1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/* siman/siman.c
*
* Copyright (C) 2007 Brian Gough
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Mark Galassi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <gsl/gsl_machine.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_siman.h>
static inline double
boltzmann(double E, double new_E, double T, gsl_siman_params_t *params)
{
double x = -(new_E - E) / (params->k * T);
/* avoid underflow errors for large uphill steps */
return (x < GSL_LOG_DBL_MIN) ? 0.0 : exp(x);
}
static inline void
copy_state(void *src, void *dst, size_t size, gsl_siman_copy_t copyfunc)
{
if (copyfunc) {
copyfunc(src, dst);
} else {
memcpy(dst, src, size);
}
}
/* implementation of a basic simulated annealing algorithm */
void
gsl_siman_solve (const gsl_rng * r, void *x0_p, gsl_siman_Efunc_t Ef,
gsl_siman_step_t take_step,
gsl_siman_metric_t distance,
gsl_siman_print_t print_position,
gsl_siman_copy_t copyfunc,
gsl_siman_copy_construct_t copy_constructor,
gsl_siman_destroy_t destructor,
size_t element_size,
gsl_siman_params_t params)
{
void *x, *new_x, *best_x;
double E, new_E, best_E;
int i;
double T, T_factor;
int n_evals = 1, n_iter = 0, n_accepts, n_rejects, n_eless;
/* this function requires that either the dynamic functions (copy,
copy_constructor and destrcutor) are passed, or that an element
size is given */
assert((copyfunc != NULL && copy_constructor != NULL && destructor != NULL)
|| (element_size != 0));
distance = 0 ; /* This parameter is not currently used */
E = Ef(x0_p);
if (copyfunc) {
x = copy_constructor(x0_p);
new_x = copy_constructor(x0_p);
best_x = copy_constructor(x0_p);
} else {
x = (void *) malloc (element_size);
memcpy (x, x0_p, element_size);
new_x = (void *) malloc (element_size);
best_x = (void *) malloc (element_size);
memcpy (best_x, x0_p, element_size);
}
best_E = E;
T = params.t_initial;
T_factor = 1.0 / params.mu_t;
if (print_position) {
printf ("#-iter #-evals temperature position energy\n");
}
while (1) {
n_accepts = 0;
n_rejects = 0;
n_eless = 0;
for (i = 0; i < params.iters_fixed_T; ++i) {
copy_state(x, new_x, element_size, copyfunc);
take_step (r, new_x, params.step_size);
new_E = Ef (new_x);
if(new_E <= best_E){
if (copyfunc) {
copyfunc(new_x,best_x);
} else {
memcpy (best_x, new_x, element_size);
}
best_E=new_E;
}
++n_evals; /* keep track of Ef() evaluations */
/* now take the crucial step: see if the new point is accepted
or not, as determined by the boltzmann probability */
if (new_E < E) {
if (new_E < best_E) {
copy_state(new_x, best_x, element_size, copyfunc);
best_E = new_E;
}
/* yay! take a step */
copy_state(new_x, x, element_size, copyfunc);
E = new_E;
++n_eless;
} else if (gsl_rng_uniform(r) < boltzmann(E, new_E, T, ¶ms)) {
/* yay! take a step */
copy_state(new_x, x, element_size, copyfunc);
E = new_E;
++n_accepts;
} else {
++n_rejects;
}
}
if (print_position) {
/* see if we need to print stuff as we go */
/* printf("%5d %12g %5d %3d %3d %3d", n_iter, T, n_evals, */
/* 100*n_eless/n_steps, 100*n_accepts/n_steps, */
/* 100*n_rejects/n_steps); */
printf ("%5d %7d %12g", n_iter, n_evals, T);
print_position (x);
printf (" %12g %12g\n", E, best_E);
}
/* apply the cooling schedule to the temperature */
/* FIXME: I should also introduce a cooling schedule for the iters */
T *= T_factor;
++n_iter;
if (T < params.t_min) {
break;
}
}
/* at the end, copy the result onto the initial point, so we pass it
back to the caller */
copy_state(best_x, x0_p, element_size, copyfunc);
if (copyfunc) {
destructor(x);
destructor(new_x);
destructor(best_x);
} else {
free (x);
free (new_x);
free (best_x);
}
}
/* implementation of a simulated annealing algorithm with many tries */
void
gsl_siman_solve_many (const gsl_rng * r, void *x0_p, gsl_siman_Efunc_t Ef,
gsl_siman_step_t take_step,
gsl_siman_metric_t distance,
gsl_siman_print_t print_position,
size_t element_size,
gsl_siman_params_t params)
{
/* the new set of trial points, and their energies and probabilities */
void *x, *new_x;
double *energies, *probs, *sum_probs;
double Ex; /* energy of the chosen point */
double T, T_factor; /* the temperature and a step multiplier */
int i;
double u; /* throw the die to choose a new "x" */
int n_iter;
/* this function requires that n_tries be positive */
assert(params.n_tries > 0);
if (print_position) {
printf ("#-iter temperature position");
printf (" delta_pos energy\n");
}
x = (void *) malloc (params.n_tries * element_size);
new_x = (void *) malloc (params.n_tries * element_size);
energies = (double *) malloc (params.n_tries * sizeof (double));
probs = (double *) malloc (params.n_tries * sizeof (double));
sum_probs = (double *) malloc (params.n_tries * sizeof (double));
T = params.t_initial;
T_factor = 1.0 / params.mu_t;
memcpy (x, x0_p, element_size);
n_iter = 0;
while (1)
{
Ex = Ef (x);
for (i = 0; i < params.n_tries - 1; ++i)
{ /* only go to N_TRIES-2 */
/* center the new_x[] around x, then pass it to take_step() */
sum_probs[i] = 0;
memcpy ((char *)new_x + i * element_size, x, element_size);
take_step (r, (char *)new_x + i * element_size, params.step_size);
energies[i] = Ef ((char *)new_x + i * element_size);
probs[i] = boltzmann(Ex, energies[i], T, ¶ms);
}
/* now add in the old value of "x", so it is a contendor */
memcpy ((char *)new_x + (params.n_tries - 1) * element_size, x, element_size);
energies[params.n_tries - 1] = Ex;
probs[params.n_tries - 1] = boltzmann(Ex, energies[i], T, ¶ms);
/* now throw biased die to see which new_x[i] we choose */
sum_probs[0] = probs[0];
for (i = 1; i < params.n_tries; ++i)
{
sum_probs[i] = sum_probs[i - 1] + probs[i];
}
u = gsl_rng_uniform (r) * sum_probs[params.n_tries - 1];
for (i = 0; i < params.n_tries; ++i)
{
if (u < sum_probs[i])
{
memcpy (x, (char *) new_x + i * element_size, element_size);
break;
}
}
if (print_position)
{
printf ("%5d\t%12g\t", n_iter, T);
print_position (x);
printf ("\t%12g\t%12g\n", distance (x, x0_p), Ex);
}
T *= T_factor;
++n_iter;
if (T < params.t_min)
{
break;
}
}
/* now return the value via x0_p */
memcpy (x0_p, x, element_size);
/* printf("the result is: %g (E=%g)\n", x, Ex); */
free (x);
free (new_x);
free (energies);
free (probs);
free (sum_probs);
}
|