1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
|
# -*- Mode: Python -*-
# vi:si:et:sw=4:sts=4:ts=4
#
# gst-python - Python bindings for GStreamer
# Copyright (C) 2024 Collabora Ltd
# Author: Olivier Crête <olivier.crete@collabora.com>
# Copyright (C) 2024 Intel Corporation
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
import overrides_hack
overrides_hack
from common import TestCase
import gi
gi.require_version("GLib", "2.0")
gi.require_version("Gst", "1.0")
gi.require_version("GstAnalytics", "1.0")
gi.require_version("GstVideo", "1.0")
from gi.repository import GLib
from gi.repository import Gst
from gi.repository import GstAnalytics
from gi.repository import GstVideo
Gst.init(None)
class TestAnalyticsODMtd(TestCase):
def test(self):
buf = Gst.Buffer()
self.assertIsNotNone(buf)
meta = GstAnalytics.buffer_add_analytics_relation_meta(buf)
self.assertIsNotNone(meta)
m2 = GstAnalytics.buffer_get_analytics_relation_meta(buf)
self.assertEqual(meta, m2)
qk = GLib.quark_from_string("testQuark")
(ret, mtd) = meta.add_od_mtd(qk, 10, 20, 30, 40, 0.3)
self.assertTrue(ret)
self.assertIsNotNone(mtd)
(ret, mtd) = meta.get_od_mtd(0)
self.assertTrue(ret)
self.assertIsNotNone(mtd)
# Ensure there is no mtd 1, only 0
(ret, _) = meta.get_mtd(1, GstAnalytics.MTD_TYPE_ANY)
self.assertFalse(ret)
# The is only one od mtd
(ret, _) = meta.get_od_mtd(1)
self.assertFalse(ret)
# There is no Class mtd
(ret, _) = meta.get_cls_mtd(0)
self.assertFalse(ret)
# meta and m2 should return the same tuple
self.assertEqual(meta.get_od_mtd(0)[1].get_location(),
m2.get_od_mtd(0)[1].get_location())
self.assertEqual(mtd.get_obj_type(), qk)
location = meta.get_od_mtd(0)[1].get_location()
self.assertEqual(location[1], 10)
self.assertEqual(location[2], 20)
self.assertEqual(location[3], 30)
self.assertEqual(location[4], 40)
self.assertAlmostEqual(location[5], 0.3, 3)
location = meta.get_od_mtd(0)[1].get_oriented_location()
self.assertEqual(location[1], 10)
self.assertEqual(location[2], 20)
self.assertEqual(location[3], 30)
self.assertEqual(location[4], 40)
self.assertEqual(location[5], 0)
self.assertAlmostEqual(location[6], 0.3, 3)
(ret, mtd) = meta.add_oriented_od_mtd(qk, 600, 400, 200, 100, 0.785, 0.3)
self.assertTrue(ret)
self.assertIsNotNone(mtd)
(ret, mtd) = meta.get_od_mtd(1)
self.assertTrue(ret)
self.assertIsNotNone(mtd)
location = mtd.get_oriented_location()
self.assertEqual(location[1], 600)
self.assertEqual(location[2], 400)
self.assertEqual(location[3], 200)
self.assertEqual(location[4], 100)
self.assertAlmostEqual(location[5], 0.785, 3)
self.assertAlmostEqual(location[6], 0.3, 3)
location = mtd.get_location()
self.assertEqual(location[1], 594)
self.assertEqual(location[2], 344)
self.assertEqual(location[3], 212)
self.assertEqual(location[4], 212)
self.assertAlmostEqual(location[5], 0.3, 3)
class TestAnalyticsClsMtd(TestCase):
def test(self):
buf = Gst.Buffer()
self.assertIsNotNone(buf)
meta = GstAnalytics.buffer_add_analytics_relation_meta(buf)
self.assertIsNotNone(meta)
qks = (GLib.quark_from_string("q1"),
GLib.quark_from_string("q2"),
GLib.quark_from_string("q3"))
(ret, mtd) = meta.add_cls_mtd([0.1, 0.2, 0.3], qks)
self.assertTrue(ret)
self.assertIsNotNone(mtd)
cnt = mtd.get_length()
self.assertEqual(cnt, 3)
for i in range(cnt):
self.assertEqual(mtd.get_index_by_quark(qks[i]), i)
self.assertAlmostEqual(mtd.get_level(i), (i + 1) / 10, 7)
self.assertEqual(mtd.get_quark(i), qks[i])
class TestAnalyticsTrackingMtd(TestCase):
def test(self):
buf = Gst.Buffer()
self.assertIsNotNone(buf)
meta = GstAnalytics.buffer_add_analytics_relation_meta(buf)
self.assertIsNotNone(meta)
(ret, mtd) = meta.add_tracking_mtd(1, 10)
self.assertTrue(ret)
rets = mtd.get_info()
self.assertFalse(rets.tracking_lost)
self.assertEqual(rets.tracking_first_seen, 10)
self.assertEqual(rets.tracking_last_seen, 10)
mtd.update_last_seen(20)
rets = mtd.get_info()
self.assertEqual(rets.tracking_first_seen, 10)
self.assertEqual(rets.tracking_last_seen, 20)
mtd.set_lost()
rets = mtd.get_info()
self.assertTrue(rets.tracking_lost)
class TestAnalyticsSegmentationMtd(TestCase):
def test(self):
buf = Gst.Buffer()
self.assertIsNotNone(buf)
meta = GstAnalytics.buffer_add_analytics_relation_meta(buf)
self.assertIsNotNone(meta)
mask_buf = Gst.Buffer.new_allocate(None, 100, None)
GstVideo.buffer_add_video_meta(mask_buf,
GstVideo.VideoFrameFlags.NONE,
GstVideo.VideoFormat.GRAY8, 10, 10)
(ret, mtd) = meta.add_segmentation_mtd(mask_buf,
GstAnalytics.SegmentationType.SEMANTIC,
[7, 4, 2], 0, 0, 7, 13)
self.assertTrue(ret)
self.assertEqual((mask_buf, 0, 0, 7, 13), mtd.get_mask())
self.assertEqual(mtd.get_region_count(), 3)
self.assertEqual(mtd.get_region_id(0), 7)
self.assertEqual(mtd.get_region_id(1), 4)
self.assertEqual(mtd.get_region_id(2), 2)
self.assertEqual(mtd.get_region_index(1), (False, 0))
self.assertEqual(mtd.get_region_index(7), (True, 0))
self.assertEqual(mtd.get_region_index(4), (True, 1))
self.assertEqual(mtd.get_region_index(2), (True, 2))
class TestAnalyticsTensorMeta(TestCase):
def test(self):
buf = Gst.Buffer()
self.assertIsNotNone(buf)
tmeta = GstAnalytics.buffer_add_tensor_meta(buf)
self.assertIsNotNone(tmeta)
data = Gst.Buffer.new_allocate(None, 2 * 3 * 4)
self.assertIsNotNone(data)
tensor = GstAnalytics.Tensor.new_simple(0, GstAnalytics.TensorDataType.UINT8,
data,
GstAnalytics.TensorDimOrder.ROW_MAJOR,
[1, 2, 3, 4])
self.assertIsNotNone(tensor)
self.assertEqual(tensor.id, 0)
self.assertEqual(tensor.num_dims, 4)
dims = tensor.get_dims()
self.assertEqual(len(dims), 4)
self.assertEqual(dims[0], 1)
self.assertEqual(dims[1], 2)
self.assertEqual(dims[2], 3)
self.assertEqual(dims[3], 4)
self.assertEqual(tensor.data, data)
self.assertEqual(tensor.data_type, GstAnalytics.TensorDataType.UINT8)
self.assertEqual(tensor.dims_order, GstAnalytics.TensorDimOrder.ROW_MAJOR)
data2 = Gst.Buffer.new_allocate(None, 2 * 3 * 4 * 5)
tensor2 = GstAnalytics.Tensor.new_simple(0, GstAnalytics.TensorDataType.UINT16,
data2,
GstAnalytics.TensorDimOrder.ROW_MAJOR,
[1, 3, 4, 5])
tmeta.set([tensor, tensor2])
tmeta2 = GstAnalytics.buffer_get_tensor_meta(buf)
self.assertEqual(tmeta2.num_tensors, 2)
self.assertEqual(tmeta2.get(0).data, data)
self.assertEqual(tmeta2.get(1).data, data2)
data3 = Gst.Buffer.new_allocate(None, 30)
tensor3 = GstAnalytics.Tensor.new_simple(0,
GstAnalytics.TensorDataType.UINT16,
data3,
GstAnalytics.TensorDimOrder.ROW_MAJOR,
[0, 2, 5])
self.assertIsNotNone(tensor3)
class TestAnalyticsRelationMetaIterator(TestCase):
def test(self):
buf = Gst.Buffer()
self.assertIsNotNone(buf)
rmeta = GstAnalytics.buffer_add_analytics_relation_meta(buf)
self.assertIsNotNone(rmeta)
mask_buf = Gst.Buffer.new_allocate(None, 100, None)
GstVideo.buffer_add_video_meta(mask_buf,
GstVideo.VideoFrameFlags.NONE,
GstVideo.VideoFormat.GRAY8, 10, 10)
(_, od_mtd) = rmeta.add_od_mtd(GLib.quark_from_string("od"), 1, 1, 2, 2, 0.1)
(_, od_mtd1) = rmeta.add_od_mtd(GLib.quark_from_string("od"), 1, 1, 2, 2, 0.1)
(_, od_mtd2) = rmeta.add_od_mtd(GLib.quark_from_string("od"), 1, 1, 2, 2, 0.1)
(_, cls_mtd) = rmeta.add_one_cls_mtd(0.1, GLib.quark_from_string("cls"))
(_, cls_mtd1) = rmeta.add_one_cls_mtd(0.4, GLib.quark_from_string("cls"))
(_, trk_mtd) = rmeta.add_tracking_mtd(1, 10)
(_, trk_mtd1) = rmeta.add_tracking_mtd(1, 11)
(_, seg_mtd) = rmeta.add_segmentation_mtd(mask_buf,
GstAnalytics.SegmentationType.SEMANTIC,
[7, 4, 2], 0, 0, 7, 13)
mtds = [
(od_mtd, GstAnalytics.ODMtd.get_mtd_type()),
(od_mtd1, GstAnalytics.ODMtd.get_mtd_type()),
(od_mtd2, GstAnalytics.ODMtd.get_mtd_type()),
(cls_mtd, GstAnalytics.ClsMtd.get_mtd_type()),
(cls_mtd1, GstAnalytics.ClsMtd.get_mtd_type()),
(trk_mtd, GstAnalytics.TrackingMtd.get_mtd_type()),
(trk_mtd1, GstAnalytics.TrackingMtd.get_mtd_type()),
(seg_mtd, GstAnalytics.SegmentationMtd.get_mtd_type())
]
od_index_mtds = [0, 1, 2]
cls_index_mtds = [3, 4]
trk_index_mtds = [5, 6]
seg_index_mtds = [7]
mtds_from_iter = list(rmeta)
self.assertEqual(len(mtds), len(mtds_from_iter))
# Iterating on type GstAnalytics.ODMtd
for j, i in zip(od_index_mtds, rmeta.iter_on_type(GstAnalytics.ODMtd)):
assert mtds[j][0] == i
assert mtds[j][0].id == i.id
assert mtds[j][0].meta == i.meta
assert mtds[j][1] == i.get_mtd_type()
# call a method to ensure it's a ODMtd
loc = i.get_location()
# Iterating on type GstAnalytics.ClsMtd
for j, i in zip(cls_index_mtds, rmeta.iter_on_type(GstAnalytics.ClsMtd)):
assert mtds[j][0] == i
assert mtds[j][0].id == i.id
assert mtds[j][0].meta == i.meta
assert mtds[j][1] == i.get_mtd_type()
# call a method to ensure it's a ClsMtd
level = i.get_level(0)
# Iterating on type GstAnalytics.TrackingMtd
for j, i in zip(trk_index_mtds, rmeta.iter_on_type(GstAnalytics.TrackingMtd)):
assert mtds[j][0] == i
assert mtds[j][0].id == i.id
assert mtds[j][0].meta == i.meta
assert mtds[j][1] == i.get_mtd_type()
# call a method to ensure it's a TrackingMtd
info = i.get_info()
# Iterating on type GstAnalytics.SegmentationMtd
for j, i in zip(seg_index_mtds, rmeta.iter_on_type(GstAnalytics.SegmentationMtd)):
assert mtds[j][0] == i
assert mtds[j][0].id == i.id
assert mtds[j][0].meta == i.meta
assert mtds[j][1] == i.get_mtd_type()
# call a method to ensure it's a SegmentationMtd
mask = i.get_mask()
# Iterating on all type
for e, i in zip(mtds, rmeta):
assert i == e[0]
assert e[0].id == i.id
assert e[0].meta == i.meta
assert e[1] == i.get_mtd_type()
# Validate that the object is really a ODMtd
location = mtds_from_iter[0].get_location()
self.assertEqual(location[1], 1)
self.assertEqual(location[2], 1)
self.assertEqual(location[3], 2)
self.assertEqual(location[4], 2)
self.assertAlmostEqual(location[5], 0.1, 3)
# Test iteration over direct relation
rmeta.set_relation(GstAnalytics.RelTypes.RELATE_TO, od_mtd.id, od_mtd1.id)
rmeta.set_relation(GstAnalytics.RelTypes.IS_PART_OF, od_mtd.id, trk_mtd.id)
rmeta.set_relation(GstAnalytics.RelTypes.RELATE_TO, od_mtd.id, od_mtd2.id)
rmeta.set_relation(GstAnalytics.RelTypes.RELATE_TO, od_mtd.id, cls_mtd.id)
expected_mtd_ids = [od_mtd1.id, od_mtd2.id, cls_mtd.id]
expected_mtd_type = [GstAnalytics.ODMtd, GstAnalytics.ODMtd, GstAnalytics.ClsMtd]
count = 0
# Iterate over all type
for mtd in od_mtd.iter_direct_related(GstAnalytics.RelTypes.RELATE_TO):
assert mtd.id == expected_mtd_ids[count]
assert type(mtd) is expected_mtd_type[count]
if (type(mtd) is GstAnalytics.ODMtd):
assert mtd.get_obj_type() == GLib.quark_from_string("od")
elif (type(mtd) is GstAnalytics.ClsMtd):
assert mtd.get_quark(0) == GLib.quark_from_string("cls")
count = count + 1
assert (count == len(expected_mtd_ids))
# Iterate over only with type GstAnalytics.ODMtd
count = 0
for mtd in od_mtd.iter_direct_related(GstAnalytics.RelTypes.RELATE_TO, GstAnalytics.ODMtd):
assert mtd.id == expected_mtd_ids[count]
assert type(mtd) is GstAnalytics.ODMtd
count = count + 1
assert (count == 2)
# Create a relation path as od_mtd -> cls_mtd -> trk_mtd -> seg_mtd
rmeta.set_relation(GstAnalytics.RelTypes.NONE, od_mtd.id, trk_mtd.id) # clear relation
rmeta.set_relation(GstAnalytics.RelTypes.RELATE_TO, cls_mtd.id, trk_mtd.id)
rmeta.set_relation(GstAnalytics.RelTypes.RELATE_TO, trk_mtd.id, seg_mtd.id)
count = 0
expected_rel_ids = [od_mtd.id, cls_mtd.id, trk_mtd.id, seg_mtd.id]
for i in od_mtd.relation_path(seg_mtd, max_span=4):
assert i == expected_rel_ids[count]
count += 1
assert (count == 4)
class TestModelInfo(TestCase):
def test_modelinfo_load_not_found(self):
"""Test loading a modelinfo file that doesn't exist"""
modelinfo = GstAnalytics.ModelInfo.load("/nonexistent/model.onnx")
# Should return None if file not found
self.assertIsNone(modelinfo)
def test_modelinfo_with_temporary_file(self):
"""Test modelinfo API with a temporary modelinfo file"""
import tempfile
import os
# Create a temporary modelinfo file
modelinfo_content = """
[modelinfo]
version=1.0
group-id=test-model-v1
[input_tensor]
dims=1,224,224,3
dir=input
type=uint8
ranges=0.0,255.0
[output_tensor]
dims=1,1000
dir=output
type=float32
id=output_logits
"""
# Create temporary file
with tempfile.NamedTemporaryFile(mode='w', suffix='.modelinfo',
delete=False) as f:
f.write(modelinfo_content)
temp_modelinfo = f.name
try:
# Remove .modelinfo extension to get model filename
model_filename = temp_modelinfo[:-10] # Remove '.modelinfo'
# Load the modelinfo using ModelInfo.load()
modelinfo = GstAnalytics.ModelInfo.load(model_filename)
self.assertIsNotNone(modelinfo)
# Verify it's a ModelInfo object
self.assertIsInstance(modelinfo, GstAnalytics.ModelInfo)
# Test get_version
version = modelinfo.get_version()
self.assertEqual(version, "1.0")
# Test get_group_id
group_id = modelinfo.get_group_id()
self.assertEqual(group_id, "test-model-v1")
# Test get_group_id as quark
group_id_quark = modelinfo.get_quark_group_id()
self.assertEqual(group_id_quark, GLib.quark_from_string("test-model-v1"))
# Test find_tensor_name by name
tensor_name = modelinfo.find_tensor_name(
GstAnalytics.ModelInfoTensorDirection.INPUT,
0, # index
"input_tensor", # in_tensor_name hint
GstAnalytics.TensorDataType.UINT8,
[1, 224, 224, 3] # dims
)
self.assertEqual(tensor_name, "input_tensor")
# Test get_id
output_id = modelinfo.get_id("output_tensor")
self.assertEqual(output_id, "output_logits")
# Test get_id as quark
output_id_quark = modelinfo.get_quark_id("output_tensor")
self.assertEqual(output_id_quark, GLib.quark_from_string("output_logits"))
# Test get_input_scales_offsets
# Case 1: uint8 input [0, 255] to target range [0, 255] (passthrough)
# GObject Introspection returns (success, scales, offsets)
input_mins = [0.0] # uint8 minimum
input_maxs = [255.0] # uint8 maximum
result = modelinfo.get_input_scales_offsets("input_tensor",
input_mins, input_maxs)
self.assertTrue(result[0]) # success
scales = result[1]
offsets = result[2]
self.assertEqual(len(scales), 1) # scales should have 1 element
self.assertEqual(len(offsets), 1) # offsets should have 1 element
self.assertAlmostEqual(scales[0], 1.0, 6) # (255-0)/(255-0) = 1.0
self.assertAlmostEqual(offsets[0], 0.0, 6) # 0 - 0*1.0 = 0.0
# Test get_dims_order (should default to row-major)
dims_order = modelinfo.get_dims_order("input_tensor")
self.assertEqual(dims_order, GstAnalytics.TensorDimOrder.ROW_MAJOR)
# Test get_target_ranges (returns arrays of min/max from ranges)
result = modelinfo.get_target_ranges("input_tensor")
# ranges field contains "0.0,255.0" so this should succeed
self.assertTrue(result[0]) # success
mins = result[1]
maxs = result[2]
self.assertEqual(len(mins), 1) # should have 1 range
self.assertEqual(len(maxs), 1) # should have 1 range
self.assertAlmostEqual(mins[0], 0.0, 6)
self.assertAlmostEqual(maxs[0], 255.0, 6)
# Free the modelinfo
modelinfo.free()
finally:
# Clean up temporary file
if os.path.exists(temp_modelinfo):
os.unlink(temp_modelinfo)
if os.path.exists(model_filename):
os.unlink(model_filename)
def test_modelinfo_version_major_minor(self):
"""Test modelinfo version string parsing for major and minor versions"""
import tempfile
import os
# Test case: Version 1.0 (current format version)
modelinfo_content_1_0 = """
[modelinfo]
version=1.0
group-id=test-model-v1
[input_tensor]
dims=1,224,224,3
dir=input
type=uint8
[output_tensor]
dims=1,1000
dir=output
type=float32
id=output_logits
"""
with tempfile.NamedTemporaryFile(mode='w', suffix='.modelinfo',
delete=False) as f:
f.write(modelinfo_content_1_0)
temp_modelinfo = f.name
try:
model_filename = temp_modelinfo[:-10] # Remove '.modelinfo'
modelinfo = GstAnalytics.ModelInfo.load(model_filename)
self.assertIsNotNone(modelinfo)
# Verify version string
version = modelinfo.get_version()
self.assertEqual(version, "1.0")
# Parse version string to verify major and minor components
version_parts = version.split('.')
self.assertEqual(len(version_parts), 2)
major_version = int(version_parts[0])
minor_version = int(version_parts[1])
self.assertEqual(major_version, 1)
self.assertEqual(minor_version, 0)
modelinfo.free()
finally:
if os.path.exists(temp_modelinfo):
os.unlink(temp_modelinfo)
if os.path.exists(model_filename):
os.unlink(model_filename)
def test_modelinfo_version_major_upgrade_rejected(self):
"""Test that modelinfo with unsupported major version is rejected"""
import tempfile
import os
# Test case: Version 2.0 (unsupported major version)
# The version check should reject this
modelinfo_content_2_0 = """
[modelinfo]
version=2.0
group-id=test-model-v2
[input_tensor]
dims=1,224,224,3
dir=input
type=uint8
[output_tensor]
dims=1,1000
dir=output
type=float32
id=output_logits
"""
with tempfile.NamedTemporaryFile(mode='w', suffix='.modelinfo',
delete=False) as f:
f.write(modelinfo_content_2_0)
temp_modelinfo = f.name
try:
model_filename = temp_modelinfo[:-10] # Remove '.modelinfo'
# Load should fail because version 2.0 is not supported
modelinfo = GstAnalytics.ModelInfo.load(model_filename)
self.assertIsNone(modelinfo)
finally:
if os.path.exists(temp_modelinfo):
os.unlink(temp_modelinfo)
if os.path.exists(model_filename):
os.unlink(model_filename)
def test_modelinfo_input_ranges_transformations(self):
"""Test modelinfo get_input_scales_offsets with different input ranges"""
import tempfile
import os
# Create a modelinfo with a tensor that expects normalized [0, 1] range
modelinfo_content = """
[modelinfo]
version=1.0
group-id=test-model-normalization
[input_normalized]
dims=1,224,224,3
dir=input
type=uint8
ranges=0.0,1.0;0.0,1.0;0.0,1.0
"""
with tempfile.NamedTemporaryFile(mode='w', suffix='.modelinfo',
delete=False) as f:
f.write(modelinfo_content)
temp_modelinfo = f.name
try:
model_filename = temp_modelinfo[:-10]
modelinfo = GstAnalytics.ModelInfo.load(model_filename)
self.assertIsNotNone(modelinfo)
# Test 1: uint8 input [0, 255] to target [0, 1] (normalization)
# Expected: scale = (1-0)/(255-0) ≈ 0.00392, offset = 0 - 0*scale = 0.0
input_mins = [0.0, 0.0, 0.0]
input_maxs = [255.0, 255.0, 255.0]
result = modelinfo.get_input_scales_offsets("input_normalized",
input_mins, input_maxs)
self.assertTrue(result[0])
scales = result[1]
offsets = result[2]
self.assertEqual(len(scales), 3)
for i in range(3):
self.assertAlmostEqual(scales[i], 1.0 / 255.0, 6)
self.assertAlmostEqual(offsets[i], 0.0, 6)
modelinfo.free()
finally:
if os.path.exists(temp_modelinfo):
os.unlink(temp_modelinfo)
if os.path.exists(model_filename):
os.unlink(model_filename)
# Create a modelinfo with a tensor that expects [-1, 1] range
modelinfo_content_signed = """
[modelinfo]
version=1.0
group-id=test-model-signed
[input_signed]
dims=1,224,224,3
dir=input
type=int8
ranges=-1.0,1.0;-1.0,1.0;-1.0,1.0
"""
with tempfile.NamedTemporaryFile(mode='w', suffix='.modelinfo',
delete=False) as f:
f.write(modelinfo_content_signed)
temp_modelinfo = f.name
try:
model_filename = temp_modelinfo[:-10]
modelinfo = GstAnalytics.ModelInfo.load(model_filename)
self.assertIsNotNone(modelinfo)
# Test 2: int8 input [-128, 127] to target [-1, 1]
# Expected: scale = (1-(-1))/(127-(-128)) = 2/255 ≈ 0.00784
# offset = -1 - (-128)*scale = -1 + 128*0.00784 ≈ 0.00392
input_mins = [-128.0, -128.0, -128.0]
input_maxs = [127.0, 127.0, 127.0]
result = modelinfo.get_input_scales_offsets("input_signed",
input_mins, input_maxs)
self.assertTrue(result[0])
scales = result[1]
offsets = result[2]
self.assertEqual(len(scales), 3)
expected_scale = 2.0 / 255.0
expected_offset = -1.0 - (-128.0) * expected_scale
for i in range(3):
self.assertAlmostEqual(scales[i], expected_scale, 6)
self.assertAlmostEqual(offsets[i], expected_offset, 6)
modelinfo.free()
finally:
if os.path.exists(temp_modelinfo):
os.unlink(temp_modelinfo)
if os.path.exists(model_filename):
os.unlink(model_filename)
def test_modelinfo_version_minor_upgrade_accepted(self):
"""Test that modelinfo with same major version but higher minor version is accepted"""
import tempfile
import os
# Test case: Version 1.5 (same major version, higher minor version)
# The version check should accept this since it's backward compatible
modelinfo_content_1_5 = """[modelinfo]
version=1.5
group-id=test-model-v1-5
[input_tensor]
dims=1,224,224,3
dir=input
type=uint8
[output_tensor]
dims=1,1000
dir=output
type=float32
id=output_logits
"""
with tempfile.NamedTemporaryFile(mode='w', suffix='.modelinfo',
delete=False) as f:
f.write(modelinfo_content_1_5)
temp_modelinfo = f.name
try:
model_filename = temp_modelinfo[:-10] # Remove '.modelinfo'
# Load should succeed because version 1.5 is compatible with 1.0
# (same major version)
modelinfo = GstAnalytics.ModelInfo.load(model_filename)
self.assertIsNotNone(modelinfo)
# Verify version string
version = modelinfo.get_version()
self.assertEqual(version, "1.5")
# Parse version string to verify major and minor components
version_parts = version.split('.')
self.assertEqual(len(version_parts), 2)
major_version = int(version_parts[0])
minor_version = int(version_parts[1])
self.assertEqual(major_version, 1)
self.assertEqual(minor_version, 5)
modelinfo.free()
finally:
if os.path.exists(temp_modelinfo):
os.unlink(temp_modelinfo)
if os.path.exists(model_filename):
os.unlink(model_filename)
|