1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
/*
* Routines for bitmap manipulation
*
gsumi version 0.5
Copyright 1997 Owen Taylor <owt1@cornell.edu>
Heavily based on
xink version 0.02
Copyright 1997 Raph Levien <raph@acm.org>
This code is free for commercial and non-commercial use or
redistribution, as long as the source code release, startup screen,
or product packaging includes this copyright notice.
*/
#include "gsumi.h"
#include "rect.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ROUND(A) floor(A+0.5)
static Blob *
blob_new (int y, int height)
{
Blob *result;
result = malloc (sizeof (Blob) + sizeof(BlobSpan) * height);
result->y = y;
result->height = height;
return result;
}
typedef enum {
NONE = 0,
LEFT = 1 << 0,
RIGHT = 1 << 1,
} EdgeType;
Blob *
blob_convex_union (Blob *b1, Blob *b2)
{
Blob *result;
int y, x1, x2, y1, y2, i1, i2;
int i, j;
int start;
EdgeType *present;
/* Create the storage for the result */
y = MIN(b1->y,b2->y);
result = blob_new (y, MAX(b1->y+b1->height,b2->y+b2->height)-y);
if (result->height == 0)
return result;
present = malloc (sizeof (EdgeType) * result->height);
memset (present, 0, result->height * sizeof(EdgeType));
/* Initialize spans from original objects */
for (i=0, j=b1->y-y; i<b1->height; i++,j++)
{
if (b1->data[i].right >= b1->data[i].left)
{
present[j] = LEFT | RIGHT;
result->data[j].left = b1->data[i].left;
result->data[j].right = b1->data[i].right;
}
}
for (i=0, j=b2->y-y; i<b2->height; i++,j++)
{
if (b2->data[i].right >= b2->data[i].left)
{
if (present[j])
{
if (result->data[j].left > b2->data[i].left)
result->data[j].left = b2->data[i].left;
if (result->data[j].right < b2->data[i].right)
result->data[j].right = b2->data[i].right;
}
else
{
present[j] = LEFT | RIGHT;
result->data[j].left = b2->data[i].left;
result->data[j].right = b2->data[i].right;
}
}
}
/* Now walk through edges, deleting points that aren't on convex hull */
start = 0;
while (!(present[start])) start++;
/* left edge */
i1 = start-1;
i2 = start;
x1 = result->data[start].left - result->data[start].right;
y1 = 0;
for (i=start+1;i<result->height;i++)
{
if (!(present[i] & LEFT))
continue;
x2 = result->data[i].left - result->data[i2].left;
y2 = i-i2;
while (x2*y1 - x1*y2 < 0) /* clockwise rotation */
{
present[i2] &= ~LEFT;
i2 = i1;
while (!(present[--i1] & LEFT) && i1>=start);
if (i1<start)
{
x1 = result->data[start].left - result->data[start].right;
y1 = 0;
}
else
{
x1 = result->data[i2].left - result->data[i1].left;
y1 = i2 - i1;
}
x2 = result->data[i].left - result->data[i2].left;
y2 = i - i2;
}
x1 = x2;
y1 = y2;
i1 = i2;
i2 = i;
}
/* Right edge */
i1 = start -1;
i2 = start;
x1 = result->data[start].right - result->data[start].left;
y1 = 0;
for (i=start+1;i<result->height;i++)
{
if (!(present[i] & RIGHT))
continue;
x2 = result->data[i].right - result->data[i2].right;
y2 = i-i2;
while (x2*y1 - x1*y2 > 0) /* counter-clockwise rotation */
{
present[i2] &= ~RIGHT;
i2 = i1;
while (!(present[--i1] & RIGHT) && i1>=start);
if (i1<start)
{
x1 = result->data[start].right - result->data[start].left;
y1 = 0;
}
else
{
x1 = result->data[i2].right - result->data[i1].right;
y1 = i2 - i1;
}
x2 = result->data[i].right - result->data[i2].right;
y2 = i - i2;
}
x1 = x2;
y1 = y2;
i1 = i2;
i2 = i;
}
/* Restore edges of spans that were deleted in last step or never present */
/* We fill only interior regions of convex hull, as if we were filling
polygons. But since we draw ellipses with nearest points, not interior
points, maybe it would look better if we did the same here. Probably
not a big deal either way after anti-aliasing */
/* left edge */
for (i1=start; i1<result->height-1; i1++)
{
/* Find empty gaps */
if (!(present[i1+1] & LEFT))
{
int increment; /* fractional part */
int denom; /* denominator of fraction */
int step; /* integral step */
int frac; /* fractional step */
int reverse;
/* find bottom of gap */
i2 = i1+2;
while (!(present[i2] & LEFT) && i2 < result->height) i2++;
if (i2 < result->height)
{
denom = i2-i1;
x1 = result->data[i1].left;
x2 = result->data[i2].left;
step = (x2-x1)/denom;
frac = x2-x1 - step*denom;
if (frac < 0)
{
frac = -frac;
reverse = 1;
}
else
reverse = 0;
increment = 0;
for (i=i1+1; i<i2; i++)
{
x1 += step;
increment += frac;
if (increment >= denom)
{
increment -= denom;
x1 += reverse ? -1 : 1;
}
if (increment == 0 || reverse)
result->data[i].left = x1;
else
result->data[i].left = x1 + 1;
}
}
i1 = i2-1; /* advance to next possibility */
}
}
/* right edge */
for (i1=start; i1<result->height-1; i1++)
{
/* Find empty gaps */
if (!(present[i1+1] & RIGHT))
{
int increment; /* fractional part */
int denom; /* denominator of fraction */
int step; /* integral step */
int frac; /* fractional step */
int reverse;
/* find bottom of gap */
i2 = i1+2;
while (!(present[i2] & RIGHT) && i2 < result->height) i2++;
if (i2 < result->height)
{
denom = i2-i1;
x1 = result->data[i1].right;
x2 = result->data[i2].right;
step = (x2-x1)/denom;
frac = x2-x1 - step*denom;
if (frac < 0)
{
frac = -frac;
reverse = 1;
}
else
reverse = 0;
increment = 0;
for (i=i1+1; i<i2; i++)
{
x1 += step;
increment += frac;
if (increment >= denom)
{
increment -= denom;
x1 += reverse ? -1 : 1;
}
if (reverse && increment != 0)
result->data[i].right = x1 - 1;
else
result->data[i].right = x1;
}
}
i1 = i2-1; /* advance to next possibility */
}
}
/* Mark empty lines at top and bottom as unused */
for (i=0;i<start;i++)
{
result->data[i].left = 0;
result->data[i].right = -1;
}
for (i=result->height-1;!present[i];i--)
{
result->data[i].left = 0;
result->data[i].right = -1;
}
free (present);
return result;
}
/****************************************************************
* Code to scan convert an arbitrary ellipse into a Blob. Based
* on Van Aken's conic algorithm in Foley and Van Damn
****************************************************************/
/* Return octant from gradient */
static int
blob_get_octant (int D, int E)
{
if (D>=0)
{
if (E<0)
return (D<-E) ? 1 : 2;
else
return (D>E) ? 3 : 4;
}
else
if (E>0)
return (-D<E) ? 5 : 6;
else
return (-D>-E) ? 7 : 8;
}
static void
blob_conic_add_pixel (Blob *b, EdgeType *present, int x, int y, int octant)
{
/* printf ("%d %d\n",x,y); */
if (y<b->y || y>=b->y+b->height)
{
/* g_warning("Out of bounds!\n"); */
}
else
{
if (octant <= 4)
{
if (present[y-b->y] & RIGHT)
b->data[y-b->y].right = MAX(b->data[y-b->y].right,x);
else
{
b->data[y-b->y].right = x;
present[y-b->y] |= RIGHT;
}
}
else
{
if (present[y-b->y] & LEFT)
b->data[y-b->y].left = MIN(b->data[y-b->y].left,x);
else
{
b->data[y-b->y].left = x;
present[y-b->y] |= LEFT;
}
}
}
}
static void
blob_conic (Blob *b, int xs, int ys,
int A, int B, int C, int D, int E, int F)
{
int x,y; /* current point */
int octant; /* current octant */
int dxsquare, dysquare; /* change in (x,y) for square moves */
int dxdiag, dydiag; /* change in (x,y) for diagonal moves */
int d,u,v,k1,k2,k3; /* decision variables and increments */
int octantCount; /* number of octants to be drawn */
int count; /* number of steps for last octant */
int fx,dfx; /* check x-boundaries */
int fy,dfy; /* check y-boundaries */
int ddf; /* second difference for boundary-checking */
int tmp, i;
EdgeType *present;
present = malloc (sizeof (EdgeType) * b->height);
memset (present, 0, b->height * sizeof(EdgeType));
octant = blob_get_octant (D,E);
switch (octant)
{
case 1:
d = ROUND (A+B/2.+C/4.+D+E/2.+F);
u = ROUND (A+B/2.+D);
v = ROUND (A+B/2.+D+E);
k1 = 2*A;
k2 = 2*A + B;
k3 = k2 + B + 2*C;
dxsquare = 1;
dysquare = 0;
dxdiag = 1;
dydiag = 1;
break;
case 2:
d = ROUND (A/4.+B/2.+C+D/2.+E+F);
u = ROUND (B/2.+C+E);
v = ROUND (B/2.+C+D+E);
k1 = 2*C;
k2 = B + 2*C;
k3 = 2*A + 2*B + 2*C;
dxsquare = 0;
dysquare = 1;
dxdiag = 1;
dydiag = 1;
break;
case 3:
d = ROUND (A/4.-B/2.+C-D/2.+E+F);
u = ROUND (-B/2.+C+E);
v = ROUND (-B/2.+C-D+E);
k1 = 2*C;
k2 = 2*C - B;
k3 = 2*A - 2*B + 2*C;
dxsquare = 0;
dysquare = 1;
dxdiag = -1;
dydiag = 1;
break;
case 4:
d = ROUND (A-B/2.+C/4.-D+E/2.+F);
u = ROUND (A-B/2.-D);
v = ROUND (A-B/2.-D+E);
k1 = 2*A;
k2 = 2*A - B;
k3 = k2 - B + 2*C;
dxsquare = -1;
dysquare = 0;
dxdiag = -1;
dydiag = 1;
break;
case 5:
d = ROUND (A+B/2.+C/4.-D-E/2.+F);
u = ROUND (A+B/2.-D);
v = ROUND (A+B/2.-D-E);
k1 = 2*A;
k2 = 2*A + B;
k3 = k2 + B + 2*C;
dxsquare = -1;
dysquare = 0;
dxdiag = -1;
dydiag = -1;
break;
case 6:
d = ROUND (A/4.+B/2.+C-D/2.-E+F);
u = ROUND (B/2.+C-E);
v = ROUND (B/2.+C-D-E);
k1 = 2*C;
k2 = B + 2*C;
k3 = 2*A + 2*B + 2*C;
dxsquare = 0;
dysquare = -1;
dxdiag = -1;
dydiag = -1;
break;
case 7:
d = ROUND (A/4.-B/2.+C+D/2.-E+F);
u = ROUND (-B/2.+C-E);
v = ROUND (-B/2.+C+D-E);
k1 = 2*C;
k2 = 2*C - B;
k3 = 2*A - 2*B + 2*C;
dxsquare = 0;
dysquare = -1;
dxdiag = 1;
dydiag = -1;
break;
default: /* case 8: */
d = ROUND (A-B/2.+C/4.+D-E/2.+F);
u = ROUND (A-B/2.+D);
v = ROUND (A-B/2.+D-E);
k1 = 2*A;
k2 = 2*A - B;
k3 = k2 - B + 2*C;
dxsquare = 1;
dysquare = 0;
dxdiag = 1;
dydiag = -1;
break;
}
octantCount = 8;
x = xs;
y = ys;
count = 0; /* ignore until last octant */
/* Initialize boundary checking - we keep track of the discriminants
for the conic as quadratics in x and y, and when they go negative
we know we are beyond the boundaries of the conic. */
ddf = 2*(B*B - 4*A*C);
fx = E*E - 4*C*F;
dfx = ddf/2 + dxdiag * (2*B*E - 4*C*D);
fy = D*D - 4*A*F;
dfy = ddf/2 + dydiag * (2*B*D - 4*A*E);
while (1)
{
if (octantCount == 0)
{
/* figure out remaining steps in square direction */
switch (octant)
{
case 1:
case 8:
count = xs - x;
break;
case 2:
case 3:
count = ys - y;
break;
case 4:
case 5:
count = x - xs;
break;
case 6:
case 7:
count = y - ys;
break;
}
/* if (count < 0)
g_warning("Negative count (%d) in octant %d\n",count,octant); */
if (count <= 0)
goto done;
}
if (octant %2) /* odd octants */
{
while (v < k2/2)
{
blob_conic_add_pixel (b, present, x, y, octant);
if (d<0)
{
x += dxsquare; y += dysquare;
u += k1;
v += k2;
d += u;
if (dxsquare)
{
fx += dfx;
dfx += ddf;
}
if (dysquare)
{
fy += dfy;
dfy += ddf;
}
}
else
{
x += dxdiag; y += dydiag;
u += k2;
v += k3;
d += v;
fx += dfx;
dfx += ddf;
fy += dfy;
dfy += ddf;
#ifdef NOHOP
/* Check for octant hopping */
if (u < v && fx >= 0 && fy >= 0)
{
/* hopped diag across ellipse, take square instead */
x += dxsquare - dxdiag;
y += dysquare - dydiag;
d -= v;
u += k1 - k2;
v += k2 - k3;
d += u;
dfx -= ddf;
fx -= dfx;
dfy -= ddf;
fy -= dfy;
if (dxsquare)
{
fx += dfx;
dfx += ddf;
}
if (dysquare)
{
fy += dfy;
dfy += ddf;
}
}
#endif
}
if (count && --count == 0)
goto done;
}
/* We now cross diagonal octant boundary */
d = ROUND (d - u + v/2. - k2/2. + 3*k3/8.);
u = ROUND (-u + v - k2/2. + k3/2.);
v = ROUND (v - k2 + k3/2.); /* could be v + A - C */
k1 = k1 - 2*k2 + k3;
k2 = k3 - k2;
tmp = dxsquare;
dxsquare = -dysquare;
dysquare = tmp;
}
else /* Even octants */
{
while (u < k2 /2)
{
blob_conic_add_pixel (b, present, x, y, octant);
if (d<0)
{
x += dxdiag; y += dydiag;
u += k2;
v += k3;
d += v;
fx += dfx;
dfx += ddf;
fy += dfy;
dfy += ddf;
}
else
{
x += dxsquare; y += dysquare;
u += k1;
v += k2;
d += u;
if (dxsquare)
{
fx += dfx;
dfx += ddf;
}
if (dysquare)
{
fy += dfy;
dfy += ddf;
}
#ifdef NOHOP
/* Check for octant hopping */
if ((fx >= 0) && (fy >= 0) &&
((((octant == 2) || (octant == 6)) &&
2*u > ROUND(v + B/2 + C)) ||
(((octant == 4) || (octant == 8)) &&
2*u > ROUND(v - B/2 + A))))
{
/* hopped square across ellipse, take diag instead */
x += dxdiag - dxsquare;
y += dydiag - dysquare;
d -= u;
u += k2 - k1;
v += k3 - k2;
d += v;
if (dxsquare)
{
dfx -= ddf;
fx -= dfx;
}
if (dysquare)
{
dfy -= ddf;
fy -= dfy;
}
fx += dfx;
dfx += ddf;
fy += dfy;
dfy += ddf;
}
#endif
}
if (count && --count <= 0)
goto done;
}
/* We now cross square octant boundary */
d = d + u - v + k1 - k2;
v = 2*u - v + k1 - k2;
/* Do v first; it depends on u */
u = u + k1 - k2;
k3 = 4 * (k1 - k2) + k3;
k2 = 2 * k1 - k2;
tmp = dxdiag;
dxdiag = -dydiag;
dydiag = tmp;
/* Change appropriate boundary checking increment */
if (octant == 2 || octant == 6)
dfx = -dfx + ddf;
else
dfy = -dfy + ddf;
}
octant++;
if (octant > 8) octant -= 8;
octantCount--;
}
done: /* jump out of two levels */
for (i=0; i<b->height; i++)
if (present[i] != (LEFT | RIGHT))
{
b->data[i].left = 0;
b->data[i].right = -1;
}
free (present);
}
/* Scan convert an ellipse specified by _offsets_ of major and
minor axes, and by center into a blob */
Blob *
blob_ellipse (double xc, double yc, double xp, double yp, double xq, double yq)
{
Blob *r;
double A,B,C,D,E,F; /* coefficients of conic */
double xprod,tmp;
double height;
double dpx, dpy;
int y;
xprod = xp*yq - xq*yp;
if (xprod == 0) /* colinear points */
{
g_print("Colinear points!\n");
g_debug("gsumi");
}
if (xprod < 0)
{
tmp = xp; xp = xq; xq = tmp;
tmp = yp; yp = yq; yq = tmp;
xprod = -xprod;
}
A = yp*yp + yq*yq;
B = -2 * (xp*yp + xq*yq);
C = xp*xp + xq*xq;
D = 2*yq*xprod;
E = -2*xq*xprod;
F = 0;
/* Now offset the ellipse so that the center is exact, but the
starting point is no longer exactly on the ellipse */
dpx = ROUND(xp+xc)-xp-xc;
dpy = ROUND(yp+yc)-yp-yc;
F += dpx*(A*dpx+D+B*dpy) + dpy*(C*dpy+E);
D += 2*A*dpx + B*dpy;
E += B*dpx + 2*C*dpy;
height = sqrt(A);
y = floor(yc-height-0.5);
/* We allow an extra pixel of slop on top and bottom to deal with
round-off error */
r = blob_new (y-1,ceil(yc+height+0.5)-y+3);
/* Although it seems that multiplying A-F by a constant would improve
things, this seems not to be the case in practice. Several test
cases showed about equal improvement and degradation */
blob_conic (r,ROUND(xp+xc),ROUND(yp+yc),ROUND(16*A),ROUND(16*B),ROUND(16*C),
ROUND(16*D),ROUND(16*E),ROUND(16*F));
return r;
}
void
blob_bounds(Blob *b, rect *r)
{
int i;
i = 0;
while (i<b->height && b->data[i].left > b->data[i].right)
i++;
if (i<b->height)
{
r->y0 = b->y + i;
r->x0 = b->data[i].left;
r->x1 = b->data[i].right + 1;
while (i<b->height && b->data[i].left <= b->data[i].right)
{
r->x0 = MIN(b->data[i].left, r->x0);
r->x1 = MAX(b->data[i].right+1, r->x1);
i++;
}
r->y1 = b->y + i;
}
else
{
r->x0 = r->y0 = 0;
r->x1 = r->y1 = 0;
}
}
void
blob_dump(Blob *b) {
int i,j;
for (i=0; i<b->height; i++)
{
for (j=0;j<b->data[i].left;j++)
putchar(' ');
for (j=b->data[i].left;j<=b->data[i].right;j++)
putchar('*');
putchar('\n');
}
}
|