1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_poly.h>
/* Find a minimum in x=[0,1] of the interpolating quadratic through
* (0,f0) (1,f1) with derivative fp0 at x=0. The interpolating
* polynomial is q(x) = f0 + fp0 * z + (f1-f0-fp0) * z^2
*/
static double
interp_quad (double f0, double fp0, double f1, double zl, double zh)
{
double fl = f0 + zl*(fp0 + zl*(f1 - f0 -fp0));
double fh = f0 + zh*(fp0 + zh*(f1 - f0 -fp0));
double c = 2 * (f1 - f0 - fp0); /* curvature */
double zmin = zl, fmin = fl;
if (fh < fmin) { zmin = zh; fmin = fh; }
if (c > 0) /* positive curvature required for a minimum */
{
double z = -fp0 / c; /* location of minimum */
if (z > zl && z < zh) {
double f = f0 + z*(fp0 + z*(f1 - f0 -fp0));
if (f < fmin) { zmin = z; fmin = f; };
}
}
return zmin;
}
/* Find a minimum in x=[0,1] of the interpolating cubic through
* (0,f0) (1,f1) with derivatives fp0 at x=0 and fp1 at x=1.
*
* The interpolating polynomial is:
*
* c(x) = f0 + fp0 * z + eta * z^2 + xi * z^3
*
* where eta=3*(f1-f0)-2*fp0-fp1, xi=fp0+fp1-2*(f1-f0).
*/
static double
cubic (double c0, double c1, double c2, double c3, double z)
{
return c0 + z * (c1 + z * (c2 + z * c3));
}
static void
check_extremum (double c0, double c1, double c2, double c3, double z,
double *zmin, double *fmin)
{
/* could make an early return by testing curvature >0 for minimum */
double y = cubic (c0, c1, c2, c3, z);
if (y < *fmin)
{
*zmin = z; /* accepted new point*/
*fmin = y;
}
}
static double
interp_cubic (double f0, double fp0, double f1, double fp1, double zl, double zh)
{
double eta = 3 * (f1 - f0) - 2 * fp0 - fp1;
double xi = fp0 + fp1 - 2 * (f1 - f0);
double c0 = f0, c1 = fp0, c2 = eta, c3 = xi;
double zmin, fmin;
double z0, z1;
zmin = zl; fmin = cubic(c0, c1, c2, c3, zl);
check_extremum (c0, c1, c2, c3, zh, &zmin, &fmin);
{
int n = gsl_poly_solve_quadratic (3 * c3, 2 * c2, c1, &z0, &z1);
if (n == 2) /* found 2 roots */
{
if (z0 > zl && z0 < zh)
check_extremum (c0, c1, c2, c3, z0, &zmin, &fmin);
if (z1 > zl && z1 < zh)
check_extremum (c0, c1, c2, c3, z1, &zmin, &fmin);
}
else if (n == 1) /* found 1 root */
{
if (z0 > zl && z0 < zh)
check_extremum (c0, c1, c2, c3, z0, &zmin, &fmin);
}
}
return zmin;
}
static double
interpolate (double a, double fa, double fpa,
double b, double fb, double fpb, double xmin, double xmax,
int order)
{
/* Map [a,b] to [0,1] */
double z, alpha, zmin, zmax;
zmin = (xmin - a) / (b - a);
zmax = (xmax - a) / (b - a);
if (zmin > zmax)
{
double tmp = zmin;
zmin = zmax;
zmax = tmp;
};
if (order > 2 && GSL_IS_REAL(fpb)) {
z = interp_cubic (fa, fpa * (b - a), fb, fpb * (b - a), zmin, zmax);
} else {
z = interp_quad (fa, fpa * (b - a), fb, zmin, zmax);
}
alpha = a + z * (b - a);
return alpha;
}
/* recommended values from Fletcher are
rho = 0.01, sigma = 0.1, tau1 = 9, tau2 = 0.05, tau3 = 0.5 */
static int
minimize (gsl_function_fdf * fn, double rho, double sigma,
double tau1, double tau2, double tau3,
int order, double alpha1, double *alpha_new)
{
double f0, fp0, falpha, falpha_prev, fpalpha, fpalpha_prev, delta,
alpha_next;
double alpha = alpha1, alpha_prev = 0.0;
double a, b, fa, fb, fpa, fpb;
const size_t bracket_iters = 100, section_iters = 100;
size_t i = 0;
GSL_FN_FDF_EVAL_F_DF (fn, 0.0, &f0, &fp0);
falpha_prev = f0;
fpalpha_prev = fp0;
/* Avoid uninitialized variables morning */
a = 0.0; b = alpha;
fa = f0; fb = 0.0;
fpa = fp0; fpb = 0.0;
/* Begin bracketing */
while (i++ < bracket_iters)
{
falpha = GSL_FN_FDF_EVAL_F (fn, alpha);
/* Fletcher's rho test */
if (falpha > f0 + alpha * rho * fp0 || falpha >= falpha_prev)
{
a = alpha_prev; fa = falpha_prev; fpa = fpalpha_prev;
b = alpha; fb = falpha; fpb = GSL_NAN;
break; /* goto sectioning */
}
fpalpha = GSL_FN_FDF_EVAL_DF (fn, alpha);
/* Fletcher's sigma test */
if (fabs (fpalpha) <= -sigma * fp0)
{
*alpha_new = alpha;
return GSL_SUCCESS;
}
if (fpalpha >= 0)
{
a = alpha; fa = falpha; fpa = fpalpha;
b = alpha_prev; fb = falpha_prev; fpb = fpalpha_prev;
break; /* goto sectioning */
}
delta = alpha - alpha_prev;
{
double lower = alpha + delta;
double upper = alpha + tau1 * delta;
alpha_next = interpolate (alpha_prev, falpha_prev, fpalpha_prev,
alpha, falpha, fpalpha, lower, upper, order);
}
alpha_prev = alpha;
falpha_prev = falpha;
fpalpha_prev = fpalpha;
alpha = alpha_next;
}
/* Sectioning of bracket [a,b] */
while (i++ < section_iters)
{
delta = b - a;
{
double lower = a + tau2 * delta;
double upper = b - tau3 * delta;
alpha = interpolate (a, fa, fpa, b, fb, fpb, lower, upper, order);
}
falpha = GSL_FN_FDF_EVAL_F (fn, alpha);
if ((a-alpha)*fpa <= GSL_DBL_EPSILON) {
/* roundoff prevents progress */
return GSL_ENOPROG;
};
if (falpha > f0 + rho * alpha * fp0 || falpha >= fa)
{
/* a_next = a; */
b = alpha; fb = falpha; fpb = GSL_NAN;
}
else
{
fpalpha = GSL_FN_FDF_EVAL_DF (fn, alpha);
if (fabs(fpalpha) <= -sigma * fp0)
{
*alpha_new = alpha;
return GSL_SUCCESS; /* terminate */
}
if ( ((b-a) >= 0 && fpalpha >= 0) || ((b-a) <=0 && fpalpha <= 0))
{
b = a; fb = fa; fpb = fpa;
a = alpha; fa = falpha; fpa = fpalpha;
}
else
{
a = alpha; fa = falpha; fpa = fpalpha;
}
}
}
return GSL_SUCCESS;
}
|