1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
/* multimin/simplex2.c
*
* Copyright (C) 2007, 2008, 2009 Brian Gough
* Copyright (C) 2002 Tuomo Keskitalo, Ivo Alxneit
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
- Originally written by Tuomo Keskitalo <tuomo.keskitalo@iki.fi>
- Corrections to nmsimplex_iterate and other functions
by Ivo Alxneit <ivo.alxneit@psi.ch>
- Additional help by Brian Gough <bjg@network-theory.co.uk>
- Optimisations added by Brian Gough <bjg@network-theory.co.uk>
+ use BLAS for frequently-called functions
+ keep track of the center to avoid unnecessary computation
+ compute size as RMS value, allowing linear update on each step
instead of recomputing from all N+1 vectors.
*/
/* The Simplex method of Nelder and Mead, also known as the polytope
search alogorithm. Ref: Nelder, J.A., Mead, R., Computer Journal 7
(1965) pp. 308-313.
This implementation uses n+1 corner points in the simplex.
*/
#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multimin.h>
#include <gsl/gsl_matrix_double.h>
typedef struct
{
gsl_matrix *x1; /* simplex corner points */
gsl_vector *y1; /* function value at corner points */
gsl_vector *ws1; /* workspace 1 for algorithm */
gsl_vector *ws2; /* workspace 2 for algorithm */
gsl_vector *center; /* center of all points */
gsl_vector *delta; /* current step */
gsl_vector *xmc; /* x - center (workspace) */
double S2;
unsigned long count;
}
nmsimplex_state_t;
static int
compute_center (const nmsimplex_state_t * state, gsl_vector * center);
static double
compute_size (nmsimplex_state_t * state, const gsl_vector * center);
static double
try_corner_move (const double coeff,
const nmsimplex_state_t * state,
size_t corner,
gsl_vector * xc, const gsl_multimin_function * f)
{
/* moves a simplex corner scaled by coeff (negative value represents
mirroring by the middle point of the "other" corner points)
and gives new corner in xc and function value at xc as a
return value
*/
gsl_matrix *x1 = state->x1;
const size_t P = x1->size1;
double newval;
/* xc = (1-coeff)*(P/(P-1)) * center(all) + ((P*coeff-1)/(P-1))*x_corner */
{
double alpha = (1 - coeff) * P / (P - 1.0);
double beta = (P * coeff - 1.0) / (P - 1.0);
gsl_vector_const_view row = gsl_matrix_const_row (x1, corner);
gsl_vector_memcpy (xc, state->center);
gsl_blas_dscal (alpha, xc);
gsl_blas_daxpy (beta, &row.vector, xc);
}
newval = GSL_MULTIMIN_FN_EVAL (f, xc);
return newval;
}
static void
update_point (nmsimplex_state_t * state, size_t i,
const gsl_vector * x, double val)
{
gsl_vector_const_view x_orig = gsl_matrix_const_row (state->x1, i);
const size_t P = state->x1->size1;
/* Compute delta = x - x_orig */
gsl_vector_memcpy (state->delta, x);
gsl_blas_daxpy (-1.0, &x_orig.vector, state->delta);
/* Compute xmc = x_orig - c */
gsl_vector_memcpy (state->xmc, &x_orig.vector);
gsl_blas_daxpy (-1.0, state->center, state->xmc);
/* Update size: S2' = S2 + (2/P) * (x_orig - c).delta + (P-1)*(delta/P)^2 */
{
double d = gsl_blas_dnrm2 (state->delta);
double xmcd;
gsl_blas_ddot (state->xmc, state->delta, &xmcd);
state->S2 += (2.0 / P) * xmcd + ((P - 1.0) / P) * (d * d / P);
}
/* Update center: c' = c + (x - x_orig) / P */
{
double alpha = 1.0 / P;
gsl_blas_daxpy (-alpha, &x_orig.vector, state->center);
gsl_blas_daxpy (alpha, x, state->center);
}
gsl_matrix_set_row (state->x1, i, x);
gsl_vector_set (state->y1, i, val);
}
static int
contract_by_best (nmsimplex_state_t * state, size_t best,
gsl_vector * xc, gsl_multimin_function * f)
{
/* Function contracts the simplex in respect to best valued
corner. That is, all corners besides the best corner are moved.
(This function is rarely called in practice, since it is the last
choice, hence not optimised - BJG) */
/* the xc vector is simply work space here */
gsl_matrix *x1 = state->x1;
gsl_vector *y1 = state->y1;
size_t i, j;
double newval;
int status = GSL_SUCCESS;
for (i = 0; i < x1->size1; i++)
{
if (i != best)
{
for (j = 0; j < x1->size2; j++)
{
newval = 0.5 * (gsl_matrix_get (x1, i, j)
+ gsl_matrix_get (x1, best, j));
gsl_matrix_set (x1, i, j, newval);
}
/* evaluate function in the new point */
gsl_matrix_get_row (xc, x1, i);
newval = GSL_MULTIMIN_FN_EVAL (f, xc);
gsl_vector_set (y1, i, newval);
/* notify caller that we found at least one bad function value.
we finish the contraction (and do not abort) to allow the user
to handle the situation */
if (!gsl_finite (newval))
{
status = GSL_EBADFUNC;
}
}
}
/* We need to update the centre and size as well */
compute_center (state, state->center);
compute_size (state, state->center);
return status;
}
static int
compute_center (const nmsimplex_state_t * state, gsl_vector * center)
{
/* calculates the center of the simplex and stores in center */
gsl_matrix *x1 = state->x1;
const size_t P = x1->size1;
size_t i;
gsl_vector_set_zero (center);
for (i = 0; i < P; i++)
{
gsl_vector_const_view row = gsl_matrix_const_row (x1, i);
gsl_blas_daxpy (1.0, &row.vector, center);
}
{
const double alpha = 1.0 / P;
gsl_blas_dscal (alpha, center);
}
return GSL_SUCCESS;
}
static double
compute_size (nmsimplex_state_t * state, const gsl_vector * center)
{
/* calculates simplex size as rms sum of length of vectors
from simplex center to corner points:
sqrt( sum ( || y - y_middlepoint ||^2 ) / n )
*/
gsl_vector *s = state->ws1;
gsl_matrix *x1 = state->x1;
const size_t P = x1->size1;
size_t i;
double ss = 0.0;
for (i = 0; i < P; i++)
{
double t;
gsl_matrix_get_row (s, x1, i);
gsl_blas_daxpy (-1.0, center, s);
t = gsl_blas_dnrm2 (s);
ss += t * t;
}
/* Store squared size in the state */
state->S2 = (ss / P);
return sqrt (ss / P);
}
static int
nmsimplex_alloc (void *vstate, size_t n)
{
nmsimplex_state_t *state = (nmsimplex_state_t *) vstate;
if (n == 0)
{
GSL_ERROR ("invalid number of parameters specified", GSL_EINVAL);
}
state->x1 = gsl_matrix_alloc (n + 1, n);
if (state->x1 == NULL)
{
GSL_ERROR ("failed to allocate space for x1", GSL_ENOMEM);
}
state->y1 = gsl_vector_alloc (n + 1);
if (state->y1 == NULL)
{
gsl_matrix_free (state->x1);
GSL_ERROR ("failed to allocate space for y", GSL_ENOMEM);
}
state->ws1 = gsl_vector_alloc (n);
if (state->ws1 == NULL)
{
gsl_matrix_free (state->x1);
gsl_vector_free (state->y1);
GSL_ERROR ("failed to allocate space for ws1", GSL_ENOMEM);
}
state->ws2 = gsl_vector_alloc (n);
if (state->ws2 == NULL)
{
gsl_matrix_free (state->x1);
gsl_vector_free (state->y1);
gsl_vector_free (state->ws1);
GSL_ERROR ("failed to allocate space for ws2", GSL_ENOMEM);
}
state->center = gsl_vector_alloc (n);
if (state->center == NULL)
{
gsl_matrix_free (state->x1);
gsl_vector_free (state->y1);
gsl_vector_free (state->ws1);
gsl_vector_free (state->ws2);
GSL_ERROR ("failed to allocate space for center", GSL_ENOMEM);
}
state->delta = gsl_vector_alloc (n);
if (state->delta == NULL)
{
gsl_matrix_free (state->x1);
gsl_vector_free (state->y1);
gsl_vector_free (state->ws1);
gsl_vector_free (state->ws2);
gsl_vector_free (state->center);
GSL_ERROR ("failed to allocate space for delta", GSL_ENOMEM);
}
state->xmc = gsl_vector_alloc (n);
if (state->xmc == NULL)
{
gsl_matrix_free (state->x1);
gsl_vector_free (state->y1);
gsl_vector_free (state->ws1);
gsl_vector_free (state->ws2);
gsl_vector_free (state->center);
gsl_vector_free (state->delta);
GSL_ERROR ("failed to allocate space for xmc", GSL_ENOMEM);
}
state->count = 0;
return GSL_SUCCESS;
}
static void
nmsimplex_free (void *vstate)
{
nmsimplex_state_t *state = (nmsimplex_state_t *) vstate;
gsl_matrix_free (state->x1);
gsl_vector_free (state->y1);
gsl_vector_free (state->ws1);
gsl_vector_free (state->ws2);
gsl_vector_free (state->center);
gsl_vector_free (state->delta);
gsl_vector_free (state->xmc);
}
static int
nmsimplex_set (void *vstate, gsl_multimin_function * f,
const gsl_vector * x,
double *size, const gsl_vector * step_size)
{
int status;
size_t i;
double val;
nmsimplex_state_t *state = (nmsimplex_state_t *) vstate;
gsl_vector *xtemp = state->ws1;
if (xtemp->size != x->size)
{
GSL_ERROR ("incompatible size of x", GSL_EINVAL);
}
if (xtemp->size != step_size->size)
{
GSL_ERROR ("incompatible size of step_size", GSL_EINVAL);
}
/* first point is the original x0 */
val = GSL_MULTIMIN_FN_EVAL (f, x);
if (!gsl_finite (val))
{
GSL_ERROR ("non-finite function value encountered", GSL_EBADFUNC);
}
gsl_matrix_set_row (state->x1, 0, x);
gsl_vector_set (state->y1, 0, val);
/* following points are initialized to x0 + step_size */
for (i = 0; i < x->size; i++)
{
status = gsl_vector_memcpy (xtemp, x);
if (status != 0)
{
GSL_ERROR ("vector memcopy failed", GSL_EFAILED);
}
{
double xi = gsl_vector_get (x, i);
double si = gsl_vector_get (step_size, i);
gsl_vector_set (xtemp, i, xi + si);
val = GSL_MULTIMIN_FN_EVAL (f, xtemp);
}
if (!gsl_finite (val))
{
GSL_ERROR ("non-finite function value encountered", GSL_EBADFUNC);
}
gsl_matrix_set_row (state->x1, i + 1, xtemp);
gsl_vector_set (state->y1, i + 1, val);
}
compute_center (state, state->center);
/* Initialize simplex size */
*size = compute_size (state, state->center);
state->count++;
return GSL_SUCCESS;
}
static int
nmsimplex_iterate (void *vstate, gsl_multimin_function * f,
gsl_vector * x, double *size, double *fval)
{
/* Simplex iteration tries to minimize function f value */
/* Includes corrections from Ivo Alxneit <ivo.alxneit@psi.ch> */
nmsimplex_state_t *state = (nmsimplex_state_t *) vstate;
/* xc and xc2 vectors store tried corner point coordinates */
gsl_vector *xc = state->ws1;
gsl_vector *xc2 = state->ws2;
gsl_vector *y1 = state->y1;
gsl_matrix *x1 = state->x1;
const size_t n = y1->size;
size_t i;
size_t hi, s_hi, lo;
double dhi, ds_hi, dlo;
int status;
double val, val2;
if (xc->size != x->size)
{
GSL_ERROR ("incompatible size of x", GSL_EINVAL);
}
/* get index of highest, second highest and lowest point */
dhi = dlo = gsl_vector_get (y1, 0);
hi = 0;
lo = 0;
ds_hi = gsl_vector_get (y1, 1);
s_hi = 1;
for (i = 1; i < n; i++)
{
val = (gsl_vector_get (y1, i));
if (val < dlo)
{
dlo = val;
lo = i;
}
else if (val > dhi)
{
ds_hi = dhi;
s_hi = hi;
dhi = val;
hi = i;
}
else if (val > ds_hi)
{
ds_hi = val;
s_hi = i;
}
}
/* try reflecting the highest value point */
val = try_corner_move (-1.0, state, hi, xc, f);
if (gsl_finite (val) && val < gsl_vector_get (y1, lo))
{
/* reflected point is lowest, try expansion */
val2 = try_corner_move (-2.0, state, hi, xc2, f);
if (gsl_finite (val2) && val2 < gsl_vector_get (y1, lo))
{
update_point (state, hi, xc2, val2);
}
else
{
update_point (state, hi, xc, val);
}
}
else if (!gsl_finite (val) || val > gsl_vector_get (y1, s_hi))
{
/* reflection does not improve things enough, or we got a
non-finite function value */
if (gsl_finite (val) && val <= gsl_vector_get (y1, hi))
{
/* if trial point is better than highest point, replace
highest point */
update_point (state, hi, xc, val);
}
/* try one-dimensional contraction */
val2 = try_corner_move (0.5, state, hi, xc2, f);
if (gsl_finite (val2) && val2 <= gsl_vector_get (y1, hi))
{
update_point (state, hi, xc2, val2);
}
else
{
/* contract the whole simplex about the best point */
status = contract_by_best (state, lo, xc, f);
if (status != GSL_SUCCESS)
{
GSL_ERROR ("contraction failed", GSL_EFAILED);
}
}
}
else
{
/* trial point is better than second highest point. Replace
highest point by it */
update_point (state, hi, xc, val);
}
/* return lowest point of simplex as x */
lo = gsl_vector_min_index (y1);
gsl_matrix_get_row (x, x1, lo);
*fval = gsl_vector_get (y1, lo);
/* Update simplex size */
{
double S2 = state->S2;
if (S2 > 0)
{
*size = sqrt (S2);
}
else
{
/* recompute if accumulated error has made size invalid */
*size = compute_size (state, state->center);
}
}
return GSL_SUCCESS;
}
static const gsl_multimin_fminimizer_type nmsimplex_type =
{ "nmsimplex2", /* name */
sizeof (nmsimplex_state_t),
&nmsimplex_alloc,
&nmsimplex_set,
&nmsimplex_iterate,
&nmsimplex_free
};
const gsl_multimin_fminimizer_type
* gsl_multimin_fminimizer_nmsimplex2 = &nmsimplex_type;
static inline double
ran_unif (unsigned long *seed)
{
unsigned long s = *seed;
*seed = (s * 69069 + 1) & 0xffffffffUL;
return (*seed) / 4294967296.0;
}
static int
nmsimplex_set_rand (void *vstate, gsl_multimin_function * f,
const gsl_vector * x,
double *size, const gsl_vector * step_size)
{
size_t i, j;
double val;
nmsimplex_state_t *state = (nmsimplex_state_t *) vstate;
gsl_vector *xtemp = state->ws1;
if (xtemp->size != x->size)
{
GSL_ERROR ("incompatible size of x", GSL_EINVAL);
}
if (xtemp->size != step_size->size)
{
GSL_ERROR ("incompatible size of step_size", GSL_EINVAL);
}
/* first point is the original x0 */
val = GSL_MULTIMIN_FN_EVAL (f, x);
if (!gsl_finite (val))
{
GSL_ERROR ("non-finite function value encountered", GSL_EBADFUNC);
}
gsl_matrix_set_row (state->x1, 0, x);
gsl_vector_set (state->y1, 0, val);
{
gsl_matrix_view m =
gsl_matrix_submatrix (state->x1, 1, 0, x->size, x->size);
/* generate a random orthornomal basis */
unsigned long seed = state->count ^ 0x12345678;
ran_unif (&seed); /* warm it up */
gsl_matrix_set_identity (&m.matrix);
/* start with random reflections */
for (i = 0; i < x->size; i++)
{
double s = ran_unif (&seed);
if (s > 0.5) gsl_matrix_set (&m.matrix, i, i, -1.0);
}
/* apply random rotations */
for (i = 0; i < x->size; i++)
{
for (j = i + 1; j < x->size; j++)
{
/* rotate columns i and j by a random angle */
double angle = 2.0 * M_PI * ran_unif (&seed);
double c = cos (angle), s = sin (angle);
gsl_vector_view c_i = gsl_matrix_column (&m.matrix, i);
gsl_vector_view c_j = gsl_matrix_column (&m.matrix, j);
gsl_blas_drot (&c_i.vector, &c_j.vector, c, s);
}
}
/* scale the orthonormal basis by the user-supplied step_size in
each dimension, and use as an offset from the central point x */
for (i = 0; i < x->size; i++)
{
double x_i = gsl_vector_get (x, i);
double s_i = gsl_vector_get (step_size, i);
gsl_vector_view c_i = gsl_matrix_column (&m.matrix, i);
for (j = 0; j < x->size; j++)
{
double x_ij = gsl_vector_get (&c_i.vector, j);
gsl_vector_set (&c_i.vector, j, x_i + s_i * x_ij);
}
}
/* compute the function values at each offset point */
for (i = 0; i < x->size; i++)
{
gsl_vector_view r_i = gsl_matrix_row (&m.matrix, i);
val = GSL_MULTIMIN_FN_EVAL (f, &r_i.vector);
if (!gsl_finite (val))
{
GSL_ERROR ("non-finite function value encountered", GSL_EBADFUNC);
}
gsl_vector_set (state->y1, i + 1, val);
}
}
compute_center (state, state->center);
/* Initialize simplex size */
*size = compute_size (state, state->center);
state->count++;
return GSL_SUCCESS;
}
static const gsl_multimin_fminimizer_type nmsimplex2rand_type =
{ "nmsimplex2rand", /* name */
sizeof (nmsimplex_state_t),
&nmsimplex_alloc,
&nmsimplex_set_rand,
&nmsimplex_iterate,
&nmsimplex_free
};
const gsl_multimin_fminimizer_type
* gsl_multimin_fminimizer_nmsimplex2rand = &nmsimplex2rand_type;
|