1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/* specfunc/gegenbauer.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_gegenbauer.h>
#include "error.h"
/* See: [Thompson, Atlas for Computing Mathematical Functions] */
int
gsl_sf_gegenpoly_1_e(double lambda, double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(lambda == 0.0) {
result->val = 2.0*x;
result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
result->val = 2.0*lambda*x;
result->err = 4.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
}
int
gsl_sf_gegenpoly_2_e(double lambda, double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(lambda == 0.0) {
const double txx = 2.0*x*x;
result->val = -1.0 + txx;
result->err = 2.0 * GSL_DBL_EPSILON * fabs(txx);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
else {
result->val = lambda*(-1.0 + 2.0*(1.0+lambda)*x*x);
result->err = GSL_DBL_EPSILON * (2.0 * fabs(result->val) + fabs(lambda));
return GSL_SUCCESS;
}
}
int
gsl_sf_gegenpoly_3_e(double lambda, double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(lambda == 0.0) {
result->val = x*(-2.0 + 4.0/3.0*x*x);
result->err = GSL_DBL_EPSILON * (2.0 * fabs(result->val) + fabs(x));
return GSL_SUCCESS;
}
else {
double c = 4.0 + lambda*(6.0 + 2.0*lambda);
result->val = 2.0*lambda * x * ( -1.0 - lambda + c*x*x/3.0 );
result->err = GSL_DBL_EPSILON * (2.0 * fabs(result->val) + fabs(lambda * x));
return GSL_SUCCESS;
}
}
int
gsl_sf_gegenpoly_n_e(int n, double lambda, double x, gsl_sf_result * result)
{
/* CHECK_POINTER(result) */
if(lambda <= -0.5 || n < 0) {
DOMAIN_ERROR(result);
}
else if(n == 0) {
result->val = 1.0;
result->err = 0.0;
return GSL_SUCCESS;
}
else if(n == 1) {
return gsl_sf_gegenpoly_1_e(lambda, x, result);
}
else if(n == 2) {
return gsl_sf_gegenpoly_2_e(lambda, x, result);
}
else if(n == 3) {
return gsl_sf_gegenpoly_3_e(lambda, x, result);
}
else {
if(lambda == 0.0 && (x >= -1.0 && x <= 1.0)) {
/* 2 T_n(x)/n */
const double z = n * acos(x);
result->val = 2.0 * cos(z) / n;
result->err = 2.0 * GSL_DBL_EPSILON * fabs(z * result->val);
return GSL_SUCCESS;
}
else {
int k;
gsl_sf_result g2;
gsl_sf_result g3;
int stat_g2 = gsl_sf_gegenpoly_2_e(lambda, x, &g2);
int stat_g3 = gsl_sf_gegenpoly_3_e(lambda, x, &g3);
int stat_g = GSL_ERROR_SELECT_2(stat_g2, stat_g3);
double gkm2 = g2.val;
double gkm1 = g3.val;
double gk = 0.0;
for(k=4; k<=n; k++) {
gk = (2.0*(k+lambda-1.0)*x*gkm1 - (k+2.0*lambda-2.0)*gkm2) / k;
gkm2 = gkm1;
gkm1 = gk;
}
result->val = gk;
result->err = 2.0 * GSL_DBL_EPSILON * 0.5 * n * fabs(gk);
return stat_g;
}
}
}
int
gsl_sf_gegenpoly_array(int nmax, double lambda, double x, double * result_array)
{
int k;
/* CHECK_POINTER(result_array) */
if(lambda <= -0.5 || nmax < 0) {
GSL_ERROR("domain error", GSL_EDOM);
}
/* n == 0 */
result_array[0] = 1.0;
if(nmax == 0) return GSL_SUCCESS;
/* n == 1 */
if(lambda == 0.0)
result_array[1] = 2.0*x;
else
result_array[1] = 2.0*lambda*x;
/* n <= nmax */
for(k=2; k<=nmax; k++) {
double term1 = 2.0*(k+lambda-1.0) * x * result_array[k-1];
double term2 = (k+2.0*lambda-2.0) * result_array[k-2];
result_array[k] = (term1 - term2) / k;
}
return GSL_SUCCESS;
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_gegenpoly_1(double lambda, double x)
{
EVAL_RESULT(gsl_sf_gegenpoly_1_e(lambda, x, &result));
}
double gsl_sf_gegenpoly_2(double lambda, double x)
{
EVAL_RESULT(gsl_sf_gegenpoly_2_e(lambda, x, &result));
}
double gsl_sf_gegenpoly_3(double lambda, double x)
{
EVAL_RESULT(gsl_sf_gegenpoly_3_e(lambda, x, &result));
}
double gsl_sf_gegenpoly_n(int n, double lambda, double x)
{
EVAL_RESULT(gsl_sf_gegenpoly_n_e(n, lambda, x, &result));
}
|