File: test_common.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (373 lines) | stat: -rw-r--r-- 8,428 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/* linalg/test_common.c
 *
 * Copyright (C) 2017, 2018, 2019, 2020 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_rng.h>

static int create_random_vector(gsl_vector * v, gsl_rng * r);
static int create_random_matrix(gsl_matrix * m, gsl_rng * r);
static int create_posdef_matrix(gsl_matrix * m, gsl_rng * r);
static int create_hilbert_matrix2(gsl_matrix * m);

static int
create_random_vector(gsl_vector * v, gsl_rng * r)
{
  const size_t N = v->size;
  size_t i;

  for (i = 0; i < N; ++i)
    {
      double vi = gsl_rng_uniform(r);
      gsl_vector_set(v, i, vi);
    }

  return GSL_SUCCESS;
}

static int
create_random_complex_vector(gsl_vector_complex * v, gsl_rng * r)
{
  const size_t N = v->size;
  size_t i;

  for (i = 0; i < N; ++i)
    {
      gsl_complex vi;
      GSL_REAL(vi) = gsl_rng_uniform(r);
      GSL_IMAG(vi) = gsl_rng_uniform(r);
      gsl_vector_complex_set(v, i, vi);
    }

  return GSL_SUCCESS;
}

static int
create_random_matrix(gsl_matrix * m, gsl_rng * r)
{
  const size_t M = m->size1;
  const size_t N = m->size2;
  size_t i, j;

  for (i = 0; i < M; ++i)
    {
      for (j = 0; j < N; ++j)
        {
          double mij = gsl_rng_uniform(r);
          gsl_matrix_set(m, i, j, mij);
        }
    }

  return GSL_SUCCESS;
}

static int
create_random_complex_matrix(gsl_matrix_complex * m, gsl_rng * r)
{
  const size_t M = m->size1;
  const size_t N = m->size2;
  size_t i, j;

  for (i = 0; i < M; ++i)
    {
      for (j = 0; j < N; ++j)
        {
          gsl_complex mij;

          GSL_REAL(mij) = gsl_rng_uniform(r);
          GSL_IMAG(mij) = gsl_rng_uniform(r);

          gsl_matrix_complex_set(m, i, j, mij);
        }
    }

  return GSL_SUCCESS;
}

static int
create_symm_matrix(gsl_matrix * m, gsl_rng * r)
{
  const size_t N = m->size1;
  size_t i, j;

  for (i = 0; i < N; ++i)
    {
      for (j = 0; j <= i; ++j)
        {
          double mij = gsl_rng_uniform(r);
          gsl_matrix_set(m, i, j, mij);
        }
    }

  /* copy lower triangle to upper */
  gsl_matrix_transpose_tricpy(CblasLower, CblasUnit, m, m);

  return GSL_SUCCESS;
}

static int
create_herm_matrix(gsl_matrix_complex * m, gsl_rng * r)
{
  const size_t N = m->size1;
  size_t i, j;

  for (i = 0; i < N; ++i)
    {
      for (j = 0; j <= i; ++j)
        {
          double re = gsl_rng_uniform(r);
          double im = (i != j) ? gsl_rng_uniform(r) : 0.0;
          gsl_complex z = gsl_complex_rect(re, im);

          gsl_matrix_complex_set(m, i, j, z);

          if (i != j)
            gsl_matrix_complex_set(m, j, i, gsl_complex_conjugate(z));
        }
    }

  return GSL_SUCCESS;
}

/* create symmetric banded matrix with p sub/super-diagonals */
static int
create_symm_band_matrix(const size_t p, gsl_matrix * m, gsl_rng * r)
{
  size_t i;

  gsl_matrix_set_zero(m);

  for (i = 0; i < p + 1; ++i)
    {
      gsl_vector_view subdiag = gsl_matrix_subdiagonal(m, i);
      create_random_vector(&subdiag.vector, r);

      if (i > 0)
        {
          gsl_vector_view superdiag = gsl_matrix_superdiagonal(m, i);
          gsl_vector_memcpy(&superdiag.vector, &subdiag.vector);
        }
    }

  return GSL_SUCCESS;
}

/* create (p,q) banded matrix */
static int
create_band_matrix(const size_t p, const size_t q, gsl_matrix * m, gsl_rng * r)
{
  size_t i;

  gsl_matrix_set_zero(m);

  for (i = 0; i <= p; ++i)
    {
      gsl_vector_view v = gsl_matrix_subdiagonal(m, i);
      create_random_vector(&v.vector, r);
    }

  for (i = 1; i <= q; ++i)
    {
      gsl_vector_view v = gsl_matrix_superdiagonal(m, i);
      create_random_vector(&v.vector, r);
    }

  return GSL_SUCCESS;
}

static int
create_posdef_matrix(gsl_matrix * m, gsl_rng * r)
{
  const size_t N = m->size1;
  const double alpha = 10.0 * N;
  size_t i;

  /* The idea is to make a symmetric diagonally dominant
   * matrix. Make a symmetric matrix and add alpha*I to
   * its diagonal */

  create_symm_matrix(m, r);

  for (i = 0; i < N; ++i)
    {
      double mii = gsl_matrix_get(m, i, i);
      gsl_matrix_set(m, i, i, mii + alpha);
    }

  return GSL_SUCCESS;
}

static int
create_posdef_complex_matrix(gsl_matrix_complex *m, gsl_rng *r)
{
  const size_t N = m->size1;
  const double alpha = 10.0 * N;
  size_t i;

  create_herm_matrix(m, r);

  for (i = 0; i < N; ++i)
    {
      gsl_complex * mii = gsl_matrix_complex_ptr(m, i, i);
      GSL_REAL(*mii) += alpha;
    }

  return GSL_SUCCESS;
}

static int
create_hilbert_matrix2(gsl_matrix * m)
{
  const size_t N = m->size1;
  size_t i, j;

  for (i = 0; i < N; i++)
    {
      for (j = 0; j < N; j++)
        {
          gsl_matrix_set(m, i, j, 1.0/(i+j+1.0));
        }
    }

  return GSL_SUCCESS;
}

/* create a matrix of a given rank */
static int
create_rank_matrix(const size_t rank, gsl_matrix * m, gsl_rng * r)
{
  const size_t M = m->size1;
  const size_t N = m->size2;
  size_t i;
  gsl_vector *u = gsl_vector_alloc(M);
  gsl_vector *v = gsl_vector_alloc(N);

  gsl_matrix_set_zero(m);

  /* add several rank-1 matrices together */
  for (i = 0; i < rank; ++i)
    {
      create_random_vector(u, r);
      create_random_vector(v, r);
      gsl_blas_dger(1.0, u, v, m);
    }

  gsl_vector_free(u);
  gsl_vector_free(v);

  return GSL_SUCCESS;
}

static int
create_posdef_band_matrix(const size_t p, gsl_matrix * m, gsl_rng * r)
{
  const size_t N = m->size1;
  const double alpha = 10.0 * N;
  size_t i;

  /* The idea is to make a symmetric diagonally dominant
   * matrix. Make a symmetric matrix and add alpha*I to
   * its diagonal */

  create_symm_band_matrix(p, m, r);

  for (i = 0; i < N; ++i)
    {
      double *mii = gsl_matrix_ptr(m, i, i);
      *mii += alpha;
    }

  return GSL_SUCCESS;
}

/* transform dense symmetric banded matrix to compact form, with bandwidth p */
static int
symm2band_matrix(const size_t p, const gsl_matrix * m, gsl_matrix * bm)
{
  const size_t N = m->size1;

  if (bm->size1 != N)
    {
      GSL_ERROR("banded matrix requires N rows", GSL_EBADLEN);
    }
  else if (bm->size2 != p + 1)
    {
      GSL_ERROR("banded matrix requires p + 1 columns", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      gsl_matrix_set_zero(bm);

      for (i = 0; i < p + 1; ++i)
        {
          gsl_vector_const_view diag = gsl_matrix_const_subdiagonal(m, i);
          gsl_vector_view v = gsl_matrix_subcolumn(bm, i, 0, N - i);

          gsl_vector_memcpy(&v.vector, &diag.vector);
        }

      return GSL_SUCCESS;
    }
}

/* transform general dense (p,q) banded matrix to compact banded form */
static int
gen2band_matrix(const size_t p, const size_t q, const gsl_matrix * A, gsl_matrix * AB)
{
  const size_t N = A->size2;

  if (AB->size1 != N)
    {
      GSL_ERROR("banded matrix requires N rows", GSL_EBADLEN);
    }
  else if (AB->size2 != 2*p + q + 1)
    {
      GSL_ERROR("banded matrix requires 2*p + q + 1 columns", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      gsl_matrix_set_zero(AB);

      /* copy diagonal and subdiagonals */
      for (i = 0; i <= p; ++i)
        {
          gsl_vector_const_view v = gsl_matrix_const_subdiagonal(A, i);
          gsl_vector_view w = gsl_matrix_subcolumn(AB, p + q + i, 0, v.vector.size);
          gsl_vector_memcpy(&w.vector, &v.vector);
        }

      /* copy superdiagonals */
      for (i = 1; i <= q; ++i)
        {
          gsl_vector_const_view v = gsl_matrix_const_superdiagonal(A, i);
          gsl_vector_view w = gsl_matrix_subcolumn(AB, p + q - i, i, v.vector.size);
          gsl_vector_memcpy(&w.vector, &v.vector);
        }

      return GSL_SUCCESS;
    }
}