File: bitmap.c

package info (click to toggle)
gsumi 0.8-2
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 344 kB
  • ctags: 421
  • sloc: ansic: 5,088; makefile: 58; sh: 17
file content (704 lines) | stat: -rw-r--r-- 17,942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
 * Routines for bitmap manipulation
 *
  gsumi version 0.5

  Copyright 1997 Owen Taylor <owt1@cornell.edu>

  Heavily based on

  xink version 0.02

  Copyright 1997 Raph Levien <raph@acm.org>

  This code is free for commercial and non-commercial use or
  redistribution, as long as the source code release, startup screen,
  or product packaging includes this copyright notice.
*/

#include "gsumi.h"

/* The undo buffer. */
#define MAX_UNDO 16
image *undo_ring[MAX_UNDO];
/* undo_n and undo_cur are relative to undo_start, mod MAX_UNDO. */
int undo_start, undo_n, undo_cur;

/* Stuff for the hi-res bitmap being drawn upon */
/* It's stored in a runlength encoded form. Each int32 represents WHITE_X
 white pixels followed by BLACK_X black ones. All zero terminates the list. */
image *bitmap;

/* forward declarations */
void image_free (image *img);
int32 *add_band (image *img, int32 *line, int x, int width);

image *image_create (int x, int y) {
  int j;

  image *new_image;

  new_image = (image *)malloc (sizeof(image) + (y - 1) * sizeof(int32 *));
  for (j = 0; j < y; j++) {
    new_image->lines[j] = (int32 *)malloc (sizeof(int32));
    new_image->lines[j][0] = 0;
  }
  new_image->rec.x0 = 0;
  new_image->rec.y0 = 0;
  new_image->rec.x1 = x;
  new_image->rec.y1 = y;
  new_image->width = x;
  new_image->height = y;

  return new_image;
}

#define MAX_STRING 256
#define MAX_LINEBUF 2000

/* return true on sucess, false otherwise */
int load_bitmap (const char *fn, int compress) {
  FILE *f;
  char s[MAX_STRING];
  int x, y;
  int i, j, k;
  uint8 linebuf[MAX_LINEBUF];
  uint8 b;
  int32 *l;
  int xb;

 image *new_bitmap;
  
  const char *gzip_cmd = "gzip -cd < ";
  
  if (compress) {
    char *cmd = (char *)malloc(sizeof(char)*(strlen(gzip_cmd)+strlen(fn)+1));
    strcpy(cmd,gzip_cmd);
    strcat(cmd,fn);
    f = popen(cmd,"r");
    if (!f) {
      fprintf (stderr, "could execute pipe '%s' for loading image\n", cmd);
      free((void *)cmd);
      return 0;
    }
    free((void *)cmd);
  } 
  else
    {
      f = fopen (fn, "r");
      if (!f) {
	fprintf (stderr, "could not open %s for loading image\n", fn);
	return 0;
      }
    }
      
  fgets (s, MAX_STRING, f);
  if (s[0] != 'P' || s[1] != '4') {
    fprintf(stderr,"Image not in pbm raw format.\n");
    if (compress)
      pclose (f);
    else
      fclose (f);
    return 0;
  }
  do {
    fgets (s, 80, f);
  } while (s[0] == '#');
  sscanf (s, "%d %d", &x, &y);
  printf ("loading %d x %d bitmap\n", x, y);

  new_bitmap = image_create(x,y);

  xb = (x + 7) >> 3;
  /* This should be more efficient then what was here before,
     though more complicated. The number of add_band calls is
     minimized but the scanning probably could be improved. */
  for (j = 0; j < y; j++) {
    int band_length = 0;	/* sop to stop GCC from whining */
    int band_start = 0;
    int in_band;
    int bytes_read;

    bytes_read = fread (linebuf, 1, xb, f);
    if (bytes_read != xb)	/* error or short file */
      {
	fprintf(stderr,"Error reading pbm");
	if (compress)
	  pclose (f);
	else
	  fclose (f);
	image_free(new_bitmap);
	return 0;
      }
    l = new_bitmap->lines[j];
    in_band = 0;
    for (i = 0; i < xb; i++) {
      b = linebuf[i];
      if (b == 0xff) {
	if (in_band) {
	  band_length += 8;
	} else {
	  in_band = 1;
	  band_start = i * 8;
	  band_length = 8;
	}
      } else if (b) {
	for (k = 0; k < 8; k++)
	  if (b & (128 >> k)) {
	    if (in_band) {
	      band_length ++;
	    } else {
	      in_band = 1;
	      band_start = i * 8 + k;
	      band_length = 1;
	    }
	  } else if (in_band) {
	    l = add_band (new_bitmap, l, band_start, band_length);
	    in_band = 0;
	  }
      } else if (in_band) {	/* b == 0x00 */
	l = add_band (new_bitmap, l, band_start, band_length);
	in_band = 0;
      }
    }
    if (in_band)
      l = add_band (new_bitmap, l, band_start, band_length);

    new_bitmap->lines[j] = l;
  }
  if (compress)
    pclose (f);
  else
    fclose (f);

  /* success */

  bitmap_update (&bitmap->rec);
  image_free(bitmap);

  /* the proper order of the two lines is a bit uncertain - but
     it shouldn't matter currently */
  bitmap = new_bitmap;
  bitmap_update (&new_bitmap->rec);

  return 1;
}

/* modified to use stdio instead of raw files. No detectable
   loss of speed. (wanted to use popen for gzipped stuff). */
void save_bitmap (const char *fn, int compress) {
  FILE *f;
  unsigned char linebuf[MAX_LINEBUF];
  int bpl, i, y;
  int pos, pos_1, pos_2;
  int k, k1, k2;

  const char *gzip_cmd = "gzip > ";
  
  if (compress) {
    char *cmd = (char *)malloc(sizeof(char)*(strlen(gzip_cmd)+strlen(fn)+1));
    strcpy(cmd,gzip_cmd);
    strcat(cmd,fn);
    f = popen(cmd,"w");
    if (!f) {
      fprintf (stderr, "could execute pipe '%s' for saving image\n", cmd);
      free((void *)cmd);
      return;
    }
    free((void *)cmd);
  } else {
    f = fopen (fn, "w+");
    if (!f) {
      fprintf (stderr, "could not open %s for saving image\n", fn);
      return;
    }
  }

  fprintf(f,"P4\n%d %d\n", bitmap->width, bitmap->height);
  bpl = (bitmap->width + 7) >> 3;
  for (y = 0; y < bitmap->height; y++) {
    memset (linebuf, 0, bpl);
    pos = 0;
    for (i = 0; bitmap->lines[y][i]; i++) {
      pos_1 = pos + WHITE_X(bitmap->lines[y][i]);
      pos_2 = pos_1 + BLACK_X(bitmap->lines[y][i]);
      k1 = pos_1 >> 3;
      k2 = pos_2 >> 3;
      if (k1 == k2)
	linebuf[k1] |= (256 >> (pos_1 & 7)) - (256 >> (pos_2 & 7));
      else {
	linebuf[k1] |= (256 >> (pos_1 & 7)) - 1;
	for (k = k1 + 1; k < k2; k++)
	  linebuf[k] = 255;
	linebuf[k2] |= 256 - (256 >> (pos_2 & 7));
      }
      pos = pos_2;
    }
    fwrite (linebuf, 1, bpl, f);
  }
  if (compress)
    pclose (f);
  else
    fclose (f);
}

void bitmap_init (int x, int y) 
{
  bitmap = image_create(x,y);
}

/* The rest of the routines in this file are umodified from
 * xink v0.2
 ***********************************************************/

/* Routines for manipulating the bitmap. */

/* Add a band to an existing line. Free the argument. Malloc the return. */
int32 *add_band (image *img, int32 *line, int x, int width) {
  int i, j;
  int32 *new;
  int pos, pos_1, pos_2;
  int x_0, x_1, x_2;

  /* This routine is pretty gorpy. It could probably be sped up
     (at the expense of additional gorp) by blindly copying the
     bands before and after the interesting part. */

  /* It would be fun to prove this correct - it seems like the perfect
     thing for weakest preconditions. */

  /* Clip band to actual bitmap dimensions. */
  if (x < 0) { width += x; x = 0; }
  if (width <= 0 || x >= img->width) return line;
  if (x + width > img->width) width = img->width - x;

  for (i = 0; line[i]; i++);
  new = (int32 *)malloc (sizeof(int32) * (i + 2));
  pos = 0;
  /* invariant: [x_0..x_1) is a white band and [x_1..x_2) is a black
     band that have not yet been output. [x_1..x_2) includes [x..x+width)
     if x_2 >= x. */
  x_0 = 0;
  x_1 = 0;
  if (x == 0)
    x_2 = width;
  else
    x_2 = 0;
  j = 0;
  for (i = 0; line[i]; i++) {
    pos_1 = pos + WHITE_X(line[i]);
    pos_2 = pos_1 + BLACK_X(line[i]);
    /* output [x_0..x_1) and [x_1..x_2) if pos_1 > x_2 */
    if (pos_1 > x_2) {
      if (x_2 > x_1) { /* skip zero-width black bands */
	new[j++] = WHITE_BLACK (x_1 - x_0, x_2 - x_1);
	x_0 = x_2;
      }
      x_1 = pos_1;
      x_2 = pos_2;
    } else {
      if (x_2 < pos_2)
	x_2 = pos_2;
    }
    /* x_0, x_1, x_2 represent the input bands, now or in [x..x+width) */
    if (x >= x_0 && x_2 >= x) {
      if (x + width < x_1) {
	new[j++] = WHITE_BLACK (x - x_0, width);
	x_0 = x + width;
      } else {
	if (x_1 > x) x_1 = x;
	if (x_2 < x + width) x_2 = x + width;
      }
    }
    pos = pos_2;
  }
  if (x_2 > x_1) { /* skip zero-width black bands */
    new[j++] = WHITE_BLACK (x_1 - x_0, x_2 - x_1);
    x_0 = x_2;
  }
  if (x_2 < x)
    new[j++] = WHITE_BLACK (x - x_0, width);
  new[j] = 0;
  free (line);
  return new;
}

/* Remove a band from an existing line. Has type "free the argument, malloc
 the return", but in most cases won't do any allocation. */
int32 *remove_band (image *img, int32 *line, int x, int width) {
    int i, j, k;
    int x_0, x_1, x_2;
    int x_0p, x_1p, x_2p;
    int x_end;

    int32 t;
    
    /* Clip band to actual bitmap dimensions. */
    if (x < 0) { width += x; x = 0; }
    if (width <= 0 || x >= img->width) return line;
    if (x + width > img->width) width = img->width - x;

    x_end = x+width;

    /* find the beginning of the band */
    
    x_2 = 0;

    for (i=0; line[i]; i++) {
	x_0 = x_2;
	x_1 = x_0 + WHITE_X(line[i]);
	x_2 = x_1 + BLACK_X(line[i]);
	
	if (x < x_1) {		/* start in white region */
	    x_2p = x_0;
	    for (j=i; line[j]; j++) {
		x_0p = x_2p;
		x_1p = x_0p + WHITE_X(line[j]);
		x_2p = x_1p + BLACK_X(line[j]);
		
		if (x_end < x_2p) { /* end this segment */
		    if (x_end < x_1p) {	/* end in white segment */
			line[i] = WHITE_BLACK(x_1p - x_0, x_2p - x_1p);
		    } else {
			line[i] = WHITE_BLACK(x_end - x_0, x_2p - x_end);
		    }
		    if (i!=j) {	
			for (k=1;(t=line[j+k]);k++)
			    line[i+k] = t;
			line[i+k] = 0; /* terminate */
		    }
		    return line;
		}
	    }
	    line[i] = 0;	/* didn't find end, truncate line */
	    return line;

	} else if (x < x_2) {	/* start in black segment */
	    line[i] = WHITE_BLACK(x_1 - x_0, x - x_1);
	    if (x_end < x_2) {	/* need to split segment */
		for (j=i; line[j]; j++);
		line = realloc(line, (sizeof(int32))*(j+2));

		for (k=j+1; k>i+1; k--)
		    line[k] = line[k-1];

		line[i+1] = WHITE_BLACK(x_end - x, x_2 - x_end);

		return line;
	    }
	    
	    x_2p = x_2;
	    for (j=i+1; line[j]; j++) {
		x_0p = x_2p;
		x_1p = x_0p + WHITE_X(line[j]);
		x_2p = x_1p + BLACK_X(line[j]);
		
		if (x_end < x_2p) { /* end this segment */
		    if (x_end < x_1p) {	/* end in white segment */
			line[i+1] = WHITE_BLACK(x_1p - x, x_2p - x_1p);
		    } else {
			line[i+1] = WHITE_BLACK(x_end - x, x_2p - x_end);
		    }
		    if (i+1!=j) {	
			for (k=2;(t=line[j+k-1]);k++)
			    line[i+k] = t;
			line[i+k] = 0; /* terminate */
		    }
		    return line;
		}
	    }
	    line[i+1] = 0;	/* didn't find end, truncate */
	    return line;
	}
    }
    return line;		/* start not find, do  nothing  */
}

/* appropriately draw or remove a band from a line */
int32 *draw_band (image *img, int32 *line, int x, int width, int color) {
    if (color) {
	return remove_band(img, line,x,width);
    } else {
	return add_band(img, line,x,width);
    }
}

void dump_line (int32 *line) {
  int i;
  int pos;

  pos = 0;
  for (i = 0; line[i]; i++) {
    printf ("[%d..%d) ", pos + WHITE_X(line[i]), pos + WHITE_X(line[i]) + BLACK_X(line[i]));
    pos += WHITE_X(line[i]) + BLACK_X(line[i]);
  }
  printf ("\n");
}

/* Draw  disk (image coordinates). A radius of 1 is a single pixel. */
/* I want to change the interface so that the coordintates are doubles. */
void bitmap_draw_disk (int x, int y, int r, int color) {
  int j, w;

  for (j = y + 1 - r; j < y + r; j++) {
    w = sqrt (r * r - (j - y) * (j - y));
    if (j >= 0 && j < bitmap->height)
      bitmap->lines[j] = 
	draw_band (bitmap, bitmap->lines[j], x + 1 - w, w * 2 - 1, color);
  }
}

/* Draws a Blob (see blob.h) into a bitmap */
void bitmap_draw_blob (Blob *b, int color)
{
  int i;

  for (i=0;i<b->height;i++)
    if (i+b->y >= 0 && i+b->y < bitmap->height)
      bitmap->lines[i+b->y] = 
	draw_band (bitmap, bitmap->lines[i+b->y],
		   b->data[i].left, b->data[i].right-b->data[i].left+1,
		   color);
}

/* Draw a black convex polygon, with pixels in clockwise order. */
void bitmap_draw_convpoly (int x[], int y[], int n, int color) {
  int j, k;
  int k_min, k_left, k_right;
  int x0_left, y0_left, x1_left, y1_left;
  int x0_right, y0_right, x1_right, y1_right;
  int x_left, x_right;

#ifdef DEBUG
  printf ("convpoly");
  for (i = 0; i < n; i++)
    printf (" (%d, %d)", x[i], y[i]);
  printf ("\n");
#endif
  j = 0x7fff;
  for (k = 0; k < n; k++) {
    if (j > y[k]) {
      k_min = k;
      j = y[k];
    }
  }
  k_left = k_min;
  x0_left = x[k_left];
  y0_left = y[k_left];
  x1_left = x[(k_left + n - 1) % n];
  y1_left = y[(k_left + n - 1) % n];
  k_right = k_min;
  x0_right = x[k_right];
  y0_right = y[k_right];
  x1_right = x[(k_right + 1) % n];
  y1_right = y[(k_right + 1) % n];
  for (; ; j++) {
    if (j == y1_left) {
      if (j >= y[(k_left + n - 2) % n])
	break;
      else {
	k_left = (k_left + n - 1) % n;
	x0_left = x1_left;
	y0_left = y1_left;
	x1_left = x[(k_left + n - 1) % n];
	y1_left = y[(k_left + n - 1) % n];
      }
    }
    if (j == y1_right) {
      if (j >= y[(k_right + 2) % n])
	break;
      else {
	k_right = (k_right + 1) % n;
	x0_right = x1_right;
	y0_right = y1_right;
	x1_right = x[(k_right + 1) % n];
	y1_right = y[(k_right + 1) % n];
      }
    }
    /* Could use differential math here, but why bother? */
    x_left = x0_left + ((x1_left - x0_left) * ((j - y0_left) * 2 + 1))
      / ((y1_left - y0_left) * 2);
    x_right = x0_right + ((x1_right - x0_right) * ((j - y0_right) * 2 + 1))
      / ((y1_right - y0_right) * 2);
    if (x_left < x_right && j >= 0 && j < bitmap->height)
      bitmap->lines[j] = 
	draw_band (bitmap, bitmap->lines[j], x_left, x_right - x_left, color);
  }
}

/* Draw a black "connector" between the two disks. */
void bitmap_draw_connector (int x0, int y0, int r0, int x1, int y1, int r1,
			    int color) {
  int x[4], y[4];
  double d;
  double dx0, dy0, dx1, dy1;

  /* This routine needs a little more careful thought to make the coordinates
     match up more precisely with the disks drawn. */

  d = sqrt ((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
  /* compute deltas */
  dx0 = ((y1 - y0) / d) * (r0 - 0.5);
  dy0 = ((x0 - x1) / d) * (r0 - 0.5);
  dx1 = ((y1 - y0) / d) * (r1 - 0.5);
  dy1 = ((x0 - x1) / d) * (r1 - 0.5);

  /* draw the quadrilateral */
  x[0] = x0 + 0.5 - dx0;
  y[0] = y0 + 0.5 - dy0;
  x[1] = x0 + 0.5 + dx0;
  y[1] = y0 + 0.5 + dy0;
  x[2] = x1 + 0.5 + dx1;
  y[2] = y1 + 0.5 + dy1;
  x[3] = x1 + 0.5 - dx1;
  y[3] = y1 + 0.5 - dy1;
  bitmap_draw_convpoly (x, y, 4, color);
}

/* clear the bitmap */
void bitmap_clear ()
{
  int j;

  for (j = 0; j < bitmap->height; j++) {
    free(bitmap->lines[j]);
    bitmap->lines[j] = (int32 *)malloc (sizeof(int32));
    bitmap->lines[j][0] = 0;
  }
}


/* Functions for implementing undo. The interface is as follows:

   undo_begin ()
     Begins an undo transaction. Allocates a new place in the undo_ring
     (freeing an old one to make space, if necessary). Also kills all
     redo entries.

   undo_update ()
     Adds a rectangle to the undo region. Call this routine before
     mutating that rectangle. Copies needed parts of that rectangle
     to the current undo buffer.

   undo_reset ()
     Clears the undo buffer.

   undo ()
     Copies from the undo buffer to the image, and also copies from
     the image into the undo ring.

   redo ()
     The reverse of undo.

   One thing that is not dealt with is the possibility that the undo
   image is a different size than the image. It would be nice to be
   able to do this, for example so you could undo a load.

*/

void image_free (image *img) {
  int y;

  for (y = img->rec.y0; y < img->rec.y1; y++)
    free (img->lines[y]);
  free (img);
}

void undo_begin (void) {
  int new;

  while (undo_n > undo_cur) {
    undo_n--;
    image_free (undo_ring[(undo_start + undo_n) % MAX_UNDO]);
  }
  if (undo_n == MAX_UNDO) {
    image_free (undo_ring[undo_start]);
    undo_start = (undo_start + 1) % MAX_UNDO;
    undo_n--;
  }
  new = (undo_start + undo_n) % MAX_UNDO;
  undo_ring[new] = (image *)malloc (sizeof(image) + (bitmap->height - 1)
				    * sizeof (int32 *));
  undo_ring[new]->width = bitmap->width;
  undo_ring[new]->height = bitmap->height;
  undo_ring[new]->rec.x0 = 0;
  undo_ring[new]->rec.y0 = 0;
  undo_ring[new]->rec.x1 = 0;
  undo_ring[new]->rec.y1 = 0;
  /* Don't need to update any lines, because the region is empty. */
  undo_n++;
  undo_cur = undo_n;
}

/* Make a new copy of the line, and copy it to the dst image. */
void copy_line (image *dst, const image *src, int y) {
  int n;
  int32 *l, *new;

  l = src->lines[y];
  for (n = 0; l[n]; n++);
  new = (int32 *)malloc (sizeof(int32) * (n + 1));
  memcpy (new, l, sizeof(int32) * (n + 1));
  dst->lines[y] = new;
}

void undo_update (rect *rec) {
  int cur;
  int y;
  rect old_rec, clip_rec;

  if (undo_n < 1) {
    fprintf (stderr, "undo_update: undo_n < 1\n");
    exit (1);
  }
  rect_intersect (&clip_rec, rec, &(bitmap->rec));
  cur = (undo_start + undo_cur - 1) % MAX_UNDO;
  old_rec = undo_ring[cur]->rec;
  if (old_rec.y1 <= old_rec.y0) {
    /* Undo buffer is empty - start from scratch. */
    for (y = clip_rec.y0; y < clip_rec.y1; y++)
      copy_line (undo_ring[cur], bitmap, y);
  } else {
    /* Undo buffer is not empty - just copy new parts. */
    for (y = clip_rec.y0; y < old_rec.y0; y++)
      copy_line (undo_ring[cur], bitmap, y);
    for (y = old_rec.y1; y < clip_rec.y1; y++)
      copy_line (undo_ring[cur], bitmap, y);
  }
  rect_union (&(undo_ring[cur]->rec), &old_rec, &clip_rec);
}

void undo_reset (void) {
  while (undo_n) {
    undo_n--;
    image_free (undo_ring[(undo_start + undo_n) % MAX_UNDO]);
  }
}

/* Exchanges the numbered undo buffer with the relevant region in the image,
   and calls bitmap_update(), so that it gets displayed. */
void undo_exchange (int num) {
  int y;
  int32 *l;

  for (y = undo_ring[num]->rec.y0; y < undo_ring[num]->rec.y1; y++) {
    l = bitmap->lines[y];
    bitmap->lines[y] = undo_ring[num]->lines[y];
    undo_ring[num]->lines[y] = l;
  }
  bitmap_update (&(undo_ring[num]->rec));
}

void undo () {

  if (undo_cur == 0) return;
  undo_cur--;
  undo_exchange ((undo_start + undo_cur) % MAX_UNDO);
}

void redo () {

  if (undo_cur == undo_n) return;
  undo_exchange ((undo_start + undo_cur) % MAX_UNDO);
  undo_cur++;
}