1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/* multimin/vector_bfgs2.c
*
* Copyright (C) 2007, 2009 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/* vector_bfgs2.c -- Fletcher's implementation of the BFGS method,
using the line minimisation algorithm from from R.Fletcher,
"Practical Methods of Optimization", Second Edition, ISBN
0471915475. Algorithms 2.6.2 and 2.6.4. */
/* Thanks to Alan Irwin irwin@beluga.phys.uvic.ca. for suggesting this
algorithm and providing sample fortran benchmarks */
#include <config.h>
#include <gsl/gsl_multimin.h>
#include <gsl/gsl_blas.h>
#include "linear_minimize.c"
#include "linear_wrapper.c"
typedef struct
{
int iter;
double step;
double g0norm;
double pnorm;
double delta_f;
double fp0; /* f'(0) for f(x-alpha*p) */
gsl_vector *x0;
gsl_vector *g0;
gsl_vector *p;
/* work space */
gsl_vector *dx0;
gsl_vector *dg0;
gsl_vector *x_alpha;
gsl_vector *g_alpha;
/* wrapper function */
wrapper_t wrap;
/* minimization parameters */
double rho;
double sigma;
double tau1;
double tau2;
double tau3;
int order;
}
vector_bfgs2_state_t;
static int
vector_bfgs2_alloc (void *vstate, size_t n)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
state->p = gsl_vector_calloc (n);
if (state->p == 0)
{
GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM);
}
state->x0 = gsl_vector_calloc (n);
if (state->x0 == 0)
{
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->g0 = gsl_vector_calloc (n);
if (state->g0 == 0)
{
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->dx0 = gsl_vector_calloc (n);
if (state->dx0 == 0)
{
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->dg0 = gsl_vector_calloc (n);
if (state->dg0 == 0)
{
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->x_alpha = gsl_vector_calloc (n);
if (state->x_alpha == 0)
{
gsl_vector_free (state->dg0);
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->g_alpha = gsl_vector_calloc (n);
if (state->g_alpha == 0)
{
gsl_vector_free (state->x_alpha);
gsl_vector_free (state->dg0);
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
return GSL_SUCCESS;
}
static int
vector_bfgs2_set (void *vstate, gsl_multimin_function_fdf * fdf,
const gsl_vector * x, double *f, gsl_vector * gradient,
double step_size, double tol)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
state->iter = 0;
state->step = step_size;
state->delta_f = 0;
GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient);
/* Use the gradient as the initial direction */
gsl_vector_memcpy (state->x0, x);
gsl_vector_memcpy (state->g0, gradient);
state->g0norm = gsl_blas_dnrm2 (state->g0);
gsl_vector_memcpy (state->p, gradient);
gsl_blas_dscal (-1 / state->g0norm, state->p);
state->pnorm = gsl_blas_dnrm2 (state->p); /* should be 1 */
state->fp0 = -state->g0norm;
/* Prepare the wrapper */
prepare_wrapper (&state->wrap, fdf,
state->x0, *f, state->g0,
state->p, state->x_alpha, state->g_alpha);
/* Prepare 1d minimisation parameters */
state->rho = 0.01;
state->sigma = tol;
state->tau1 = 9;
state->tau2 = 0.05;
state->tau3 = 0.5;
state->order = 3; /* use cubic interpolation where possible */
return GSL_SUCCESS;
}
static void
vector_bfgs2_free (void *vstate)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
gsl_vector_free (state->x_alpha);
gsl_vector_free (state->g_alpha);
gsl_vector_free (state->dg0);
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
}
static int
vector_bfgs2_restart (void *vstate)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
state->iter = 0;
return GSL_SUCCESS;
}
static int
vector_bfgs2_iterate (void *vstate, gsl_multimin_function_fdf * fdf,
gsl_vector * x, double *f,
gsl_vector * gradient, gsl_vector * dx)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
double alpha = 0.0, alpha1;
gsl_vector *x0 = state->x0;
gsl_vector *g0 = state->g0;
gsl_vector *p = state->p;
double g0norm = state->g0norm;
double pnorm = state->pnorm;
double delta_f = state->delta_f;
double pg, dir;
int status;
double f0 = *f;
if (pnorm == 0.0 || g0norm == 0.0 || state->fp0 == 0)
{
gsl_vector_set_zero (dx);
return GSL_ENOPROG;
}
if (delta_f < 0)
{
double del = GSL_MAX_DBL (-delta_f, 10 * GSL_DBL_EPSILON * fabs(f0));
alpha1 = GSL_MIN_DBL (1.0, 2.0 * del / (-state->fp0));
}
else
{
alpha1 = fabs(state->step);
}
/* line minimisation, with cubic interpolation (order = 3) */
status = minimize (&state->wrap.fdf_linear, state->rho, state->sigma,
state->tau1, state->tau2, state->tau3, state->order,
alpha1, &alpha);
if (status != GSL_SUCCESS)
{
return status;
}
update_position (&(state->wrap), alpha, x, f, gradient);
state->delta_f = *f - f0;
/* Choose a new direction for the next step */
{
/* This is the BFGS update: */
/* p' = g1 - A dx - B dg */
/* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */
/* B = dx.g/dx.dg */
gsl_vector *dx0 = state->dx0;
gsl_vector *dg0 = state->dg0;
double dxg, dgg, dxdg, dgnorm, A, B;
/* dx0 = x - x0 */
gsl_vector_memcpy (dx0, x);
gsl_blas_daxpy (-1.0, x0, dx0);
gsl_vector_memcpy (dx, dx0); /* keep a copy */
/* dg0 = g - g0 */
gsl_vector_memcpy (dg0, gradient);
gsl_blas_daxpy (-1.0, g0, dg0);
gsl_blas_ddot (dx0, gradient, &dxg);
gsl_blas_ddot (dg0, gradient, &dgg);
gsl_blas_ddot (dx0, dg0, &dxdg);
dgnorm = gsl_blas_dnrm2 (dg0);
if (dxdg != 0)
{
B = dxg / dxdg;
A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg;
}
else
{
B = 0;
A = 0;
}
gsl_vector_memcpy (p, gradient);
gsl_blas_daxpy (-A, dx0, p);
gsl_blas_daxpy (-B, dg0, p);
}
gsl_vector_memcpy (g0, gradient);
gsl_vector_memcpy (x0, x);
state->g0norm = gsl_blas_dnrm2 (g0);
state->pnorm = gsl_blas_dnrm2 (p);
/* update direction and fp0 */
gsl_blas_ddot (p, gradient, &pg);
dir = (pg >= 0.0) ? -1.0 : +1.0;
gsl_blas_dscal (dir / state->pnorm, p);
state->pnorm = gsl_blas_dnrm2 (p);
gsl_blas_ddot (p, g0, &state->fp0);
change_direction (&state->wrap);
return GSL_SUCCESS;
}
static const gsl_multimin_fdfminimizer_type vector_bfgs2_type = {
"vector_bfgs2", /* name */
sizeof (vector_bfgs2_state_t),
&vector_bfgs2_alloc,
&vector_bfgs2_set,
&vector_bfgs2_iterate,
&vector_bfgs2_restart,
&vector_bfgs2_free
};
const gsl_multimin_fdfminimizer_type
* gsl_multimin_fdfminimizer_vector_bfgs2 = &vector_bfgs2_type;
|