File: ql.c

package info (click to toggle)
gsl 2.8%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 29,088 kB
  • sloc: ansic: 269,984; sh: 4,535; makefile: 902; python: 69
file content (173 lines) | stat: -rw-r--r-- 5,395 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/* linalg/ql.c
 * 
 * Copyright (C) 2019 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

/* Factorise a general M x N matrix A into
 *  
 *   A = Q L
 *
 * where Q is orthogonal (M x M) and L is lower triangular (M x N).
 *
 * Q is stored as a packed set of Householder transformations in the
 * strict upper triangular part of the input matrix.
 *
 * L is stored in the diagonal and lower triangle of the input matrix.
 *
 * The full matrix for Q can be obtained as the product
 *
 *       Q = Q_k .. Q_2 Q_1
 *
 * where k = MIN(M,N) and
 *
 *       Q_i = (I - tau_i * v_i * v_i')
 *
 * and where v_i is a Householder vector
 *
 *       v_i = [A(1,N-k+i), A(2,N-k+i), ... , A(M-k+i,N-k+i), 1, 0, ..., 0]
 *
 * This storage scheme is the same as in LAPACK.  */

/*
gsl_linalg_QL_decomp()
  Perform QL decomposition of a matrix A

Inputs: A   - M-by-N matrix
        tau - (output) Householder coefficients, length N

Notes:
1) The K = MIN(M, N) Householder scalars are stored in tau(N-K+1:N)
on output; the rest of tau is used as temporary workspace
*/

int
gsl_linalg_QL_decomp (gsl_matrix * A, gsl_vector * tau)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  if (tau->size != N)
    {
      GSL_ERROR ("size of tau must be N", GSL_EBADLEN);
    }
  else
    {
      const size_t K = GSL_MIN(M, N);
      size_t i;

      for (i = 0; i < K; i++)
        {
          /* compute the Householder transformation to annihilate the (N-K+i)-th
             column of the matrix */

          gsl_vector_view c = gsl_matrix_subcolumn (A, N - i - 1, 0, M - i);
          double * alpha = gsl_matrix_ptr(A, M - i - 1, N - i - 1);
          double tau_j = gsl_linalg_householder_transform2 (alpha, &(c.vector));

          /* apply the transformation to A(1:M-i,1:N-i-2) from the left */
          if (i + 1 < N)
            {
              gsl_vector_view work = gsl_vector_subvector(tau, 0, N - i - 1);
              gsl_matrix_view m = gsl_matrix_submatrix (A, 0, 0, M - i, N - i - 1);
              double tmp = *alpha;

              *alpha = 1.0;
              gsl_linalg_householder_left (tau_j, &(c.vector), &(m.matrix), &work.vector);
              *alpha = tmp;
            }

          gsl_vector_set (tau, N - i - 1, tau_j);
        }

      return GSL_SUCCESS;
    }
}

/* form the orthogonal matrix Q from the packed QL matrix */
int
gsl_linalg_QL_unpack (const gsl_matrix * QL, const gsl_vector * tau, gsl_matrix * Q, gsl_matrix * L)
{
  const size_t M = QL->size1;
  const size_t N = QL->size2;

  if (Q->size1 != M || Q->size2 != M)
    {
      GSL_ERROR ("Q matrix must be M x M", GSL_ENOTSQR);
    }
  else if (L->size1 != M || L->size2 != N)
    {
      GSL_ERROR ("L matrix must be M x N", GSL_ENOTSQR);
    }
  else if (tau->size != N)
    {
      GSL_ERROR ("size of tau must be N", GSL_EBADLEN);
    }
  else
    {
      const size_t K = GSL_MIN(M, N);
      size_t i;

      /* initialize Q to the identity */
      gsl_matrix_set_identity (Q);

      for (i = 0; i < K; ++i)
        {
          gsl_vector_const_view h = gsl_matrix_const_subcolumn (QL, N - K + i, 0, M - K + i + 1);
          gsl_matrix_view m = gsl_matrix_submatrix (Q, 0, 0, M - K + i + 1, M - K + i + 1);
          gsl_vector_view work = gsl_matrix_subcolumn(L, 0, 0, M - K + i + 1);
          double ti = gsl_vector_get (tau, N - K + i);
          double * ptr = gsl_matrix_ptr((gsl_matrix *) QL, M - K + i, N - K + i);
          double tmp = *ptr;

          *ptr = 1.0;
          gsl_linalg_householder_left (ti, &h.vector, &m.matrix, &work.vector);
          *ptr = tmp;
        }

      /* form the left triangular matrix L from a packed QL matrix */
      gsl_matrix_set_zero(L);

      if (M >= N)
        {
          gsl_matrix_const_view src = gsl_matrix_const_submatrix(QL, M - N, 0, N, N);
          gsl_matrix_view dest = gsl_matrix_submatrix(L, M - N, 0, N, N);
          gsl_matrix_tricpy(CblasLower, CblasNonUnit, &dest.matrix, &src.matrix);
        }
      else
        {
          gsl_matrix_const_view src1 = gsl_matrix_const_submatrix(QL, 0, 0, M, N - M);
          gsl_matrix_view dest1 = gsl_matrix_submatrix(L, 0, 0, M, N - M);

          gsl_matrix_const_view src2 = gsl_matrix_const_submatrix(QL, 0, N - M, M, M);
          gsl_matrix_view dest2 = gsl_matrix_submatrix(L, 0, N - M, M, M);

          gsl_matrix_memcpy(&dest1.matrix, &src1.matrix);
          gsl_matrix_tricpy(CblasLower, CblasNonUnit, &dest2.matrix, &src2.matrix);
        }

      return GSL_SUCCESS;
    }
}