1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/* specfunc/bessel_Jn.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_pow_int.h>
#include "bessel.h"
#include "bessel_amp_phase.h"
#include "bessel_olver.h"
#include <gsl/gsl_sf_bessel.h>
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int gsl_sf_bessel_Jn_e(int n, double x, gsl_sf_result * result)
{
int sign = 1;
if(n < 0) {
/* reduce to case n >= 0 */
n = -n;
if(GSL_IS_ODD(n)) sign = -sign;
}
if(x < 0.0) {
/* reduce to case x >= 0. */
x = -x;
if(GSL_IS_ODD(n)) sign = -sign;
}
/* CHECK_POINTER(result) */
if(n == 0) {
gsl_sf_result b0;
int stat_J0 = gsl_sf_bessel_J0_e(x, &b0);
result->val = sign * b0.val;
result->err = b0.err;
return stat_J0;
}
else if(n == 1) {
gsl_sf_result b1;
int stat_J1 = gsl_sf_bessel_J1_e(x, &b1);
result->val = sign * b1.val;
result->err = b1.err;
return stat_J1;
}
else {
if(x == 0.0) {
result->val = 0.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else if(x*x < 10.0*(n+1.0)*GSL_ROOT5_DBL_EPSILON) {
gsl_sf_result b;
int status = gsl_sf_bessel_IJ_taylor_e((double)n, x, -1, 50, GSL_DBL_EPSILON, &b);
result->val = sign * b.val;
result->err = b.err;
result->err += GSL_DBL_EPSILON * fabs(result->val);
return status;
}
else if(GSL_ROOT4_DBL_EPSILON * x > (n*n+1.0)) {
int status = gsl_sf_bessel_Jnu_asympx_e((double)n, x, result);
result->val *= sign;
return status;
}
else if(n > 50) {
int status = gsl_sf_bessel_Jnu_asymp_Olver_e((double)n, x, result);
result->val *= sign;
return status;
}
else if(x > 1000.0)
{
/* We need this to avoid feeding large x to CF1; note that
* due to the above check, we know that n <= 50.
*/
int status = gsl_sf_bessel_Jnu_asympx_e((double)n, x, result);
result->val *= sign;
return status;
}
else {
double ans;
double err;
double ratio;
double sgn;
int stat_b;
int stat_CF1 = gsl_sf_bessel_J_CF1((double)n, x, &ratio, &sgn);
/* backward recurrence */
double Jkp1 = GSL_SQRT_DBL_MIN * ratio;
double Jk = GSL_SQRT_DBL_MIN;
double Jkm1;
int k;
for(k=n; k>0; k--) {
Jkm1 = 2.0*k/x * Jk - Jkp1;
Jkp1 = Jk;
Jk = Jkm1;
}
if(fabs(Jkp1) > fabs(Jk)) {
gsl_sf_result b1;
stat_b = gsl_sf_bessel_J1_e(x, &b1);
ans = b1.val/Jkp1 * GSL_SQRT_DBL_MIN;
err = b1.err/Jkp1 * GSL_SQRT_DBL_MIN;
}
else {
gsl_sf_result b0;
stat_b = gsl_sf_bessel_J0_e(x, &b0);
ans = b0.val/Jk * GSL_SQRT_DBL_MIN;
err = b0.err/Jk * GSL_SQRT_DBL_MIN;
}
result->val = sign * ans;
result->err = fabs(err);
return GSL_ERROR_SELECT_2(stat_CF1, stat_b);
}
}
}
int
gsl_sf_bessel_Jn_array(int nmin, int nmax, double x, double * result_array)
{
/* CHECK_POINTER(result_array) */
if(nmin < 0 || nmax < nmin) {
int n;
for(n=nmax; n>=nmin; n--) {
result_array[n-nmin] = 0.0;
}
GSL_ERROR ("domain error", GSL_EDOM);
}
else if(x == 0.0) {
int n;
for(n=nmax; n>=nmin; n--) {
result_array[n-nmin] = 0.0;
}
if(nmin == 0) result_array[0] = 1.0;
return GSL_SUCCESS;
}
else {
gsl_sf_result r_Jnp1;
gsl_sf_result r_Jn;
int stat_np1 = gsl_sf_bessel_Jn_e(nmax+1, x, &r_Jnp1);
int stat_n = gsl_sf_bessel_Jn_e(nmax, x, &r_Jn);
int stat = GSL_ERROR_SELECT_2(stat_np1, stat_n);
double Jnp1 = r_Jnp1.val;
double Jn = r_Jn.val;
double Jnm1;
int n;
if(stat == GSL_SUCCESS) {
for(n=nmax; n>=nmin; n--) {
result_array[n-nmin] = Jn;
Jnm1 = -Jnp1 + 2.0*n/x * Jn;
Jnp1 = Jn;
Jn = Jnm1;
}
}
else {
for(n=nmax; n>=nmin; n--) {
result_array[n-nmin] = 0.0;
}
}
return stat;
}
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_bessel_Jn(const int n, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Jn_e(n, x, &result));
}
|