1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/* test.c
*
* Copyright (C) 2012-2014 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_spmatrix.h>
#include <gsl/gsl_spblas.h>
#include <gsl/gsl_splinalg.h>
/*
create_random_sparse()
Create a random sparse matrix with approximately
M*N*density non-zero entries
Inputs: M - number of rows
N - number of columns
density - sparse density \in [0,1]
0 = no non-zero entries
1 = all m*n entries are filled
r - random number generator
Return: pointer to sparse matrix in triplet format (must be freed by caller)
Notes:
1) non-zero matrix entries are uniformly distributed in [0,1]
*/
static gsl_spmatrix *
create_random_sparse(const size_t M, const size_t N, const double density,
const gsl_rng *r)
{
size_t nnzwanted = (size_t) floor(M * N * GSL_MIN(density, 1.0));
gsl_spmatrix *m = gsl_spmatrix_alloc_nzmax(M, N,
nnzwanted,
GSL_SPMATRIX_TRIPLET);
size_t i;
/* set diagonal entries to try to ensure non-singularity */
for (i = 0; i < GSL_MIN(M, N); ++i)
{
double x = gsl_rng_uniform(r);
gsl_spmatrix_set(m, i, i, x);
}
while (gsl_spmatrix_nnz(m) < nnzwanted)
{
/* generate a random row and column */
size_t i = gsl_rng_uniform(r) * M;
size_t j = gsl_rng_uniform(r) * N;
/* generate random m_{ij} and add it */
double x = gsl_rng_uniform(r);
gsl_spmatrix_set(m, i, j, x);
}
return m;
} /* create_random_sparse() */
static void
create_random_vector(gsl_vector *v, const gsl_rng *r)
{
size_t i;
for (i = 0; i < v->size; ++i)
{
double x = gsl_rng_uniform(r);
gsl_vector_set(v, i, x);
}
} /* create_random_vector() */
/*
test_poisson()
Solve u''(x) = -pi^2 sin(pi*x), u(x) = sin(pi*x)
epsrel is the relative error threshold with the exact solution
*/
static void
test_poisson(const size_t N, const double epsrel, const int compress)
{
const gsl_splinalg_itersolve_type *T = gsl_splinalg_itersolve_gmres;
const size_t n = N - 2; /* subtract 2 to exclude boundaries */
const double h = 1.0 / (N - 1.0); /* grid spacing */
const double tol = 1.0e-9;
const size_t max_iter = 10;
size_t iter = 0;
gsl_spmatrix *A = gsl_spmatrix_alloc(n ,n); /* triplet format */
gsl_spmatrix *B;
gsl_vector *b = gsl_vector_alloc(n); /* right hand side vector */
gsl_vector *u = gsl_vector_calloc(n); /* solution vector, u0 = 0 */
gsl_splinalg_itersolve *w = gsl_splinalg_itersolve_alloc(T, n, 0);
const char *desc = gsl_splinalg_itersolve_name(w);
size_t i;
int status;
/* construct the sparse matrix for the finite difference equation */
/* first row of matrix */
gsl_spmatrix_set(A, 0, 0, -2.0);
gsl_spmatrix_set(A, 0, 1, 1.0);
/* loop over interior grid points */
for (i = 1; i < n - 1; ++i)
{
gsl_spmatrix_set(A, i, i + 1, 1.0);
gsl_spmatrix_set(A, i, i, -2.0);
gsl_spmatrix_set(A, i, i - 1, 1.0);
}
/* last row of matrix */
gsl_spmatrix_set(A, n - 1, n - 1, -2.0);
gsl_spmatrix_set(A, n - 1, n - 2, 1.0);
/* scale by h^2 */
gsl_spmatrix_scale(A, 1.0 / (h * h));
/* construct right hand side vector */
for (i = 0; i < n; ++i)
{
double xi = (i + 1) * h;
double bi = -M_PI * M_PI * sin(M_PI * xi);
gsl_vector_set(b, i, bi);
}
if (compress)
B = gsl_spmatrix_compcol(A);
else
B = A;
/* solve the system */
do
{
status = gsl_splinalg_itersolve_iterate(B, b, tol, u, w);
}
while (status == GSL_CONTINUE && ++iter < max_iter);
gsl_test(status, "%s poisson status s=%d N=%zu", desc, status, N);
/* check solution against analytic */
for (i = 0; i < n; ++i)
{
double xi = (i + 1) * h;
double u_gsl = gsl_vector_get(u, i);
double u_exact = sin(M_PI * xi);
gsl_test_rel(u_gsl, u_exact, epsrel, "%s poisson N=%zu i=%zu",
desc, N, i);
}
/* check that the residual satisfies ||r|| <= tol*||b|| */
{
gsl_vector *r = gsl_vector_alloc(n);
double normr, normb;
gsl_vector_memcpy(r, b);
gsl_spblas_dgemv(CblasNoTrans, -1.0, A, u, 1.0, r);
normr = gsl_blas_dnrm2(r);
normb = gsl_blas_dnrm2(b);
status = (normr <= tol*normb) != 1;
gsl_test(status, "%s poisson residual N=%zu normr=%.12e normb=%.12e",
desc, N, normr, normb);
gsl_vector_free(r);
}
gsl_splinalg_itersolve_free(w);
gsl_spmatrix_free(A);
gsl_vector_free(b);
gsl_vector_free(u);
if (compress)
gsl_spmatrix_free(B);
} /* test_poisson() */
/*
test_toeplitz()
Test Toeplitz matrix T = A + B + C where:
A = diag(a,-1)
B = diag(b)
C = diag(c,1)
rhs = ones(n,1)
*/
static void
test_toeplitz(const size_t N, const double a, const double b,
const double c)
{
int status;
const double tol = 1.0e-10;
const size_t max_iter = 10;
const gsl_splinalg_itersolve_type *T = gsl_splinalg_itersolve_gmres;
const char *desc;
gsl_spmatrix *A;
gsl_vector *rhs, *x;
gsl_splinalg_itersolve *w;
size_t i, iter = 0;
if (N <= 1)
return;
A = gsl_spmatrix_alloc(N ,N);
rhs = gsl_vector_alloc(N);
x = gsl_vector_calloc(N);
w = gsl_splinalg_itersolve_alloc(T, N, 0);
desc = gsl_splinalg_itersolve_name(w);
/* first row */
gsl_spmatrix_set(A, 0, 0, b);
gsl_spmatrix_set(A, 0, 1, c);
/* interior rows */
for (i = 1; i < N - 1; ++i)
{
gsl_spmatrix_set(A, i, i - 1, a);
gsl_spmatrix_set(A, i, i, b);
gsl_spmatrix_set(A, i, i + 1, c);
}
/* last row */
gsl_spmatrix_set(A, N - 1, N - 2, a);
gsl_spmatrix_set(A, N - 1, N - 1, b);
/* set rhs vector */
gsl_vector_set_all(rhs, 1.0);
/* solve the system */
do
{
status = gsl_splinalg_itersolve_iterate(A, rhs, tol, x, w);
}
while (status == GSL_CONTINUE && ++iter < max_iter);
gsl_test(status, "%s toeplitz status s=%d N=%zu a=%f b=%f c=%f",
desc, status, N, a, b, c);
/* check that the residual satisfies ||r|| <= tol*||b|| */
{
gsl_vector *r = gsl_vector_alloc(N);
double normr, normb;
gsl_vector_memcpy(r, rhs);
gsl_spblas_dgemv(CblasNoTrans, -1.0, A, x, 1.0, r);
normr = gsl_blas_dnrm2(r);
normb = gsl_blas_dnrm2(rhs);
status = (normr <= tol*normb) != 1;
gsl_test(status, "%s toeplitz residual N=%zu a=%f b=%f c=%f normr=%.12e normb=%.12e",
desc, N, a, b, c, normr, normb);
gsl_vector_free(r);
}
gsl_vector_free(x);
gsl_vector_free(rhs);
gsl_spmatrix_free(A);
gsl_splinalg_itersolve_free(w);
} /* test_toeplitz() */
static void
test_random(const size_t N, const gsl_rng *r, const int compress)
{
const gsl_splinalg_itersolve_type *T = gsl_splinalg_itersolve_gmres;
const double tol = 1.0e-8;
int status;
gsl_spmatrix *A = create_random_sparse(N, N, 0.3, r);
gsl_spmatrix *B;
gsl_vector *b = gsl_vector_alloc(N);
gsl_vector *x = gsl_vector_calloc(N);
/* these random matrices require all N iterations to converge */
gsl_splinalg_itersolve *w = gsl_splinalg_itersolve_alloc(T, N, N);
const char *desc = gsl_splinalg_itersolve_name(w);
create_random_vector(b, r);
if (compress)
B = gsl_spmatrix_compcol(A);
else
B = A;
status = gsl_splinalg_itersolve_iterate(B, b, tol, x, w);
gsl_test(status, "%s random status s=%d N=%zu", desc, status, N);
/* check that the residual satisfies ||r|| <= tol*||b|| */
{
gsl_vector *res = gsl_vector_alloc(N);
double normr, normb;
gsl_vector_memcpy(res, b);
gsl_spblas_dgemv(CblasNoTrans, -1.0, A, x, 1.0, res);
normr = gsl_blas_dnrm2(res);
normb = gsl_blas_dnrm2(b);
status = (normr <= tol*normb) != 1;
gsl_test(status, "%s random residual N=%zu normr=%.12e normb=%.12e",
desc, N, normr, normb);
gsl_vector_free(res);
}
gsl_spmatrix_free(A);
gsl_vector_free(b);
gsl_vector_free(x);
gsl_splinalg_itersolve_free(w);
if (compress)
gsl_spmatrix_free(B);
} /* test_random() */
int
main()
{
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
size_t n;
test_poisson(7, 1.0e-1, 0);
test_poisson(7, 1.0e-1, 1);
test_poisson(543, 1.0e-5, 0);
test_poisson(543, 1.0e-5, 1);
test_poisson(1000, 1.0e-6, 0);
test_poisson(1000, 1.0e-6, 1);
test_poisson(5000, 1.0e-7, 0);
test_poisson(5000, 1.0e-7, 1);
test_toeplitz(15, 0.01, 1.0, 0.01);
test_toeplitz(15, 1.0, 1.0, 0.01);
test_toeplitz(50, 1.0, 2.0, 0.01);
test_toeplitz(1000, 0.5, 1.0, 0.01);
for (n = 1; n <= 100; ++n)
{
test_random(n, r, 0);
test_random(n, r, 1);
}
gsl_rng_free(r);
exit (gsl_test_summary());
} /* main() */
|