1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
/* An implementation of the region abstract data type.
This code is part of xink, by Raph Levien.
xink version 0.02
Copyright 1997 Raph Levien <raph@acm.org>
This code is free for commercial and non-commercial use or
redistribution, as long as the source code release, startup screen,
or product packaging includes this copyright notice.
*/
#include <stdlib.h>
#include "region.h"
/* These two routines might get moved into a common "util" file. */
static int min (int a, int b) {
return (a > b) ? b : a;
}
static int max (int a, int b) {
return (a > b) ? a : b;
}
static band *band_pin (band *band) {
band->refcount++;
return band;
}
static void band_drop (band *band) {
if (--(band->refcount) == 0)
free (band);
}
region *region_pin (region *region) {
region->refcount++;
return region;
}
void region_drop (region *region) {
int i;
if (--(region->refcount) == 0) {
for (i = 0; i < region->n_bands; i++)
band_drop (region->band[i]);
free (region);
}
}
region *region_from_rect (const rect *src) {
region *r;
band *b;
if (rect_empty (src)) {
/* Create the empty region. */
r = (region *)malloc (sizeof(region) - sizeof(band *));
r->refcount = 1;
r->n_bands = 0;
} else {
r = (region *)malloc (sizeof(region));
r->refcount = 1;
r->n_bands = 1;
b = (band *)malloc (sizeof(band));
r->band[0] = b;
b->refcount = 1;
b->y0 = src->y0;
b->y1 = src->y1;
b->n_ranges = 1;
b->range[0].x0 = src->x0;
b->range[0].x1 = src->x1;
}
return r;
}
bool region_empty (const region *region) {
return (region->n_bands == 0);
}
/* Determine whether the x projections of two bands are equal.
Does not drop its arguments. */
static bool band_eq (const band *b1, const band *b2) {
int i, n;
n = b1->n_ranges;
if (n != b2->n_ranges) return false;
for (i = 0; i < n; i++)
if (b1->range[i].x0 != b2->range[i].x0 ||
b1->range[i].x1 != b2->range[i].x1)
return false;
return true;
}
/* Change the band's y projection while maintaining its x projection. */
static band *band_resize (band *b1, int y0, int y1) {
if (b1->refcount != 1) {
/* Might split this out into a band_dup function if it might get
used elsewhere. */
band *b;
int i, n;
if (y0 == b1->y0 && y1 == b1->y1) return b1;
n = b1->n_ranges;
b = (band *)malloc (sizeof(band) + (n - 1) * sizeof(range));
b->refcount = 1;
b->n_ranges = b1->n_ranges;
for (i = 0; i < n; i++) {
b->range[i].x0 = b1->range[i].x0;
b->range[i].x1 = b1->range[i].x1;
}
band_drop (b1);
b1 = b;
}
b1->y0 = y0;
b1->y1 = y1;
return b1;
}
#ifdef EXTRA_JUNK
/* This routine isn't needed any more, because we've added the invariant
that regions are always simplified. */
/* Simplify a region by coalescing identical consecutive bands. */
region *region_simplify (region *r1) {
region *r;
int i, i1;
r = (region *)malloc (sizeof(region) + (r1->n_bands - 1) * sizeof(region));
r->refcount = 1;
i = 0;
for (i1 = 0; i1 < r1->n_bands; i1++) {
if (i == 0 ||
r->band[i - 1]->y1 != r1->band[i1]->y0 ||
!band_eq (r->band[i - 1], r1->band[i1]))
r->band[i++] = band_pin (r1->band[i1]);
else
r->band[i - 1] =
band_resize (r->band[i - 1], r->band[i - 1]->y0, r1->band[i1]->y1);
}
r->n_bands = i;
region_drop (r1);
return r;
}
#endif
/* Combine two bands. The x projection of the resulting band is the
union of the x projections of the two arguments, and the y
projection is the intersection.
Doesn't drop the arguments. */
static band *band_union_combine (band *b1, band *b2) {
band *b;
int i, i1, i2;
int x_last;
b = (struct band *)malloc (sizeof(band) +
((b1->n_ranges + b2->n_ranges) - 1) *
sizeof(range));
b->refcount = 1;
b->y0 = max (b1->y0, b2->y0);
b->y1 = min (b1->y1, b2->y1);
i = 0;
i1 = 0;
i2 = 0;
/* Invariant: b->range[i - 1].x0 < b1->range[i1].x0,
and similarly for b2->range[i2]. */
/* Invariant: x_last = b->range[i - 1].x1, or -1 if not defined. */
x_last = -INF;
while (i1 < b1->n_ranges || i2 < b2->n_ranges) {
/* Perhaps the code duplication of these two branches could be
eliminated. */
if (i2 == b2->n_ranges ||
(i1 < b1->n_ranges && b1->range[i1].x0 < b2->range[i2].x0)) {
/* Add in the b1->range[i1]. */
if (b1->range[i1].x0 <= x_last) {
/* New range overlaps with last one. */
if (b1->range[i1].x1 > x_last)
x_last = b->range[i - 1].x1 = b1->range[i1].x1;
} else {
b->range[i].x0 = b1->range[i1].x0;
x_last = b->range[i++].x1 = b1->range[i1].x1;
}
i1++;
} else {
/* Add in the b2->range[i2]. */
if (b2->range[i2].x0 <= x_last) {
/* New range overlaps with last one. */
if (b2->range[i2].x1 > x_last)
x_last = b->range[i - 1].x1 = b2->range[i2].x1;
} else {
b->range[i].x0 = b2->range[i2].x0;
x_last = b->range[i++].x1 = b2->range[i2].x1;
}
i2++;
}
}
b->n_ranges = i;
#if 0
band_drop (b1);
band_drop (b2);
#endif
return b;
}
/* Add a band to a region, simplifying. The psrc and src arguments
allow the band equality check to be simplified in cases where
band information is derived from already simplified regions. Codes
1 and 2 refer to existing regions, and 3 to combination data. */
static void add_band (region *r, band *b, int *psrc, int src) {
int n;
/* Note: this test isn't necessary when being called from region_union,
but is included here anyway to avoid having two separate versions
of add_band. */
if (b->n_ranges == 0) {
band_drop (b);
return;
}
n = r->n_bands;
if (n == 0 ||
(src != 3 && src == *psrc) ||
!band_eq (r->band[n - 1], b)) {
r->band[n] = b;
r->n_bands++;
} else {
r->band[n - 1] =
band_resize (r->band[n - 1], r->band[n - 1]->y0, b->y1);
band_drop (b);
}
*psrc = src;
}
/* Return the union of two regions. */
region *region_union (region *r1, region *r2) {
region *r;
int i1, i2;
int y;
int src;
/* This bound may not be strict. */
r = (region *)malloc (sizeof(region) +
((r1->n_bands + r2->n_bands) * 2 - 1) *
sizeof(band *));
r->refcount = 1;
r->n_bands = 0;
i1 = 0;
i2 = 0;
src = 0;
/* Invariant: y = r->band[i - 1].y1, or 0 if not defined */
y = -INF;
while (i1 < r1->n_bands || i2 < r2->n_bands) {
if (i2 == r2->n_bands ||
(i1 < r1->n_bands && r1->band[i1]->y1 <= r2->band[i2]->y0)) {
add_band (r, band_resize (band_pin (r1->band[i1]),
max (y, r1->band[i1]->y0),
r1->band[i1]->y1),
&src, 1);
y = r1->band[i1++]->y1;
} else if (i1 == r1->n_bands ||
(i2 < r2->n_bands && r2->band[i2]->y1 <= r1->band[i1]->y0)) {
add_band (r, band_resize (band_pin (r2->band[i2]),
max (y, r2->band[i2]->y0),
r2->band[i2]->y1),
&src, 2);
y = r2->band[i2++]->y1;
} else {
/* Combine two bands - output the next band beginning with y or
greater. */
/* Advance y to y0 of actual next band. */
y = max (y, min (r1->band[i1]->y0, r2->band[i2]->y0));
/* Output the part where there is a deficiency in the y
projection of the other region. */
if (r2->band[i2]->y0 > y) {
add_band (r, band_resize (band_pin (r1->band[i1]),
y,
r2->band[i2]->y0),
&src, 1);
y = r2->band[i2]->y0;
} else if (r1->band[i1]->y0 > y) {
add_band (r, band_resize (band_pin (r2->band[i2]),
y,
r1->band[i1]->y0),
&src, 2);
y = r1->band[i1]->y0;
}
/* Output the part where the y projections of the two bands
overlap. */
add_band (r, band_union_combine (r1->band[i1], r2->band[i2]), &src, 3);
/* Advance y to the next band to output. */
if (r1->band[i1]->y1 < r2->band[i2]->y1)
y = r1->band[i1++]->y1;
else if (r1->band[i1]->y1 > r2->band[i2]->y1)
y = r2->band[i2++]->y1;
else {
i1++;
i2++;
}
}
}
region_drop (r1);
region_drop (r2);
return r;
}
/* Combine two bands. The x projection of the resulting band is the
difference of the x projections of the two arguments, and the y
projection is the intersection.
Doesn't drop the arguments. */
static band *band_minus_combine (band *b1, band *b2) {
band *b;
int i, i1, i2;
int x_suppress;
b = (struct band *)malloc (sizeof(band) +
((b1->n_ranges + b2->n_ranges) - 1) *
sizeof(range));
b->refcount = 1;
b->y0 = max (b1->y0, b2->y0);
b->y1 = min (b1->y1, b2->y1);
i = 0;
i1 = 0;
i2 = 0;
/* Invariant: b->range[i - 1].x0 < b1->range[i1].x0,
and similarly for b2->range[i2]. */
x_suppress = -INF;
while (i1 < b1->n_ranges || i2 < b2->n_ranges) {
if (i2 == b2->n_ranges ||
(i1 < b1->n_ranges && b1->range[i1].x0 < b2->range[i2].x0)) {
/* Add in the b1->range[i1]. */
if (b1->range[i1].x1 > x_suppress) {
b->range[i].x0 = max (b1->range[i1].x0, x_suppress);
b->range[i++].x1 = b1->range[i1].x1;
}
i1++;
} else {
/* Subtract b2->range[i2] from last range. */
if (i > 0 && b->range[i - 1].x1 > b2->range[i2].x0) {
/* b2 range overlaps with last range */
if (b->range[i - 1].x1 > b2->range[i2].x1) {
/* Need to split last range in two. */
b->range[i].x0 = b2->range[i2].x1;
b->range[i].x1 = b->range[i - 1].x1;
b->range[i - 1].x1 = b2->range[i2].x0;
i++;
} else {
/* Just chop the last range. */
b->range[i - 1].x1 = b2->range[i2].x0;
}
}
x_suppress = b2->range[i2].x1;
i2++;
}
}
b->n_ranges = i;
#if 0
band_drop (b1);
band_drop (b2);
#endif
return b;
}
/* Return the difference of two regions. */
region *region_minus (region *r1, region *r2) {
region *r;
int i1, i2;
int y;
int src;
/* This routine has very analogous structure to region_union. The
main difference is that bands from r2 are skipped over in the
absence of any band from r1, whereas in region_union, they are
transferred to the output. */
/* This bound may not be strict. */
r = (region *)malloc (sizeof(region) +
((r1->n_bands + r2->n_bands) * 2 - 1) *
sizeof(band *));
r->refcount = 1;
r->n_bands = 0;
i1 = 0;
i2 = 0;
src = 0;
/* Invariant: y = r->band[i - 1].y1, or 0 if not defined */
y = -INF;
while (i1 < r1->n_bands || i2 < r2->n_bands) {
if (i2 == r2->n_bands ||
(i1 < r1->n_bands && r1->band[i1]->y1 <= r2->band[i2]->y0)) {
add_band (r, band_resize (band_pin (r1->band[i1]),
max (y, r1->band[i1]->y0),
r1->band[i1]->y1),
&src, 1);
y = r1->band[i1++]->y1;
} else if (i1 == r1->n_bands ||
(i2 < r2->n_bands && r2->band[i2]->y1 <= r1->band[i1]->y0)) {
y = r2->band[i2++]->y1;
} else {
/* Combine two bands - output the next band beginning with y or
greater. */
/* Advance y to y0 of actual next band. */
y = max (y, min (r1->band[i1]->y0, r2->band[i2]->y0));
/* Output the part where there is a deficiency in the y
projection of the other region. */
if (r2->band[i2]->y0 > y) {
add_band (r, band_resize (band_pin (r1->band[i1]),
y,
r2->band[i2]->y0),
&src, 1);
y = r2->band[i2]->y0;
} else if (r1->band[i1]->y0 > y) {
y = r1->band[i1]->y0;
}
/* Output the part where the y projections of the two bands
overlap. */
add_band (r, band_minus_combine (r1->band[i1], r2->band[i2]), &src, 3);
/* Advance y to the next band to output. */
if (r1->band[i1]->y1 < r2->band[i2]->y1)
y = r1->band[i1++]->y1;
else if (r1->band[i1]->y1 > r2->band[i2]->y1)
y = r2->band[i2++]->y1;
else {
i1++;
i2++;
}
}
}
region_drop (r1);
region_drop (r2);
return r;
}
/* Return the number of pixels enclosed in the rectangle */
static int compute_weight (region *reg, rect *rec) {
int i, j;
int band_height;
int weight, width;
band *b;
weight = 0;
for (i = 0; i < reg->n_bands && reg->band[i]->y1 >= rec->y0; i++);
for (; i < reg->n_bands && reg->band[i]->y0 < rec->y1; i++) {
b = reg->band[i];
band_height = min (b->y1, rec->y1) - max (b->y0, rec->y0);
if (band_height > 0) { /* can we prove it will always be positive? */
for (j = 0; j < b->n_ranges && b->range[j].x1 >= rec->x0; j++);
for (; j < b->n_ranges && b->range[j].x0 < rec->x1; j++) {
width = min (b->range[j].x0, rec->x0) -
max (b->range[j].x1, rec->x1);
/* again, it may be possible to prove that width > 0 */
if (width > 0) weight += width * band_height;
}
}
}
return weight;
}
/* Find a tile from the region, satisfying the following constraints:
+ it includes the leftmost pixel of the topmost scan line in the region
+ the size is no greater than (max_xs, max_ys)
+ the ratio of actual pixels to (waste + wasted pixels) is maximized
The last constraint may be satisfied only approximately, in the interest
of speed.
This routine is useful for decomposing a region into tiles. In general,
while (!region_empty (reg)) {
region_tile (&rec, reg, ...);
...process rec...
reg = region_minus (reg, region_from_rect (&rec));
}
*/
void region_tile (rect *dst, region *src, int max_xs, int max_ys, int waste) {
/* This implementation doesn't even try to optimize for waste. */
if (region_empty (src)) {
dst->x0 = 0;
dst->x1 = 0;
dst->y0 = 0;
dst->y1 = 0;
return;
}
dst->x0 = src->band[0]->range[0].x0;
dst->x1 = min (src->band[0]->range[0].x1, dst->x0 + max_xs);
dst->y0 = src->band[0]->y0;
dst->y1 = min (src->band[0]->y1, dst->y0 + max_ys);
}
/* Render a region into a bitmap. This is 8bpp, just to keep things simple.
(I may borrow some code from the alpha xink to render 1bpp bitmaps,
but this is only for testing, so I may not bother). */
void region_to_bitmap (region *r, byte *buf, int xs, int ys) {
int i, j;
int x, y;
band *b;
int n;
i = 0;
for (y = 0; y < ys; y++) {
if (i == r->n_bands ||
y < r->band[i]->y0 ||
y >= r->band[i]->y1) {
/* an empty scan line */
for (x = 0; x < xs; x++)
buf[y * xs + x] = 0;
} else {
/* a filled scan line */
b = r->band[i];
n = b->n_ranges;
j = 0;
while (j != n && b->range[j].x0 < 0) j++;
x = 0;
while (j != n && x < xs) {
while (x < xs && x < b->range[j].x0)
buf[y * xs + x++] = 0;
while (x < xs && x < b->range[j].x1)
buf[y * xs + x++] = 255;
j++;
}
while (x < xs)
buf[y * xs + x++] = 0;
if (y + 1 == b->y1) i++;
}
}
}
|