
 *
 *   A x = b 
 *  
 * for M >= N using the QR factorization A = Q R. 
 *
 * Inputs: QR   - [R; V] matrix, M-by-N
 *         T    - upper triangular block reflector, N-by-N
 *         b    - right hand side, size M
 *         x    - (output) solution, size M
 *                x(1:N) = least squares solution vector
 *                x(N+1:M) = vector whose norm equals ||b - Ax||
 *         work - workspace, size N
 */

int
gsl_linalg_complex_QR_lssolve_r (const gsl_matrix_complex * QR, const gsl_matrix_complex * T,
                                 const gsl_vector_complex * b, gsl_vector_complex * x, gsl_vector_complex * work)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (M < N)
    {
      GSL_ERROR ("QR matrix must have M >= N", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (M != b->size)
    {
      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
    }
  else if (M != x->size)
    {
      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
    }
  else if (N != work->size)
    {
      GSL_ERROR ("matrix size must match work size", GSL_EBADLEN);
    }
  else
    {
      gsl_matrix_complex_const_view R = gsl_matrix_complex_const_submatrix (QR, 0, 0, N, N);
      gsl_vector_complex_view x1 = gsl_vector_complex_subvector(x, 0, N);

      /* compute x = Q^H b */
      gsl_vector_complex_memcpy(x, b);
      gsl_linalg_complex_QR_QHvec_r (QR, T, x, work);

      /* Solve R x = Q^H b */
      gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, &R.matrix, &x1.vector);

      return GSL_SUCCESS;
    }
}

/* Find the least squares solution to the overdetermined system 
 *
 *   A x = B
 *  
 * for M >= N using the QR factorization A = Q R. 
 *
 * Inputs: QR   - [R; V] matrix, M-by-N
 *         T    - upper triangular block reflector, N-by-N
 *         B    - right hand sides, size M-by-nrhs
 *         X    - (output) solution, size M-by-nrhs
 *                x(1:N,k)   = least squares solution vector for B(:,k)
 *                x(N+1:M,k) = vector whose norm equals || B(:,k) - A X(1:N,k) ||
 *         work - workspace, size N-by-nrhs
 */

int
gsl_linalg_complex_QR_lssolvem_r (const gsl_matrix_complex * QR, const gsl_matrix_complex * T,
                                  const gsl_matrix_complex * B, gsl_matrix_complex * X, gsl_matrix_complex * work)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;
  const size_t nrhs = B->size2;

  if (M < N)
    {
      GSL_ERROR ("QR matrix must have M >= N", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (B->size1 != M)
    {
      GSL_ERROR ("matrix size must match B size", GSL_EBADLEN);
    }
  else if (X->size1 != M || X->size2 != nrhs)
    {
      GSL_ERROR ("solution matrix has wrong dimensions", GSL_EBADLEN);
    }
  else if (work->size1 != N || work->size2 != nrhs)
    {
      GSL_ERROR ("work matrix has wrong dimensions", GSL_EBADLEN);
    }
  else
    {
      gsl_matrix_complex_const_view R = gsl_matrix_complex_const_submatrix (QR, 0, 0, N, N);
      gsl_matrix_complex_view X1 = gsl_matrix_complex_submatrix(X, 0, 0, N, nrhs);

      /* compute X = Q^H B */
      gsl_matrix_complex_memcpy(X, B);
      gsl_linalg_complex_QR_QHmat_r (QR, T, X, work);

      /* Solve R X = Q^H B */
      gsl_blas_ztrsm (CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit,
                      GSL_COMPLEX_ONE, &R.matrix, &X1.matrix);

      return GSL_SUCCESS;
    }
}

/*
gsl_linalg_complex_QR_unpack_r()
  Unpack matrices Q and R

Inputs: QR - packed QR format, M-by-N
        T  - block reflector matrix, N-by-N
        Q  - (output) Q matrix, M-by-M
        R  - (output) R matrix, N-by-N

Return: success/error

Notes:
1) Implementation provided by Julien Langou
*/

int
gsl_linalg_complex_QR_unpack_r(const gsl_matrix_complex * QR, const gsl_matrix_complex * T,
                               gsl_matrix_complex * Q, gsl_matrix_complex * R)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (M < N)
    {
      GSL_ERROR ("M must be >= N", GSL_EBADLEN);
    }
  else if (Q->size1 != M || Q->size2 != M)
    {
      GSL_ERROR ("Q matrix must be M-by-M", GSL_EBADLEN);
    }
  else if (R->size1 != N || R->size2 != N)
    {
      GSL_ERROR ("R matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else
    {
      gsl_matrix_complex_const_view RV = gsl_matrix_complex_const_submatrix(QR, 0, 0, N, N);
      gsl_matrix_complex_view Q1 = gsl_matrix_complex_submatrix(Q, 0, 0, M, N);
      gsl_matrix_complex_view m;

      /*
       * set Q1 = [ T ]
       *          [ V ]
       */
      m = gsl_matrix_complex_submatrix(Q, 0, 0, N, N);
      gsl_matrix_complex_tricpy(CblasUpper, CblasNonUnit, &m.matrix, T);
      gsl_matrix_complex_tricpy(CblasLower, CblasUnit, &m.matrix, &RV.matrix);

      if (M > N)
        {
          gsl_matrix_complex_const_view tmp = gsl_matrix_complex_const_submatrix(QR, N, 0, M - N, N);
          m = gsl_matrix_complex_submatrix(Q, N, 0, M - N, N);
          gsl_matrix_complex_memcpy(&m.matrix, &tmp.matrix);
        }

      unpack_Q1(&Q1.matrix);

      if (M > N)
        {
          gsl_matrix_complex_view Q2 = gsl_matrix_complex_submatrix(Q, 0, N, M, M - N);
          unpack_Q2(QR, T, &Q2.matrix);
        }

      /* copy R */
      gsl_matrix_complex_tricpy(CblasUpper, CblasNonUnit, R, &RV.matrix);

      return GSL_SUCCESS;
    }
}

/*
gsl_linalg_QR_QHvec_r()
  Apply M-by-M Q^H to the M-by-1 vector b

Inputs: QR   - [R; V] matrix encoded by gsl_linalg_complex_QR_decomp_r
        T    - block reflector matrix
        b    - M-by-1 vector replaced by Q^H b on output
        work - workspace, length N

Notes:
1) Q^H b = (I - V T^H V^H) b
         = b - V T^H [ V1^H V2^H ] [ b1 ]
                                   [ b2 ]
         = b - V T^H [ V1^H b1 + V2^H b2 ]
         = [ b1 ] - [ V1 w ]
           [ b2 ]   [ V2 w ]

where w = T^H ( V1^H b1 + V2^H b2 )
*/

int
gsl_linalg_complex_QR_QHvec_r(const gsl_matrix_complex * QR, const gsl_matrix_complex * T,
                              gsl_vector_complex * b, gsl_vector_complex * work)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (M < N)
    {
      GSL_ERROR ("M must be >= N", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (b->size != M)
    {
      GSL_ERROR ("b vector must have length M", GSL_EBADLEN);
    }
  else if (work->size != N)
    {
      GSL_ERROR ("workspace must be length N", GSL_EBADLEN);
    }
  else
    {
      gsl_matrix_complex_const_view V1 = gsl_matrix_complex_const_submatrix(QR, 0, 0, N, N);
      gsl_vector_complex_view b1 = gsl_vector_complex_subvector(b, 0, N);
      gsl_vector_complex_view b2;

      /* work := V1^H b1 */
      gsl_vector_complex_memcpy(work, &b1.vector);
      gsl_blas_ztrmv(CblasLower, CblasConjTrans, CblasUnit, &V1.matrix, work);

      if (M > N)
        {
          gsl_matrix_complex_const_view V2 = gsl_matrix_complex_const_submatrix(QR, N, 0, M - N, N);

          /* work = work + V2^H b2 */
          b2 = gsl_vector_complex_subvector(b, N, M - N);
          gsl_blas_zgemv(CblasConjTrans, GSL_COMPLEX_ONE, &V2.matrix, &b2.vector, GSL_COMPLEX_ONE, work);
        }

      /* work = T^H * work */
      gsl_blas_ztrmv(CblasUpper, CblasConjTrans, CblasNonUnit, T, work);

      if (M > N)
        {
          /* b2 = b2 - V2 * work */
          gsl_matrix_complex_const_view V2 = gsl_matrix_complex_const_submatrix(QR, N, 0, M - N, N);
          gsl_blas_zgemv(CblasNoTrans, GSL_COMPLEX_NEGONE, &V2.matrix, work, GSL_COMPLEX_ONE, &b2.vector);
        }

      /* b1 = b1 - V1 * work */
      gsl_blas_ztrmv(CblasLower, CblasNoTrans, CblasUnit, &V1.matrix, work);
      gsl_vector_complex_sub(&b1.vector, work);

      return GSL_SUCCESS;
    }
}

/*
gsl_linalg_QR_QHmat_r()
  Apply M-by-M Q^H to the M-by-K matrix B

Inputs: QR   - [R; V] matrix encoded by gsl_linalg_complex_QR_decomp_r
        T    - block reflector matrix
        B    - M-by-K matrix replaced by Q^H B on output
        work - N-by-K workspace

Notes:
1) Provided by Julien Langou
*/

int
gsl_linalg_complex_QR_QHmat_r(const gsl_matrix_complex * QR, const gsl_matrix_complex * T,
                              gsl_matrix_complex * B, gsl_matrix_complex * work)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;
  const size_t K = B->size2;

  if (M < N)
    {
      GSL_ERROR ("M must be >= N", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (B->size1 != M)
    {
      GSL_ERROR ("B matrix must have M rows", GSL_EBADLEN);
    }
  else if (work->size1 != N || work->size2 != K)
    {
      GSL_ERROR ("workspace must be N-by-K", GSL_EBADLEN);
    }
  else
    {
      gsl_matrix_complex_const_view V1 = gsl_matrix_complex_const_submatrix(QR, 0, 0, N, N);
      gsl_matrix_complex_view B1 = gsl_matrix_complex_submatrix(B, 0, 0, N, K);
      gsl_matrix_complex_view B2;

      /* work := V1^H B1 */
      gsl_matrix_complex_memcpy(work, &B1.matrix);
      gsl_blas_ztrmm(CblasLeft, CblasLower, CblasConjTrans, CblasUnit,
                     GSL_COMPLEX_ONE, &V1.matrix, work);

      if (M > N)
        {
          gsl_matrix_complex_const_view V2 = gsl_matrix_complex_const_submatrix(QR, N, 0, M - N, N);

          /* work = work + V2^H B2 */
          B2 = gsl_matrix_complex_submatrix(B, N, 0, M - N, K);
          gsl_blas_zgemm(CblasConjTrans, CblasNoTrans, GSL_COMPLEX_ONE,
                         &V2.matrix, &B2.matrix, GSL_COMPLEX_ONE, work);
        }

      /* work = T^H * work */
      gsl_blas_ztrmm(CblasLeft, CblasUpper, CblasConjTrans, CblasNonUnit, GSL_COMPLEX_ONE, T, work);

      if (M > N)
        {
          /* B2 = B2 - V2 * work */
          gsl_matrix_complex_const_view V2 = gsl_matrix_complex_const_submatrix(QR, N, 0, M - N, N);
          gsl_blas_zgemm(CblasNoTrans, CblasNoTrans, GSL_COMPLEX_NEGONE,
                         &V2.matrix, work, GSL_COMPLEX_ONE, &B2.matrix);
        }

      /* B1 = B1 - V1 * work */
      gsl_blas_ztrmm(CblasLeft, CblasLower, CblasNoTrans, CblasUnit, GSL_COMPLEX_ONE, &V1.matrix, work);
      gsl_matrix_complex_sub(&B1.matrix, work);

      return GSL_SUCCESS;
    }
}

/*
unpack_Q1()
  Compute Q_1

Inputs: Q  - on input, contains T in upper triangle and V in lower trapezoid
             on output, contains Q_1
             M-by-N

Return: success/error

Notes:
1)                                                         N
Q1 = [ Q1 Q2 ] [ I_n ] = (I - V T V^H) [ I; 0 ] = [ I - V1 T V1^H ] N
               [  0  ]                            [   - V2 T V1^H ] M - N
*/

static int
unpack_Q1(gsl_matrix_complex * Q)
{
  int status;
  const size_t M = Q->size1;
  const size_t N = Q->size2;
  gsl_matrix_complex_view Q1 = gsl_matrix_complex_submatrix(Q, 0, 0, N, N);
  gsl_vector_complex_view diag = gsl_matrix_complex_diagonal(&Q1.matrix);

  /* Q1 := T V1^H */
  status = aux_ULH(&Q1.matrix, &Q1.matrix);
  if (status)
    return status;

  if (M > N)
    {
      /* compute Q2 := - V2 T V1^H */
      gsl_matrix_complex_view V2 = gsl_matrix_complex_submatrix(Q, N, 0, M - N, N);
      gsl_blas_ztrmm(CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit, GSL_COMPLEX_NEGONE, &Q1.matrix, &V2.matrix);
    }

  /* Q1 := - V1 T V1^H */
  status = aux_mLU(&Q1.matrix);
  if (status)
    return status;

  /* Q1 := I - V1 T V1^H */
  gsl_vector_complex_add_constant(&diag.vector, GSL_COMPLEX_ONE);

  return GSL_SUCCESS;
}

/*
unpack_Q2()
  Compute Q_2

Inputs: QR - [R; V] from QR_decomp_r, M-by-N
        T  - upper triangular T factor, N-by-N
        Q  - (output) Q_2 factor, M-by-(M-N)

Return: success/error

Notes:                         N   M-N
1) Since Q = I - V T V^H = M [ Q1  Q2  ], we have

           M-N
Q2 = Q [    0    ] N
       [ I_{M-N} ] M-N

So, Q2 = Q [ 0; I ] = (I - V T V^H) [ 0; I ] = [   - V1 T V2^H ]
                                               [ I - V2 T V2^H ]
*/

static int
unpack_Q2(const gsl_matrix_complex * QR, const gsl_matrix_complex * T, gsl_matrix_complex * Q)
{
  const size_t M = QR->size1;
  const size_t N = QR->size2;

  if (M <= N)
    {
      GSL_ERROR ("M must be > N", GSL_EBADLEN);
    }
  else if (T->size1 != N || T->size2 != N)
    {
      GSL_ERROR ("T matrix must be N-by-N", GSL_EBADLEN);
    }
  else if (Q->size1 != M || Q->size2 != (M - N))
    {
      GSL_ERROR ("Q matrix must be M-by-(M-N)", GSL_EBADLEN);
    }
  else
    {
      gsl_matrix_complex_const_view V1 = gsl_matrix_complex_const_submatrix(QR, 0, 0, N, N);
      gsl_matrix_complex_const_view V2 = gsl_matrix_complex_const_submatrix(QR, N, 0, M - N, N);
      gsl_matrix_complex_view Q1 = gsl_matrix_complex_submatrix(Q, 0, 0, N, M - N);
      gsl_matrix_complex_view Q2 = gsl_matrix_complex_submatrix(Q, N, 0, M - N, M - N);
      gsl_vector_complex_view diag = gsl_matrix_complex_diagonal(&Q2.matrix);

      /* Q1 := V2^H */
      gsl_matrix_complex_conjtrans_memcpy(&Q1.matrix, &V2.matrix);

      /* Q1 := - T V2^H */
      gsl_blas_ztrmm(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, GSL_COMPLEX_NEGONE, T, &Q1.matrix);

      /* Q2 := - V2 T V2^H */
      gsl_blas_zgemm(CblasNoTrans, CblasNoTrans, GSL_COMPLEX_ONE, &V2.matrix, &Q1.matrix, GSL_COMPLEX_ZERO, &Q2.matrix);

      /* Q2 := I - V2 T V2^H */
      gsl_vector_complex_add_constant(&diag.vector, GSL_COMPLEX_ONE);

      /* Q1 := - V1 T V2^H */
      gsl_blas_ztrmm(CblasLeft, CblasLower, CblasNoTrans, CblasUnit, GSL_COMPLEX_ONE, &V1.matrix, &Q1.matrix);

      return GSL_SUCCESS;
    }
}

/* U := U L^H for triangular matrices L and U; L is unit lower triangular */
static int
aux_ULH(const gsl_matrix_complex * L, gsl_matrix_complex * U)
{
  const size_t N = L->size1;

  if (N != L->size2)
    {
      GSL_ERROR ("L matrix must be square", GSL_ENOTSQR);
    }
  else if (U->size1 != N || U->size2 != N)
    {
      GSL_ERROR ("U matrix must be same size as L", GSL_EBADLEN);
    }
  else if (N == 1)
    {
      /* nothing to do */
      return GSL_SUCCESS;
    }
  else
    {
      int status;
      const size_t N1 = N / 2;
      const size_t N2 = N - N1;

      gsl_matrix_complex_const_view L11 = gsl_matrix_complex_const_submatrix(L, 0, 0, N1, N1);
      gsl_matrix_complex_const_view L21 = gsl_matrix_complex_const_submatrix(L, N1, 0, N2, N1);
      gsl_matrix_complex_const_view L22 = gsl_matrix_complex_const_submatrix(L, N1, N1, N2, N2);

      gsl_matrix_complex_view U11 = gsl_matrix_complex_submatrix(U, 0, 0, N1, N1);
      gsl_matrix_complex_view U12 = gsl_matrix_complex_submatrix(U, 0, N1, N1, N2);
      gsl_matrix_complex_view U22 = gsl_matrix_complex_submatrix(U, N1, N1, N2, N2);

      /* U12 = U12 * L22^H */
      gsl_blas_ztrmm(CblasRight, CblasLower, CblasConjTrans, CblasUnit, GSL_COMPLEX_ONE, &L22.matrix, &U12.matrix);

      /* U12 = U12 + U11 * L21^H */
      status = aux_ApUBH(&U11.matrix, &L21.matrix, &U12.matrix);
      if (status)
        return status;

      status = aux_ULH(&L11.matrix, &U11.matrix);
      if (status)
        return status;

      status = aux_ULH(&L22.matrix, &U22.matrix);
      if (status)
        return status;

      return GSL_SUCCESS;
    }
}

/* store -L*U in A */
static int
aux_mLU(gsl_matrix_complex * A)
{
  const size_t N = A->size1;

  if (N != A->size2)
    {
      GSL_ERROR ("matrix must be square", GSL_ENOTSQR);
    }
  else if (N == 1)
    {
      gsl_complex *A00 = gsl_matrix_complex_ptr(A, 0, 0);
      GSL_REAL(*A00) = -GSL_REAL(*A00);
      GSL_IMAG(*A00) = -GSL_IMAG(*A00);
      return GSL_SUCCESS;
    }
  else
    {
      int status;
      const size_t N1 = N / 2;
      const size_t N2 = N - N1;

      gsl_matrix_complex_view A11 = gsl_matrix_complex_submatrix(A, 0, 0, N1, N1);
      gsl_matrix_complex_view A12 = gsl_matrix_complex_submatrix(A, 0, N1, N1, N2);
      gsl_matrix_complex_view A21 = gsl_matrix_complex_submatrix(A, N1, 0, N2, N1);
      gsl_matrix_complex_view A22 = gsl_matrix_complex_submatrix(A, N1, N1, N2, N2);

      /* A22 = - L22 U22 */
      status = aux_mLU(&A22.matrix);
      if (status)
        return status;

      /* A22 = A22 - L21 U12 */
      gsl_blas_zgemm(CblasNoTrans, CblasNoTrans, GSL_COMPLEX_NEGONE, &A21.matrix, &A12.matrix, GSL_COMPLEX_ONE, &A22.matrix);

      /* A12 - -L11 U12 */
      gsl_blas_ztrmm(CblasLeft, CblasLower, CblasNoTrans, CblasUnit, GSL_COMPLEX_NEGONE, &A11.matrix, &A12.matrix);

      /* A21 = -L21 U11 */
      gsl_blas_ztrmm(CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit, GSL_COMPLEX_NEGONE, &A11.matrix, &A21.matrix);

      /* A11 = - L11 U11 */
      status = aux_mLU(&A11.matrix);
      if (status)
        return status;

      return GSL_SUCCESS;
    }
}

/* A := A + U B^H where U is upper triangular */
static int
aux_ApUBH(const gsl_matrix_complex * U, const gsl_matrix_complex * B, gsl_matrix_complex * A)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  if (U->size1 != M || U->size2 != M)
    {
      GSL_ERROR ("U matrix has wrong dimensions", GSL_EBADLEN);
    }
  else if (B->size1 != N || B->size2 != M)
    {
      GSL_ERROR ("B matrix has wrong dimensions", GSL_EBADLEN);
    }
  else if (M == 1 && N == 1)
    {
      gsl_complex *aptr = gsl_matrix_complex_ptr(A, 0, 0);
      const gsl_complex U00 = gsl_matrix_complex_get(U, 0, 0);
      const gsl_complex B00_conj = gsl_complex_conjugate(gsl_matrix_complex_get(B, 0, 0));
      const gsl_complex prod = gsl_complex_mul(U00, B00_conj);
      GSL_REAL(*aptr) += GSL_REAL(prod);
      GSL_IMAG(*aptr) += GSL_IMAG(prod);
      return GSL_SUCCESS;
    }
  else if (M == 1)
    {
      gsl_complex U00 = gsl_matrix_complex_get(U, 0, 0);
      size_t i;

      for (i = 0; i < N; ++i)
        {
          gsl_complex * ai = gsl_matrix_complex_ptr(A, 0, i);
          gsl_complex bi = gsl_matrix_complex_get(B, i, 0);
          gsl_complex prod = gsl_complex_mul(U00, gsl_complex_conjugate(bi));
          GSL_REAL(*ai) += GSL_REAL(prod);
          GSL_IMAG(*ai) += GSL_IMAG(prod);
        }

      return GSL_SUCCESS;
    }
  else if (N == 1)
    {
      /*
       * partition:
       *
       *         M1  M2
       * B = 1 [ B11 B12 ]
       *
       *       1        M1  M2       1
       * M1 [ A11 ] + [ U11 U12 ] [ B11^H ] M1
       * M2 [ A21 ]   [  0  U22 ] [ B12^H ] M2
       */
      int status;
      const size_t M1 = M / 2;
      const size_t M2 = M - M1;

      gsl_matrix_complex_view A11 = gsl_matrix_complex_submatrix(A, 0, 0, M1, 1);
      gsl_matrix_complex_view A21 = gsl_matrix_complex_submatrix(A, M1, 0, M2, 1);

      gsl_matrix_complex_const_view U11 = gsl_matrix_complex_const_submatrix(U, 0, 0, M1, M1);
      gsl_matrix_complex_const_view U12 = gsl_matrix_complex_const_submatrix(U, 0, M1, M1, M2);
      gsl_matrix_complex_const_view U22 = gsl_matrix_complex_const_submatrix(U, M1, M1, M2, M2);

      gsl_matrix_complex_const_view B11 = gsl_matrix_complex_const_submatrix(B, 0, 0, 1, M1);
      gsl_matrix_complex_const_view B12 = gsl_matrix_complex_const_submatrix(B, 0, M1, 1, M2);

      /* A11 += U12 * B12^H */
      gsl_blas_zgemm(CblasNoTrans, CblasConjTrans, GSL_COMPLEX_ONE, &U12.matrix, &B12.matrix, GSL_COMPLEX_ONE, &A11.matrix);

      /* A11 := A11 + U11 B11^H */
      status = aux_ApUBH(&U11.matrix, &B11.matrix, &A11.matrix);
      if (status)
        return status;

      /* A21 := A21 + U22 B12^H */
      status = aux_ApUBH(&U22.matrix, &B12.matrix, &A21.matrix);
      if (status)
        return status;

      return GSL_SUCCESS;
    }
  else
    {
      int status;
      const size_t M1 = M / 2;
      const size_t M2 = M - M1;
      const size_t N1 = N / 2;
      const size_t N2 = N - N1;

      gsl_matrix_complex_view A11 = gsl_matrix_complex_submatrix(A, 0, 0, M1, N1);
      gsl_matrix_complex_view A12 = gsl_matrix_complex_submatrix(A, 0, N1, M1, N2);
      gsl_matrix_complex_view A21 = gsl_matrix_complex_submatrix(A, M1, 0, M2, N1);
      gsl_matrix_complex_view A22 = gsl_matrix_complex_submatrix(A, M1, N1, M2, N2);

      gsl_matrix_complex_const_view U11 = gsl_matrix_complex_const_submatrix(U, 0, 0, M1, M1);
      gsl_matrix_complex_const_view U12 = gsl_matrix_complex_const_submatrix(U, 0, M1, M1, M2);
      gsl_matrix_complex_const_view U22 = gsl_matrix_complex_const_submatrix(U, M1, M1, M2, M2);

      gsl_matrix_complex_const_view B11 = gsl_matrix_complex_const_submatrix(B, 0, 0, N1, M1);
      gsl_matrix_complex_const_view B12 = gsl_matrix_complex_const_submatrix(B, 0, M1, N1, M2);
      gsl_matrix_complex_const_view B21 = gsl_matrix_complex_const_submatrix(B, N1, 0, N2, M1);
      gsl_matrix_complex_const_view B22 = gsl_matrix_complex_const_submatrix(B, N1, M1, N2, M2);

      /* A11 := A11 + U11 B11^H */
      status = aux_ApUBH(&U11.matrix, &B11.matrix, &A11.matrix);
      if (status)
        return status;

      /* A11 := A11 + U12 B12^H */
      gsl_blas_zgemm(CblasNoTrans, CblasConjTrans, GSL_COMPLEX_ONE, &U12.matrix, &B12.matrix, GSL_COMPLEX_ONE, &A11.matrix);

      /* A12 := A12 + U11 B21^H */
      status = aux_ApUBH(&U11.matrix, &B21.matrix, &A12.matrix);
      if (status)
        return status;

      /* A12 := A12 + U12 B22^H */
      gsl_blas_zgemm(CblasNoTrans, CblasConjTrans, GSL_COMPLEX_ONE, &U12.matrix, &B22.matrix, GSL_COMPLEX_ONE, &A12.matrix);

      /* A21 := A21 + U22 B12^H */
      status = aux_ApUBH(&U22.matrix, &B12.matrix, &A21.matrix);
      if (status)
        return status;

      /* A22 := A22 + U22 B22^H */
      status = aux_ApUBH(&U22.matrix, &B22.matrix, &A22.matrix);
      if (status)
        return status;

      return GSL_SUCCESS;
    }
}