File: index-in.docbook

package info (click to toggle)
gtkmm-documentation 3.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 18,628 kB
  • ctags: 2,376
  • sloc: cpp: 12,615; sh: 1,004; makefile: 808; perl: 57
file content (10018 lines) | stat: -rw-r--r-- 415,855 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
<?xml version="1.0"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
  "http://docbook.org/docbook/xml/4.5/docbookx.dtd" [
  <!ENTITY url_refdocs_base_glib_html "http://developer.gnome.org/glibmm/unstable/">
  <!ENTITY url_refdocs_base_glib "&url_refdocs_base_glib_html;classGlib_1_1">
  <!ENTITY url_refdocs_base_gtk_html "http://developer.gnome.org/gtkmm/unstable/">
  <!ENTITY url_refdocs_base_gtk "&url_refdocs_base_gtk_html;classGtk_1_1">
  <!ENTITY url_refdocs_base_gtk_namespace "&url_refdocs_base_gtk_html;namespaceGtk_1_1">
  <!ENTITY url_figures_base "figures/">
  <!ENTITY url_examples_base "http://git.gnome.org/browse/gtkmm-documentation/tree/examples/book/">
  <!ENTITY url_examples_branchsuffix "master">
  <!ENTITY gtkmm "<application>gtkmm</application>">
  <!ENTITY uuml "&#252;" >
  <!ENTITY szlig "&#223;" >
  <!ENTITY verbar "&#124;" >
  <!ENTITY copy "&#169;" >
  <!ENTITY nbsp "&#160;" >
]>

<!--
NOTE TO TUTORIAL DOCUMENTATION AUTHORS:
When referring to the gtkmm project in this document, please use the form
&gtkmm; so that the name is consistent throughout the document. This will wrap
gtkmm with <application></application> tags which can then be styled by CSS if
desired (e.g. boldface, monospace, etc) to make it stand out as the project
name
-->

<!-- The XSL for developer.gnome.org requires this id. -->
<book id="index" lang="en">

  <bookinfo>

    <title>Programming with &gtkmm; 3</title>

    <authorgroup>
      <author>
        <firstname>Murray</firstname>
        <surname>Cumming</surname>
      </author>
      <author>
        <firstname>Bernhard</firstname>
        <surname>Rieder</surname>
        <contrib>Chapter on &quot;Timeouts&quot;.</contrib>
      </author>
      <author>
        <firstname>Jonathon</firstname>
        <surname>Jongsma</surname>
        <contrib>Chapter on &quot;Drawing with Cairo&quot;.</contrib>
        <contrib>Chapter on &quot;Working with gtkmm's Source Code&quot;.</contrib>
        <contrib>Chapter on &quot;Recent Files&quot;.</contrib>
      </author>
      <author>
        <firstname>Ole</firstname>
        <surname>Laursen</surname>
        <contrib>Parts of chapter on &quot;Internationalization&quot;.</contrib>
      </author>
      <author>
        <firstname>Marko</firstname>
        <surname>Anastasov</surname>
        <contrib>Chapter on &quot;Printing&quot;.</contrib>
        <contrib>Parts of chapter on &quot;Internationalization&quot;.</contrib>
      </author>
      <author>
        <firstname>Daniel</firstname>
        <surname>Elstner</surname>
        <contrib>Section &quot;Build Structure&quot; of chapter
          on &quot;Wrapping C Libraries with gmmproc&quot;.</contrib>
      </author>
      <author>
        <firstname>Chris</firstname>
        <surname>Vine</surname>
        <contrib>Chapter on &quot;Multi-threaded programs&quot;.</contrib>
      </author>
      <author>
        <firstname>David</firstname>
        <surname>King</surname>
        <contrib>Section on Gtk::Grid.</contrib>
      </author>
      <author>
        <firstname>Pedro</firstname>
        <surname>Ferreira</surname>
        <contrib>Chapter on Keyboard Events.</contrib>
      </author>
      <author>
        <firstname>Kjell</firstname>
        <surname>Ahlstedt</surname>
        <contrib>Parts of the update from gtkmm 2 to gtkmm 3.</contrib>
      </author>
    </authorgroup>

    <abstract>

      <!-- This text is copied from the introduction. -->
      <para>This book explains key concepts of the &gtkmm; C++ API for creating user interfaces. It also introduces the main user interface elements ("widgets").
      </para>

    </abstract>

    <copyright>
      <year>2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010</year>
      <holder>Murray Cumming</holder>
    </copyright>

    <legalnotice>
      <para>
        Permission is granted to copy, distribute and/or modify this document
        under the terms of the GNU Free Documentation License, Version 1.2
        or any later version published by the Free Software Foundation;
        with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
        You may obtain a copy of the GNU Free Documentation License from the Free Software Foundation by visiting their Web site or by writing to: Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
      </para>
    </legalnotice>

  </bookinfo>

<chapter id="chapter-introduction">
<title>Introduction</title>

<sect1 id="sec-this-book">
<title>This book</title>

<para>This book explains key concepts of the &gtkmm; C++ API for creating user interfaces. It also introduces the main user interface elements ("widgets"). Although it mentions classes, constructors, and methods, it does not go into great detail. Therefore, for full API information you should follow the links into the reference documentation.</para>

<para>This book assumes a good understanding of C++, and how to create C++ programs.</para>

<para>
We would very much like to hear of any problems you have learning &gtkmm;
with this document, and would appreciate input regarding improvements. Please see the <link linkend="chapter-contributing">Contributing</link> section for further information.
</para>
</sect1>

<sect1 id="sec-gtkmm">
<title>gtkmm</title>
<para>
&gtkmm; is a C++ wrapper for
<ulink url="http://www.gtk.org/">GTK+</ulink>,
a library used to create graphical user
interfaces. It is licensed using the LGPL license, so you can develop
open software, free software, or even commercial non-free software
using &gtkmm; without purchasing licenses.
</para>
<para>&gtkmm; was originally named gtk-- because GTK+ already has a + in the name. However, as -- is not easily indexed by search engines the package generally went by the name &gtkmm;, and that's what we stuck with.</para>

<sect2 id="why-use-gtkmm">
<title>Why use &gtkmm; instead of GTK+?</title>
<para>&gtkmm; allows you to write code using normal C++ techniques such as encapsulation, derivation, and polymorphism. As a C++ programmer you probably already realise that this leads to clearer and better organized code.</para>
<para>&gtkmm; is more type-safe, so the compiler can detect errors that would only be detected at run time when using C. This use of specific types also makes the API clearer because you can see what types should be used just by looking at a method's declaration.</para>
<para>Inheritance can be used to derive new widgets. The derivation of new widgets in GTK+ C code is so complicated and error prone that almost no C coders do it. As a C++ developer you know that derivation is an essential Object Orientated technique.</para>
<para>Member instances can be used, simplifying memory management. All GTK+ C widgets are dealt with by use of pointers. As a C++ coder you know that pointers should be avoided where possible.</para>
<para>&gtkmm; involves less code compared to GTK+, which uses prefixed function names and lots of cast macros.</para>
</sect2>

<sect2 id="gtkmm-vs-qt">
<title>&gtkmm; compared to Qt</title>
<para>Trolltech's Qt is the closest competition to &gtkmm;, so it deserves discussion.</para>

<para>&gtkmm; developers tend to prefer &gtkmm; to Qt because &gtkmm; does things in a more C++ way. Qt originates from a time when C++ and the standard library were not standardised or well supported by compilers. It therefore duplicates a lot of stuff that is now in the standard library, such as containers and type information. Most significantly, Trolltech modified the C++ language to provide signals, so that Qt classes cannot be used easily with non-Qt classes. &gtkmm; was able to use standard C++ to provide signals without changing the C++ language.
See the <ulink url="https://wiki.gnome.org/Projects/gtkmm/FAQ">FAQ</ulink> for more detailed differences.</para>
</sect2>

<sect2 id="gtkmm-is-a-wrapper">
<title>&gtkmm; is a wrapper</title>
<para>
&gtkmm; is not a native C++ toolkit, but a C++ wrapper of a C toolkit. This separation of interface and implementation has advantages. The &gtkmm; developers spend most of their time talking about how &gtkmm; can present the clearest API, without awkward compromises due to obscure technical details. We contribute a little to the underlying GTK+ code base, but so do the C coders, and the Perl coders and the Python coders, etc. Therefore GTK+ benefits from a broader user base than language-specific toolkits - there are more implementers, more developers, more testers, and more users.</para>
</sect2>
</sect1>

</chapter>

<chapter id="chapter-installation">
<title>Installation</title>
<sect1 id="sec-installation-dependencies">
<title>Dependencies</title>
<para>
  Before attempting to install &gtkmm; 3.0, you might first need to install these other
  packages.
</para>
<itemizedlist>
  <listitem><para><application>libsigc++ 2.0</application></para></listitem>
  <listitem><para><application>GTK+ 3.0</application></para></listitem>
  <listitem><para><application>glibmm</application></para></listitem>
  <listitem><para><application>cairomm</application></para></listitem>
  <listitem><para><application>pangomm</application></para></listitem>
  <listitem><para><application>atkmm</application></para></listitem>
</itemizedlist>
<para>
These dependencies have their own dependencies, including the following
applications and libraries:
</para>
<itemizedlist>
  <listitem><para><application>pkg-config</application></para></listitem>
  <listitem><para><application>glib</application></para></listitem>
  <listitem><para><application>ATK</application></para></listitem>
  <listitem><para><application>Pango</application></para></listitem>
  <listitem><para><application>cairo</application></para></listitem>
  <listitem><para><application>gdk-pixbuf</application></para></listitem>
</itemizedlist>
</sect1>

<sect1 id="sec-install-unix-and-linux">
<title>Unix and Linux</title>

<sect2 id="sec-linux-install-from-packages">
<title>Prebuilt Packages</title>

<para>
    Recent versions of &gtkmm; are packaged by nearly every major Linux
    distribution these days. So, if you use Linux, you can probably get
    started with &gtkmm; by installing the package from the official repository
    for your distribution. Distributions that include &gtkmm; in their
    repositories include Debian, Ubuntu, Red Hat, Fedora, Mandriva, Suse, and
    many others.
</para>
<para>
    The names of the &gtkmm; packages vary from distribution to distribution
    (e.g. <application>libgtkmm-3.0-dev</application> on Debian and Ubuntu or
    <application>gtkmm30-devel</application> on Red Hat Fedora), so check with
    your distribution's package management program for the correct package name
    and install it like you would any other package.
</para>
<note>
<para>
The package names will not change when new API/ABI-compatible versions of &gtkmm;
are released. Otherwise they would not be API/ABI-compatible. So don't be
surprised, for instance, to find &gtkmm; 3.8 supplied by Debian's
<application>libgtkmm-3.0-dev</application> package.
</para>
</note>
</sect2>

<sect2 id="sec-install-from-source">
<title>Installing From Source</title>

<para>
If your distribution does not provide a pre-built &gtkmm; package, or if you
want to install a different version than the one provided by your distribution,
you can also install &gtkmm; from source. The source code for &gtkmm; can
be downloaded from <ulink url="http://www.gtkmm.org/"></ulink>.
</para>
<para>
  After you've installed all of the dependencies, download the &gtkmm; source
  code, unpack it, and change to the newly created directory. &gtkmm; can be
  built and installed with the following sequence of commands:
</para>
<screen>
# ./configure
# make
# make install
</screen>
<note>
<para>
  Remember that on a Unix or Linux operating system, you will probably need to
  be <literal>root</literal> to install software. The <command>su</command> or <command>sudo</command>
  command will allow you to enter the <literal>root</literal> password and have
  <literal>root</literal> status temporarily.
</para>
</note>
<para>
    The <filename>configure</filename> script will check to make sure all of
    the required dependencies are already installed. If you are missing any
    dependencies, it will exit and display an error.
</para>
<para>
    By default, &gtkmm; will be installed under the
    <filename>/usr/local</filename> directory. On some systems you may need to
    install to a different location. For instance, on Red Hat Linux systems
    you might use the <literal>--prefix</literal> option with configure, like
    so:
<screen>
# ./configure --prefix=/usr
</screen>
</para>
<warning>
    <para>
        You should be very careful when installing to standard system prefixes
        such as <filename>/usr</filename>. Linux distributions install software
        packages to <filename>/usr</filename>, so installing a source package
        to this prefix could corrupt or conflict with software installed using
        your distribution's package-management system. Ideally, you should use
        a separate prefix for all software you install from source.
    </para>
</warning>
<para>
  If you want to help develop &gtkmm; or experiment with new features, you can
  also install &gtkmm; from git. Most users will never need to do this, but if
  you're interested in helping with &gtkmm; development, see the <link
    linkend="chapter-working-with-source">Working with gtkmm's Source Code</link> appendix.
</para>
</sect2>

</sect1>

<sect1 id="sec-packages-windows">
<title>Microsoft Windows</title>
<para>GTK+ and &gtkmm; were designed to work well with Microsoft Windows, and the developers encourage its use on the win32 platform. However, Windows has no standard installation system for development libraries. Please see the <ulink url="https://wiki.gnome.org/Projects/gtkmm/MSWindows">Windows Installation</ulink>
page for Windows-specific installation instructions and notes.</para>
</sect1>

</chapter>

<chapter id="chapter-basics">
<title>Basics</title>

<para>
This chapter will introduce some of the most important aspects of &gtkmm; coding. These will be demonstrated with simple working example code. However, this is just a taster, so you need to look at the other chapters for more substantial information.
</para>
<para>
Your existing knowledge of C++ will help you with &gtkmm; as it would with any library. Unless we state otherwise, you can expect &gtkmm; classes to behave like any other C++ class, and you can expect to use your existing C++ techniques with &gtkmm; classes.
</para>

<sect1 id="sec-basics-simple-example">
<title>Simple Example</title>

<para>
To begin our introduction to &gtkmm;, we'll start with the simplest
program possible. This program will create an empty 200 x 200 pixel window.
</para>

<para><ulink url="&url_examples_base;base">Source Code</ulink></para>

<para>We will now explain each line of the example</para>
<programlisting>#include &lt;gtkmm.h&gt;</programlisting>
<para>
All &gtkmm; programs must include certain &gtkmm; headers; <literal>gtkmm.h</literal>
includes the entire &gtkmm; kit. This is usually not a good idea, because
it includes a megabyte or so of headers, but for simple programs, it
suffices.
</para>

<para>
The next statement:

<programlisting>Glib::RefPtr&lt;Gtk::Application&gt; app = Gtk::Application::create(argc, argv, "org.gtkmm.examples.base");</programlisting>

creates a <classname>Gtk::Application</classname> object, stored in a <classname>RefPtr</classname> smartpointer. This is needed in all &gtkmm;
applications. The <methodname>create()</methodname> method for this object initializes &gtkmm;, and checks the
arguments passed to your application on the command line, looking for
standard options such as <literal>--display</literal>. It takes these from the argument list, leaving anything it does not
recognize for your application to parse or ignore. This ensures
that all &gtkmm; applications accept the same set of standard arguments.
</para>

<para>
The next two lines of code create a window and set its default (initial) size:
</para>
<programlisting>Gtk::Window window;
window.set_default_size(200, 200);</programlisting>
<para>
The last line shows the window and enters the &gtkmm; main processing loop, which will finish when the window is closed.
Your <function>main()</function> function will then return with an appropriate success or error code.
</para>

<programlisting>return app->run(window);</programlisting>

<para>
After putting the source code in <literal>simple.cc</literal> you can compile
the above program with <application>gcc</application> using:
<programlisting>g++ simple.cc -o simple `pkg-config gtkmm-3.0 --cflags --libs`</programlisting>
Note that you must surround the <literal>pkg-config</literal> invocation with backquotes.
Backquotes cause the shell to execute the command inside them, and to use
the command's output as part of the command line.
Note also that <literal>simple.cc</literal> must come before the <literal>pkg-config</literal>
invocation on the command line.
</para>
</sect1>

<sect1 id="sec-headers-and-linking">
<title>Headers and Linking</title>
<para>
Although we have shown the compilation command for the simple example, you really should use the automake and autoconf tools, as described in "Autoconf, Automake, Libtool", by G. V. Vaughan et al. The examples used in this book are included in the <application>gtkmm-documentation</application> package, with appropriate build files, so we won't show the build commands in future. You'll just need to find the appropriate directory and type <literal>make</literal>.
</para>
<para>
To simplify compilation, we use <literal>pkg-config</literal>, which
is present in all (properly installed) &gtkmm; installations. This
program 'knows' what compiler switches are needed to compile programs
that use &gtkmm;. The <literal>--cflags</literal> option causes
<literal>pkg-config</literal> to output a list of include directories for the
compiler to look in; the <literal>--libs</literal> option requests the
list of libraries for the compiler to link with and the directories to
find them in. Try running it from your shell-prompt to see the results on your system.
</para>
<para>
However, this is even simpler when using the <function>PKG_CHECK_MODULES()</function> macro in a standard configure.ac file with autoconf and automake.
For instance:
<programlisting>PKG_CHECK_MODULES([MYAPP], [gtkmm-3.0 >= 3.8.0])</programlisting>
This checks for the presence of gtkmm and defines MYAPP_LIBS and MYAPP_CFLAGS for use in your Makefile.am files.
</para>
<para>gtkmm-3.0 is the name of the current stable API. There was an older API called gtkmm-2-4 which installs in parallel when it is available. There were several versions of gtkmm-2.4, such as gtkmm 2.10 and there are several versions of the gtkmm-3.0 API. Note that the API name does not change for every version because that would be an incompatible API and ABI break. Theoretically, there might be a future gtkmm-4.0 API which would install in parallel with gtkmm-3.0 without affecting existing applications.
</para>

<para>Note that if you mention extra modules in addition to gtkmm-3.0, they should be separated by spaces, not commas.
</para>
<para>
Openismus has more <ulink url="http://www.openismus.com/documents/linux/automake/automake.shtml">basic help with automake and autoconf</ulink>.
</para>

</sect1>

<sect1 id="sec-widgets-overview">
<title>Widgets</title>
<para>&gtkmm; applications consist of windows containing widgets, such as buttons and text boxes. In some other systems, widgets are called "controls". For each widget in your application's windows, there is a C++ object in your application's code. So you just need to call a method of the widget's class to affect the visible widget.</para>
 <para>Widgets are arranged inside container widgets such as frames and notebooks, in a hierarchy of widgets within widgets. Some of these container widgets, such as <classname>Gtk::Grid</classname>, are not visible - they exist only to arrange other widgets. Here is some example code that adds 2 <classname>Gtk::Button</classname> widgets to a <classname>Gtk::Box</classname> container widget:
<programlisting>m_box.pack_start(m_Button1);
m_box.pack_start(m_Button2);</programlisting>
and here is how to add the <classname>Gtk::Box</classname>, containing those buttons, to a <classname>Gtk::Frame</classname>, which has a visible frame and title:
<programlisting>m_frame.add(m_box);</programlisting>
</para>
<para>
Most of the chapters in this book deal with specific widgets. See the <link linkend="chapter-container-widgets">Container Widgets</link> section for more details about adding widgets to container widgets.
</para>

<para>Although you can specify the layout and appearance of windows and widgets with C++ code, you will probably find it more convenient to design your user interfaces with <literal>Glade</literal> and load them at runtime with <literal>Gtk::Builder</literal>. See the <link linkend="chapter-builder">Glade and Gtk::Builder</link> chapter.
</para>

<para>Although &gtkmm; widget instances have lifetimes and scopes just like those of other C++ classes, &gtkmm; has an optional time-saving feature that you will see in some of the examples. <function>Gtk::manage()</function> allows you to say that a child widget is owned by the container into which you place it. This allows you to <function>new</function> the widget, add it to the container and forget about deleting it. You can learn more about &gtkmm; memory management techniques in the <link linkend="chapter-memory">Memory Management chapter</link>.
</para>

</sect1>

<sect1 id="sec-signals-overview">
<title>Signals</title>

<para>
&gtkmm;, like most GUI toolkits, is <emphasis>event-driven</emphasis>. When an event occurs, such as the press of a mouse
button, the appropriate signal will be <emphasis>emitted</emphasis> by the Widget
that was pressed. Each Widget has a different set of signals that it can emit. To make a
button click result in an action, we set up a
<emphasis>signal handler</emphasis> to catch the button's "clicked" signal.
</para>
<para>&gtkmm; uses the libsigc++ library to implement signals. Here is an example line of code that connects a Gtk::Button's "clicked" signal with a signal handler called "on_button_clicked":
<programlisting>m_button1.signal_clicked().connect( sigc::mem_fun(*this,
  &amp;HelloWorld::on_button_clicked) );</programlisting>
</para>

<para>For more detailed information about signals, see the <link linkend="chapter-signals">appendix</link>.</para>
<para>For information about implementing your own signals rather than
just connecting to the existing &gtkmm; signals, see the <link linkend="chapter-custom-signals">appendix</link>.</para>

</sect1>

<sect1 id="sec-basics-ustring">
<title>Glib::ustring</title>
<para>You might be surprised to learn that &gtkmm; doesn't use <classname>std::string</classname> in its interfaces. Instead it uses <classname>Glib::ustring</classname>, which is so similar and unobtrusive that you could actually pretend that each <classname>Glib::ustring</classname> is a <classname>std::string</classname> and ignore the rest of this section. But read on if you want to use languages other than English in your application.</para>
<para>std::string uses 8 bit per character, but 8 bits aren't enough to encode languages such as Arabic, Chinese, and Japanese. Although the encodings for these languages have now been specified by the Unicode Consortium, the C and C++ languages do not yet provide any standardised Unicode support. GTK+ and GNOME chose to implement Unicode using UTF-8, and that's what is wrapped by Glib::ustring. It provides almost exactly the same interface as std::string, along with automatic conversions to and from std::string.</para>
<para>One of the benefits of UTF-8 is that you don't need to use it unless you want to, so you don't need to retrofit all of your code at once. <classname>std::string</classname> will still work for 7-bit ASCII strings. But when you try to localize your application for languages like Chinese, for instance, you will start to see strange errors, and possible crashes. Then all you need to do is start using <classname>Glib::ustring</classname> instead.</para>
<para>Note that UTF-8 isn't compatible with 8-bit encodings like ISO-8859-1. For instance, German umlauts are not in the ASCII range and need more than 1 byte in the UTF-8 encoding. If your code contains 8-bit string literals, you have to convert them to UTF-8 (e.g. the Bavarian greeting "Gr&uuml;&szlig; Gott" would be "Gr\xC3\xBC\xC3\x9F Gott").</para>
<para>You should avoid C-style pointer arithmetic, and functions such as strlen(). In UTF-8, each character might need anywhere from 1 to 6 bytes, so it's not possible to assume that the next byte is another character. <classname>Glib::ustring</classname> worries about the details of this for you so you can use methods such as Glib::ustring::substr() while still thinking in terms of characters instead of bytes.</para>

<para>Unlike the Windows UCS-2 Unicode solution, this does not require any special compiler options to process string literals, and it does not result in Unicode executables and libraries which are incompatible with ASCII ones.</para>

<para><ulink url="&url_refdocs_base_glib;ustring.html">Reference</ulink></para>

<para>See the <link linkend="chapter-internationalization">Internationalization</link> section for information about providing the UTF-8 string literals.</para>

</sect1>

<sect1 id="sec-intermediate-types">
<title>Intermediate types</title>
<para>Some API related to gtkmm uses intermediate data containers, such as <classname>Glib::StringArrayHandle</classname>, instead of a specific Standard C++ container such as <classname>std::vector</classname> or <classname>std::list</classname>, though &gtkmm; itself now uses just <classname>std::vector</classname> since &gtkmm; 3.0.</para>
<para>You should not declare these types yourself. You should instead use whatever Standard C++ container you prefer. glibmm will do the conversion for you. Here are some of these intermediate types:
<itemizedlist>
    <listitem><para><classname>Glib::StringArrayHandle</classname> or <classname>Glib::ArrayHandle&lt;Glib::ustring&gt;</classname>: Use <classname>std::vector&lt;Glib::ustring&gt;</classname>, <classname>std::list&lt;Glib::ustring&gt;</classname>, <type>const char*[]</type>, etc.</para></listitem>
    <listitem><para><classname>Glib::ListHandle&lt;Gtk::Widget*&gt;</classname>: Use <classname>std::vector&lt;Gtk::Widget*&gt;</classname>, <classname>std::list&lt;Gtk::Widget*&gt;</classname>, etc.</para></listitem>
    <listitem><para><classname>Glib::SListHandle&lt;Gtk::Widget*&gt;</classname>: Use <classname>std::vector&lt;Gtk::Widget*&gt;</classname>, <classname>std::list&lt;Gtk::Widget*&gt;</classname>, etc.</para></listitem>
</itemizedlist>

</para>

</sect1>

<sect1 id="sec-basics-gobj-and-wrap">
<title>Mixing C and C++ APIs</title>
<para>You can use C APIs which do not yet have convenient C++ interfaces. It is generally not a problem to use C APIs from C++, and &gtkmm; helps by providing access to the underlying C object, and providing an easy way to create a C++ wrapper object from a C object, provided that the C API is also based on the GObject system.</para>

<para>To use a &gtkmm; instance with a C function that requires a C GObject instance, use the <function>gobj()</function> function to obtain a pointer to the underlying GObject instance. For instance</para>

<para>
<programlisting>
Gtk::Button* button = new Gtk::Button("example");
gtk_button_do_something_new(button-&gt;gobj());
</programlisting>
</para>

<para>To obtain a &gtkmm; instance from a C GObject instance, use the Glib::wrap() function. For instance</para>
<para>
<programlisting>
GtkButton* cbutton = get_a_button();
Gtk::Button* button = Glib::wrap(cbutton);
</programlisting>
</para>
</sect1>

<sect1 id="sec-helloworld">
<title>Hello World in &gtkmm;</title>

<para>
We've now learned enough to look at a real example. In accordance with an ancient
tradition of computer science, we now introduce Hello World, a la &gtkmm;:
</para>

<para><ulink url="&url_examples_base;helloworld">Source Code</ulink></para>

<para>
Try to compile and run it before going on. You should see something like this:
</para>

<figure id="figure-helloworld">
  <title>Hello World</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;helloworld.png"/>
  </screenshot>
</figure>

<para>
Pretty thrilling, eh?  Let's examine the code. First, the
<classname>HelloWorld</classname> class:
</para>

<programlisting>class HelloWorld : public Gtk::Window
{

public:
  HelloWorld();
  virtual ~HelloWorld();

protected:
  //Signal handlers:
  virtual void on_button_clicked();

  //Member widgets:
  Gtk::Button m_button;
};</programlisting>

<para>
This class implements the "Hello World" window. It's derived from
<classname>Gtk::Window</classname>, and has a single <classname>Gtk::Button</classname> as a member.
We've chosen to use the
constructor to do all of the initialisation work for the window,
including setting up the signals. Here it is, with the comments
omitted:
</para>

<programlisting>HelloWorld::HelloWorld()
:
  m_button ("Hello World")
{
  set_border_width(10);
  m_button.signal_clicked().connect(sigc::mem_fun(*this,
    &amp;HelloWorld::on_button_clicked));
  add(m_button);.
  m_button.show();
}</programlisting>

<para>
Notice that we've used an initialiser statement to give the <literal>m_button</literal>
object the label &quot;Hello World&quot;.
</para>

<para>
Next we call the Window's <methodname>set_border_width()</methodname> method. This sets
the amount of space between the sides of the window and the widget it
contains.
</para>

<para>
We then hook up a signal handler to <literal>m_button</literal>'s <literal>clicked</literal> signal.
This prints our friendly greeting to <literal>stdout</literal>.
</para>

<para>
Next, we use the Window's <methodname>add()</methodname> method to put <literal>m_button</literal> in
the Window. (<methodname>add()</methodname> comes from <classname>Gtk::Container</classname>, which is
described in the chapter on container widgets.)  The <methodname>add()</methodname> method
places the Widget in the Window, but it doesn't display
the widget. &gtkmm; widgets are always invisible when you create them - to display them, you must call their <methodname>show()</methodname> method, which
is what we do in the next line.
</para>


<para>
Now let's look at our program's <function>main()</function> function. Here it is,
without comments:
</para>

<programlisting>int main(int argc, char** argv)
{
  Glib::RefPtr&lt;Gtk::Application&gt; app = Gtk::Application::create(argc, argv, "org.gtkmm.example");

  HelloWorld helloworld;
  return app-&gt;run(helloworld);
}</programlisting>

<para>
First we instantiate an object stored in a <classname>RefPtr</classname> smartpointer called <literal>app</literal>. This is of type
<classname>Gtk::Application</classname>. Every &gtkmm; program must have one of these. We pass
our command-line arguments to its create() method. It takes the arguments
it wants, and leaves you the rest, as we described earlier.
</para>

<para>
Next we make an object of our <classname>HelloWorld</classname> class, whose constructor
takes no arguments, but it isn't visible yet. When we call <methodname>Gtk::Application::run()</methodname>, giving it the helloworld Window, it shows the Window and starts the &gtkmm; <emphasis>event loop</emphasis>. During the event loop &gtkmm; idles, waiting for actions from the user, and responding appropriately. When the user closes the Window, run() will return, causing the final line of our main() function be to executed. The application will then finish.
</para>

</sect1>
</chapter>

<chapter id="changes-gtkmm3">
<title>Changes in &gtkmm; 3</title>

<para>&gtkmm;-3.0 is a new version of the &gtkmm; API that installs in parallel with the older &gtkmm;-2.4 API. The last version of the &gtkmm;-2.4 API was &gtkmm; 2.24. &gtkmm; 3 has no major fundamental differences to &gtkmm; 2 but does make several small changes that were not possible while maintaining binary compatibility. If you never used the &gtkmm;-2.4 API then you can safely ignore this chapter.</para>

<para>&gtkmm; 3's library is called <literal>libgtkmm-3.0</literal> rather than <literal>libgtkmm-2.4</literal> and installs its headers in a similarly-versioned directory, so your pkg-config check should ask for <literal>gtkmm-3.0</literal>  rather than <literal>gtkmm-2.4</literal>.</para>


<para>&gtkmm; 3 added some new classes:</para>

<orderedlist>
<listitem><simpara><classname>Gtk::AppChooser</classname>, <classname>Gtk::AppChooserButton</classname>, <classname>Gtk::AppChooserDialog</classname> allow the user to select an installed application to open a particular type of content.</simpara></listitem>
<listitem><simpara><classname>Gtk::Grid</classname> is a new container widget that will eventually replace <classname>Gtk::Box</classname> and <classname>Gtk::Table</classname>. It arranges its children according to properties of those children rather than its own layout details.</simpara></listitem>
<listitem><simpara><classname>Gtk::Switch</classname> displays On/Off states more explictly than <classname>Gtk::CheckBox</classname>. It may be useful, for instance, when allowing users to activate hardware.</simpara></listitem>
</orderedlist>

<para>&gtkmm; 3 also made several small changes to the API, which you will probably encounter when porting code that used &gtkmm;-2.4. Here is a short list:</para>

<para>
<orderedlist>

<listitem><simpara><classname>Gtk::CellLayout</classname>, used by <classname>Gtk::IconView</classname>, <classname>Gtk::TreeView::Column</classname> and <classname>Gtk::ComboBox</classname>, now has a <classname>Gtk::CellArea</classname> which can be used to specify more details of how the <classname>CellRenderer</classname>s are arranged and aligned.</simpara></listitem>

<listitem><simpara>Gtk::ComboBox now derives from CellLayout, allowing easier layout and alignment of its <classname>Gtk::CellRenderer</classname>s.</simpara></listitem>

<listitem><simpara><classname>Gtk::Adjustment</classname> and <classname>IconSet</classname> and <classname>Gdk::Cursor</classname> are now used via <classname>Glib::RefPtr</classname>.</simpara></listitem>

<listitem><simpara><classname>Gtk::Box</classname>, <classname>Gtk::ButtonBox</classname>, <classname>Gtk::IconView</classname>, <classname>Gtk::Paned</classname>, <classname>Gtk::ProgressBar</classname>, <classname>Gtk::ScaleButton</classname>, <classname>Gtk::Scrollbar</classname> and <classname>Gtk::Separator</classname> now derive from <classname>Gtk::Orientable</classname>, allowing their
orientation (vertical or horizontal) to be specified without requiring the use of a derived class such as <classname>Gtk::HBox</classname>.</simpara></listitem>

<listitem><simpara><classname>Gtk::IconView</classname>, <classname>Gtk::TextView</classname>, <classname>Gtk::TreeView</classname> and other widgets derive from Scrollable instead of having their own methods such as <methodname>get_vadjustment()</methodname> and instead of having their own set_scroll_adjustments signal.</simpara></listitem>

<listitem><simpara><classname>Gtk::Style</classname> and <classname>Gtk::Rc</classname> were removed, replaced by <classname>Gtk::StyleContext</classname>, and <classname>Gtk::StyleProvider</classname>s, such as <classname>Gtk::CssProvider</classname>.</simpara></listitem>

<listitem><simpara>Widget::on_expose_event() was replaced by Widget::on_draw(), which assumes that cairomm is used for drawing, via the provided <classname>Cairo::Context</classname> and does not require you to call <methodname>Cairo::Context::clip()</methodname>.</simpara></listitem>

<listitem><simpara><classname>Gdk::RGBA</classname> replaces <classname>Color</classname>, adding an alpha component for opacity. <classname>Colormap</classname> was removed, along with its awkward use to allocate colors.</simpara></listitem>

<listitem><simpara><classname>Gdk::Pixmap</classname> and <classname>Gdk::Bitmap</classname> were removed in favour of <classname>Gdk::Pixbuf</classname>.</simpara></listitem>

<listitem><simpara><classname>Gdk::Drawable</classname> was removed, with its methods moving into <classname>Gdk::Window</classname>.</simpara></listitem>

<listitem><simpara>We now use std::vector in several methods instead of the intermediate *Handle types to make the API clearer.</simpara></listitem>

</orderedlist>
</para>

<para>All deprecated API was removed in &gtkmm; 3.0, though there will be new deprecations in future versions.</para>

<para>As a first step to porting your source code to &gtkmm;-3.0 you should probably ensure that your application builds with the deprecated &gtkmm;-2.4 API disabled, by defining macro such as GTKMM_DISABLE_DEPRECATED. There are some autotools macros that can help with this by defining them optionally at build time. See the <ulink url="https://wiki.gnome.org/Projects/gtkmm/PortingToGtkmm3">gtkmm 3 porting wiki page</ulink> for more details.</para>

</chapter>

<chapter id="chapter-button-widget">
<title>Buttons</title>

<para>
&gtkmm; provides four basic types of buttons:
</para>

<variablelist>

<varlistentry>
<term>Push-Buttons</term>
<listitem>
<para>
<ulink url="&url_refdocs_base_gtk;Button.html"><classname>Gtk::Button</classname></ulink>. Standard buttons, usually
marked with a label or picture. Pushing one triggers an action. See the <link linkend="sec-pushbuttons">Button</link> section.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Toggle buttons</term>
<listitem>
<para>
<ulink url="&url_refdocs_base_gtk;ToggleButton.html"><classname>Gtk::ToggleButton</classname></ulink>.
Unlike a normal Button, which springs back up, a ToggleButton stays down until you
press it again. It might be useful as an on/off switch. See the <link linkend="sec-toggle-buttons">ToggleButton</link> section.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Checkboxes</term>
<listitem>
<para>
<ulink url="&url_refdocs_base_gtk;CheckButton.html"><classname>Gtk::CheckButton</classname></ulink>.
These act like ToggleButtons, but show their state in small squares,
with their label at the side. They should be used in most situations
which require an on/off setting.
See the <link linkend="sec-checkboxes">CheckButton</link> section.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Radio buttons</term>
<listitem>
<para>
<ulink url="&url_refdocs_base_gtk;RadioButton.html"><classname>Gtk::RadioButton</classname></ulink>.
Named after the station selectors on old car
radios, these buttons are used in groups for options which are
mutually exclusive. Pressing one causes all the
others in its group to turn off. They are similar to
CheckBoxes (a small widget with a label at the side), but usually
look different.
See the <link linkend="sec-radio-buttons">RadioButton</link> section.
</para>
</listitem>
</varlistentry>
</variablelist>

<para>
Note that, due to GTK+'s theming system, the appearance of these
widgets will vary. In the case of checkboxes and radio buttons, they
may vary considerably.
</para>

<sect1 id="sec-pushbuttons">
<title>Button</title>

<sect2 id="pushbutton-constructors"><title>Constructors</title>

<para>
There are two ways to create a Button. You can specify a label
string in the <classname>Gtk::Button</classname> constructor,
or set it later with <methodname>set_label()</methodname>.
</para>

<para>To define an accelerator key for keyboard navigation, place an underscore before one of the label's characters and specify <literal>true</literal> for the optional <literal>mnemonic</literal> parameter. For instance:
</para>
<programlisting>Gtk::Button* pButton = new Gtk::Button("_Something", true);</programlisting>

<para>
Stock items have been recommended for use in buttons. From &gtkmm;-3.10 they are deprecated.
They should not be used in newly-written code. However, the documentation of
<ulink url="&url_refdocs_base_gtk_namespace;Stock.html">namespace Gtk::Stock</ulink>
shows recommended labels and named icons to show in buttons.
</para>

<para>
<classname>Gtk::Button</classname> is also
a container so you could put any other widget, such as a
<classname>Gtk::Image</classname> into it.
</para>

<para><ulink url="&url_refdocs_base_gtk;Button.html">Reference</ulink></para>
</sect2>

<sect2 id="pushbutton-example"><title>Example</title>

<para>
This example creates a button with a picture and a label.
</para>

<figure id="figure-buttons">
  <title>buttons example</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;buttons.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;buttons/button">Source Code</ulink></para>

</sect2>

<sect2 id="pushbutton-signals"><title>Signals</title>

<para>
The <classname>Gtk::Button</classname> widget has the following signals, but most of the time you will just handle the <literal>clicked</literal> signal:
</para>

<para>
<variablelist>

<varlistentry>
<term><literal>pressed</literal></term>
<listitem>
<para>
Emitted when the button is pressed.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>released</literal></term>
<listitem>
<para>
Emitted when the button is released.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>clicked</literal></term>
<listitem>
<para>
Emitted when the button is pressed and released.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>enter</literal></term>
<listitem>
<para>
Emitted when the mouse pointer moves over the button's window.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>leave</literal></term>
<listitem>
<para>
Emitted when the mouse pointer leaves the button's window.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>

</sect2>
</sect1>

<sect1 id="sec-toggle-buttons">
<title>ToggleButton</title>

<para><classname>ToggleButton</classname>s are like normal <classname>Button</classname>s, but when clicked they remain activated, or pressed,  until clicked again.</para>

<para>
To retrieve the state of the <classname>ToggleButton</classname>, you can use the
<methodname>get_active()</methodname> method. This returns <literal>true</literal> if the button
is "down". You can also set the toggle button's state, with <methodname>set_active()</methodname>. Note that, if you do this, and the state actually changes, it causes the
"clicked" signal to be emitted. This is usually what you want.
</para>

<para>
You can use the <methodname>toggled()</methodname> method to toggle the button, rather than
forcing it to be up or down: This switches the button's state, and causes the <literal>toggled</literal> signal to be emitted.
</para>

<para>
<classname>Gtk::ToggleButton</classname> is most useful as a base class for the
<classname>Gtk::CheckButton</classname> and
<classname>Gtk::RadioButton</classname> classes.
</para>

<para><ulink url="&url_refdocs_base_gtk;ToggleButton.html">Reference</ulink></para>

</sect1>

<sect1 id="sec-checkboxes">
<title>CheckButton</title>

<para>
<classname>Gtk::CheckButton</classname> inherits from
<classname>Gtk::ToggleButton</classname>. The only real difference between the
two is <classname>Gtk::CheckButton</classname>'s
appearance. You can check, set, and toggle a checkbox using the same
member methods as for <classname>Gtk::ToggleButton</classname>.
</para>

<para><ulink url="&url_refdocs_base_gtk;CheckButton.html">Reference</ulink></para>

<sect2 id="checkbutton-example"><title>Example</title>

<figure id="figure-checkbutton">
  <title>CheckButton</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;checkbutton.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;buttons/checkbutton">Source Code</ulink></para>
</sect2>

</sect1>

<sect1 id="sec-radio-buttons">
<title>RadioButton</title>

<para>
Like checkboxes, radio buttons also inherit from
<classname>Gtk::ToggleButton</classname>, but these work in groups, and only
one RadioButton in a group can be selected at any one time.
</para>

<sect2 id="radiobutton-groups"><title>Groups</title>
<para>
There are two ways to set up a group of radio buttons. The first way
is to create the buttons, and set up their groups afterwards. Only
the first two constructors are used. In the following example, we
make a new window class called <classname>RadioButtons</classname>, and then
put three radio buttons in it:
</para>

<programlisting>class RadioButtons : public Gtk::Window
{
public:
    RadioButtons();

protected:
    Gtk::RadioButton m_rb1, m_rb2, m_rb3;
};

RadioButtons::RadioButtons()
  : m_rb1("button1"),
    m_rb2("button2"),
    m_rb3("button3")
{
    Gtk::RadioButton::Group group = m_rb1.get_group();
    m_rb2.set_group(group);
    m_rb3.set_group(group);
}</programlisting>
<para>
We told &gtkmm; to put all three <classname>RadioButton</classname>s in the
same group by obtaining the group with <methodname>get_group()</methodname> and using
<methodname>set_group()</methodname> to tell the other
<classname>RadioButton</classname>s to share that group.
</para>

<para>
Note that you can't just do
<programlisting>m_rb2.set_group(m_rb1.get_group()); //doesn't work</programlisting>
because the group is modified by <methodname>set_group()</methodname> and therefore
non-const.
</para>


<para>
The second way to set up radio buttons is to make a group first, and
then add radio buttons to it. Here's an example:
</para>
<programlisting>class RadioButtons : public Gtk::Window
{
public:
    RadioButtons();
};

RadioButtons::RadioButtons()
{
    Gtk::RadioButton::Group group;
    Gtk::RadioButton *m_rb1 = Gtk::manage(
      new Gtk::RadioButton(group,"button1"));
    Gtk::RadioButton *m_rb2 = manage(
      new Gtk::RadioButton(group,"button2"));
      Gtk::RadioButton *m_rb3 = manage(
        new Gtk::RadioButton(group,"button3"));
}</programlisting>

<para>
We made a new group by simply declaring a variable, <literal>group</literal>,
of type <classname>Gtk::RadioButton::Group</classname>. Then we made three radio
buttons, using a constructor to make each of them part of
<literal>group</literal>.
</para>
</sect2>

<sect2 id="radiobutton-methods"><title>Methods</title>
<para>
<classname>RadioButtons</classname> are "off" when created; this means that
when you first make a group of them, they will all be off. Don't forget to turn
one of them on using <methodname>set_active()</methodname>:
</para>

<para><ulink url="&url_refdocs_base_gtk;RadioButton.html">Reference</ulink></para>

</sect2>

<sect2 id="radiobutton-example"><title>Example</title>
<para>
The following example demonstrates the use of
<classname>RadioButton</classname>s:
</para>

<figure id="figure-radiobutton">
  <title>RadioButton</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;radiobuttons.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;buttons/radiobutton">Source Code</ulink></para>

</sect2>

</sect1>

</chapter>


<chapter id="chapter-range-widgets">
<title>Range Widgets</title>

<para>
<classname>Gtk::Scale</classname> and <classname>Gtk::Scrollbar</classname>
both inherit from <classname>Gtk::Range</classname> and share much
functionality. They contain a "trough" and a "slider" (sometimes called a
"thumbwheel" in other GUI environments). Dragging the slider with the pointer
moves it within the trough, while clicking in the trough advances the slider
towards the location of the click, either completely, or by a designated
amount, depending on which mouse button is used. This should be familiar
scrollbar behaviour.
</para>

<para>
As will be explained in the <link linkend="chapter-adjustment">Adjustment</link>
section, all Range widgets are associated with a
<classname>Adjustment</classname> object. To change the lower, upper, and
current values used by the widget you need to use the methods of its
<classname>Adjustment</classname>, which you can get with the
<methodname>get_adjustment()</methodname> method. The <classname>Range</classname>
widgets' default constructors create an <classname>Adjustment</classname>
automatically, or you can specify an existing
<classname>Adjustment</classname>, maybe to share it with another widget. See
the <link linkend="chapter-adjustment">Adjustments</link> section for further
details.
</para>

<para><ulink url="&url_refdocs_base_gtk;Range.html">Reference</ulink></para>

<sect1 id="sec-scrollbar-widgets">
<title>Scrollbar Widgets</title>

<para>
These are standard scrollbars. They should be used only to scroll another
widget, such as, a <classname>Gtk::Entry</classname>, or a
<classname>Gtk::Viewport</classname>, though it's usually easier to use the
<classname>Gtk::ScrolledWindow</classname> widget in most cases.
</para>

<para>
The orientation of a <classname>Gtk::Scrollbar</classname> can be either
horizontal or vertical.
</para>

<para><ulink url="&url_refdocs_base_gtk;Scrollbar.html">Reference</ulink></para>

</sect1>

<sect1 id="sec-scale-widgets">
<title>Scale Widgets</title>

<para>
<classname>Gtk::Scale</classname> widgets (or "sliders") allow the user to
visually select and manipulate a value within a specific range. You
might use one, for instance, to adjust the
magnification level on a zoomed preview of a picture, or to control
the brightness of a colour, or to specify the number of minutes of
inactivity before a screensaver takes over the screen.
</para>

<para>
As with <classname>Scrollbar</classname>s, the orientation can be either
horizontal or vertical. The default constructor creates an
<classname>Adjustment</classname> with all of its values set to
<literal>0.0</literal>. This isn't useful so you will need to set some
<classname>Adjustment</classname> details to get meaningful behaviour.
</para>

<sect2 id="scale-useful-methods">
<title>Useful methods</title>

<para>
<classname>Scale</classname> widgets can display their current value as a number
next to the trough. By default they show the value, but you can change this
with the <methodname>set_draw_value()</methodname> method.
</para>

<para>
The value displayed by a scale widget is rounded to one decimal point
by default, as is the <literal>value</literal> field in its
<classname>Gtk::Adjustment</classname>. You can change this with the
<methodname>set_digits()</methodname> method.
</para>

<para>
Also, the value can be drawn in different positions relative to the trough,
specified by the <methodname>set_value_pos()</methodname> method.
</para>

<para><ulink url="&url_refdocs_base_gtk;Scale.html">Reference</ulink></para>

</sect2>
</sect1>

<sect1 id="sec-range-example">
<title>Example</title>

<para>
This example displays a window with three range widgets all connected
to the same adjustment, along with a couple of controls for adjusting
some of the parameters mentioned above and in the section on
adjustments, so you can see how they affect the way these widgets work
for the user.
</para>

<figure id="figure-range-widgets">
  <title>Range Widgets</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;range_widgets.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;range_widgets">Source Code</ulink></para>

</sect1>

</chapter>

<chapter id="chapter-misc-widgets">
<title>Miscellaneous Widgets</title>

<sect1 id="sec-labels">
<title>Label</title>

<para>
Labels are the  main method of placing non-editable text in windows, for
instance to place a title next to a <classname>Entry</classname> widget. You
can specify the text in the constructor, or later with the
<methodname>set_text()</methodname> or <methodname>set_markup()</methodname> methods.
</para>

<para>
The width of the label will be adjusted automatically. You can produce multi-line labels by putting line breaks ("\n") in the label string.
</para>

<para>
The label text can be justified using the <methodname>set_justify()</methodname>
method. The widget is also capable of word-wrapping, which can be activated
with <methodname>set_line_wrap()</methodname>.
</para>

<para>
Gtk::Label support some simple formatting, for instance allowing you to make some
text bold, colored, or larger. You can do this by providing a string to
<methodname>set_markup()</methodname>, using the <ulink url="http://developer.gnome.org/pango/unstable/PangoMarkupFormat.html">Pango Markup syntax</ulink>. For instance,
<code>
&lt;b&gt;bold text&lt;/b&gt; and &lt;s&gt;strikethrough text&lt;/s&gt;
</code>
.</para>

<para><ulink url="&url_refdocs_base_gtk;Label.html">Reference</ulink></para>

<sect2 id="label-example"><title>Example</title>
<para>
Below is a short example to illustrate these functions. This example
makes use of the Frame widget to better demonstrate the label styles.
 (The Frame widget is explained in the <link linkend="sec-frame">Frame</link> section.)
It is possible that the first character in <literal>m_Label_Normal</literal> is shown
underlined only when you press the <keycap>Alt</keycap> key.
</para>

<figure id="figure-label">
  <title>Label</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;label.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;label">Source Code</ulink></para>

</sect2>

</sect1>

<sect1 id="sec-text-entry">
<title>Entry</title>

<sect2 id="sec-text-entry-simple">
<title>Simple Use</title>

<para>
Entry widgets allow the user to enter text. You can change the contents with the <methodname>set_text()</methodname> method,
and read the current contents with the <methodname>get_text()</methodname> method.
</para>

<para>
Occasionally you might want to make an <classname>Entry</classname> widget
read-only. This can be done by passing <literal>false</literal> to the
<methodname>set_editable()</methodname> method.
</para>

<para>
For the input of passwords, passphrases and other information you don't want
echoed on the screen, calling <methodname>set_visibility()</methodname> with
<literal>false</literal> will cause the text to be hidden.
</para>

<para>
You might want to be notified whenever the user types in a text entry widget.
<classname>Gtk::Entry</classname> provides two signals,
<literal>activate</literal> and <literal>changed</literal>, for this purpose.
<literal>activate</literal> is emitted when the user presses the Enter key in
a text-entry widget; <literal>changed</literal> is emitted when the text in
the widget changes. You can use these, for instance, to validate or filter
the text the user types. Moving the keyboard focus to another widget may also
signal that the user has finished entering text. The <literal>focus_out_event</literal>
signal that <classname>Gtk::Entry</classname> inherits from
<classname>Gtk::Widget</classname> can notify you when that happens.
The <link linkend="sec-comboboxentry">ComboBox with an Entry</link> section
contains example programs that use these signals.
</para>

<para>
If you pass <literal>true</literal> to the <methodname>set_activates_default()</methodname>
method, pressing Enter in the <classname>Gtk::Entry</classname> will activate
the default widget for the window containing the <classname>Gtk::Entry</classname>.
This is especially useful in dialog boxes. The default widget is usually one of
the dialog buttons, which e.g. will close the dialog box. To set a widget as the
default widget, use <methodname>Gtk::Widget::set_can_default()</methodname> and
<methodname>Gtk::Widget::grab_default()</methodname>.
</para>

<para><ulink url="&url_refdocs_base_gtk;Entry.html">Reference</ulink></para>

<sect3 id="entry-example"><title>Simple Entry Example</title>
<para>
This example uses <classname>Gtk::Entry</classname>. It also has two
<classname>CheckButton</classname>s, with which you can toggle the editable and
visible flags.
</para>

<figure id="figure-entry-simple">
  <title>Entry</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;entry.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;entry/simple">Source Code</ulink></para>

</sect3>

</sect2>

<sect2 id="sec-text-entry-completion">
<title>Entry Completion</title>
<para>A <classname>Entry</classname> widget can offer a drop-down list of
pre-existing choices based on the first few characters typed by the user. For
instance, a search dialog could suggest text from previous searches.
</para>

<para>To enable this functionality, you must create a
<classname>EntryCompletion</classname> object, and provide it to the
<classname>Entry</classname> widget via the
<methodname>set_completion()</methodname> method.</para>

<para>The <classname>EntryCompletion</classname> may use a
<classname>TreeModel</classname> containing possible entries, specified with
<methodname>set_model()</methodname>. You should then call
<methodname>set_text_column()</methodname> to specify which of your model columns
should be used to match possible text entries.</para>

<para>Alternatively, if a complete list of possible entries
would be too large or too inconvenient to generate, a callback slot may instead
be specified with <methodname>set_match_func()</methodname>.
This is also useful if you wish to match on a part of the string other
than the start.</para>

<para><ulink url="&url_refdocs_base_gtk;EntryCompletion.html">Reference</ulink></para>

<sect3 id="entry-completion-example"><title>Entry Completion Example</title>
<para>
This example creates a <classname>Gtk::EntryCompletion</classname> and associates
it with a <classname>Gtk::Entry</classname> widget. The completion uses a
<classname>Gtk::TreeModel</classname> of possible entries, and some additional
actions.
</para>

<figure id="figure-entry-completion">
  <title>Entry Completion</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;entry_completion.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;entry/completion">Source Code</ulink></para>

</sect3>
</sect2>

<sect2 id="sec-text-entry-icons">
<title>Entry Icons</title>
<para>An <classname>Entry</classname> widget can show an icon at the start or
end of the text area. The icon can be specifed by methods such as
<methodname>set_icon_from_pixbuf()</methodname> or
<methodname>set_icon_from_icon_name()</methodname>. An application can respond to the
user pressing the icon by handling the
<methodname>signal_icon_press</methodname> signal.</para>

<sect3 id="entry-icon-example"><title>Entry Icon Example</title>
<para>
This example shows a <classname>Gtk::Entry</classname> widget with a named
search icon, and prints text to the terminal when the icon is pressed.
</para>

<figure id="figure-entry-icon">
  <title>Entry with Icon</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;entry_icon.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;entry/icon">Source Code</ulink></para>

</sect3>
</sect2>

<sect2 id="sec-text-entry-progress">
<title>Entry Progress</title>
<para>An <classname>Entry</classname> widget can show a progress bar inside the
text area, under the entered text. The progress bar will be shown if the
<methodname>set_progress_fraction()</methodname> or
<methodname>set_progress_pulse_step()</methodname> methods are called.</para>

<sect3 id="entry-progress-example"><title>Entry Progress Example</title>
<para>
This example shows a <classname>Gtk::Entry</classname> widget with a progress
bar.
</para>

<figure id="figure-entry-progress">
  <title>Entry with Progress Bar</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;entry_progress.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;entry/progress">Source Code</ulink></para>

</sect3>
</sect2>

</sect1>

<sect1 id="sec-spinbutton">
<title>SpinButton</title>

<para>
A <classname>SpinButton</classname> allows the user to select a value from a
range of numeric values. It has an <classname>Entry</classname> widget with increment and decrement buttons
at the side. Clicking the buttons causes the value to 'spin' up and down across
the range of possible values. The <classname>Entry</classname> widget may also
be used to enter a value directly.
</para>

<para>
The value can have an adjustable number of decimal places, and the step size is
configurable. <classname>SpinButton</classname>s have an 'auto-repeat' feature
as well: holding down the increment or decrement button can optionally cause the value to
change more quickly the longer the button is held down.
</para>

<para>
<classname>SpinButton</classname>s use an <link
    linkend="chapter-adjustment">Adjustment</link> object to hold information about
the range of values. These Adjustment attributes are used by the Spin Button
like so:
<itemizedlist>
<listitem>

<para>
 <literal>value</literal>: value for the Spin Button
</para>
</listitem>
<listitem>

<para>
 <literal>lower</literal>: lower range value
</para>
</listitem>
<listitem>

<para>
 <literal>upper</literal>: upper range value
</para>
</listitem>
<listitem>
<para>
 <literal>step_increment</literal>: value to increment/decrement when pressing
mouse button 1 on a button
</para>
</listitem>
<listitem>

<para>
 <literal>page_increment</literal>: value to increment/decrement when pressing
mouse button 2 on a button
</para>
</listitem>
<listitem>

<para>
 <literal>page_size</literal>: unused
</para>
</listitem>

</itemizedlist>
</para>

<para>
Additionally, mouse button 3 can be used to jump directly to the
<literal>upper</literal> or <literal>lower</literal> values.
</para>

<para>
The <classname>SpinButton</classname> can create a default
<classname>Adjustment</classname>, which you can access via the
<methodname>get_adjustment()</methodname> method, or you can specify an existing
<classname>Adjustment</classname> in the constructor.
</para>


<sect2 id="spinbutton-methods"><title>Methods</title>

<para>
The number of decimal places can be altered using the
<methodname>set_digits()</methodname> method.
</para>

<para>
You can set the spinbutton's value using the <methodname>set_value()</methodname>
method, and retrieve it with <methodname>get_value()</methodname>.
</para>

<para>
The <methodname>spin()</methodname> method 'spins' the
<classname>SpinButton</classname>, as if its increment or decrement button had been clicked.
You need to specify a <classname>Gtk::SpinType</classname> to specify the
direction or new position.
</para>

<para>
To prevent the user from typing non-numeric characters into the entry box, pass
<literal>true</literal> to the <methodname>set_numeric()</methodname> method.
</para>

<para>
To make the <classname>SpinButton</classname> 'wrap' between its upper and
lower bounds, use the <methodname>set_wrap()</methodname> method.
</para>

<para>
To force it to snap to the nearest <literal>step_increment</literal>,
use <methodname>set_snap_to_ticks()</methodname>.
</para>

<para><ulink url="&url_refdocs_base_gtk;SpinButton.html">Reference</ulink></para>

</sect2>

<sect2 id="spinbutton-example"><title>Example</title>

<para>
Here's an example of a <classname>SpinButton</classname> in action:
</para>

<figure id="figure-spinbutton">
  <title>SpinButton</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;spinbutton.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;spinbutton">Source Code</ulink></para>

</sect2>

</sect1>

<sect1 id="sec-progressbar">
<title>ProgressBar</title>

<para>
Progress bars are used to show the status of an ongoing operation. For
instance, a <classname>ProgressBar</classname> can show how much of a task has
been completed.
</para>

<para>
To change the value shown, use the <methodname>set_fraction()</methodname> method,
passing a <type>double</type> between 0.0 and 1.0 to provide the new percentage.
</para>

<para>
A <classname>ProgressBar</classname> is horizontal and left-to-right by default,
but you can change it to a vertical progress bar by using the
<methodname>set_orientation()</methodname> method.
</para>

<para><ulink url="&url_refdocs_base_gtk;ProgressBar.html">Reference</ulink></para>

<sect2 id="progressbar-activity-mode">
<title>Activity Mode</title>
<para>
Besides indicating the amount of progress that has occured, the
progress bar can also be used to indicate that there is some activity;
this is done by placing the progress bar in <emphasis>activity mode</emphasis>. In
this mode, the progress bar displays a small rectangle which moves
back and forth. Activity mode is useful in situations where the
progress of an operation cannot be calculated as a value range (e.g.,
receiving a file of unknown length).
</para>

<para>
To do this, you need to call the <methodname>pulse()</methodname> method at regular
intervals. You can also choose the step size, with the
<methodname>set_pulse_step()</methodname> method.
</para>

<para>
The progress bar can also display a configurable text
string within its trough, using the <methodname>set_text()</methodname> method.
</para>
</sect2>

<sect2 id="progressbar-example"><title>Example</title>

<figure id="figure-progressbar">
  <title>ProgressBar</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;progressbar.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;progressbar">Source Code</ulink></para>

</sect2>

</sect1>


<sect1 id="sec-infobar">
<title>InfoBar</title>

<para>
An <classname>InfoBar</classname> may show small items of information or ask brief questions. Unlike a <classname>Dialog</classname>, it appears at the top of the current window instead of opening a new window. Its API is very similar to the <link linkend="chapter-dialogs">Gtk::Dialog</link> API.</para>

<para><ulink url="&url_refdocs_base_gtk;InfoBar.html">Reference</ulink></para>

<sect2 id="infobar-example"><title>Example</title>

<figure id="figure-infobar">
  <title>InfoBar</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;infobar.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;infobar">Source Code</ulink></para>

</sect2>

</sect1>

<sect1 id="sec-tooltips">
<title>Tooltips</title>

<para>
Tooltips are the little information windows that pop up when you leave your
pointer over a widget for a few seconds. Use
<methodname>set_tooltip_text()</methodname> to set a text string as a tooltip
on any <classname>Widget</classname>. <classname>Gtk::ToolItem</classname>s are
not <classname>Widget</classname>s, but have the same method for convenience.
<classname>Gtk::Tooltip</classname> is used for more advanced tooltip usage,
such as showing an image as well as text.
</para>

<para><ulink url="&url_refdocs_base_gtk;Widget.html">Widget Reference</ulink></para>
<para><ulink url="&url_refdocs_base_gtk;Tooltip.html">Tooltip Reference</ulink></para>

<sect2 id="tooltip-example"><title>Example</title>

<figure id="figure-tooltip">
  <title>Tooltip</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;tooltip.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;tooltips">Source Code</ulink></para>

</sect2>

</sect1>

</chapter>

<chapter id="chapter-container-widgets">
<title>Container Widgets</title>

<para>
All container widgets derive from <classname>Gtk::Container</classname>, not
always directly. Some container widgets, such as
<classname>Gtk::Grid</classname> can hold many child widgets, so these
typically have more complex interfaces. Others, such as
<classname>Gtk::Frame</classname> contain only one child widget.
</para>

<sect1 id="sec-single-item-containers">
<title>Single-item Containers</title>

<para>
The single-item container widgets derive from <classname>Gtk::Bin</classname>,
which provides the <methodname>add()</methodname> and <methodname>remove()</methodname>
methods for the child widget. Note that <classname>Gtk::Button</classname> and
<classname>Gtk::Window</classname> are technically single-item containers, but
we have discussed them already elsewhere.
</para>

<para>
We also discuss the <classname>Gtk::Paned</classname> widget, which allows you
to divide a window into two separate "panes". This widget actually contains
two child widgets, but the number is fixed so it seems appropriate.
</para>

<sect2 id="sec-frame">
<title>Frame</title>

<para>
Frames can enclose one or a group of widgets within a box, optionally with a
title. For instance, you might place a group of
<classname>RadioButton</classname>s or <classname>CheckButton</classname>s in a
<classname>Frame</classname>.
</para>

<para><ulink url="&url_refdocs_base_gtk;Frame.html">Reference</ulink></para>

<sect3 id="frame-example"><title>Example</title>

<figure id="figure-frame">
  <title>Frame</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;frame.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;frame">Source Code</ulink></para>

</sect3>

</sect2>


<sect2 id="sec-paned">
<title>Paned</title>

<para>
Panes divide a widget into two halves, separated by a moveable divider.
The two halves (panes) can be oriented either horizontally (side by side) or
vertically (one above the other).
</para>

<para>
Unlike the other widgets in this section, pane widgets contain not one but two
child widgets, one in each pane. Therefore, you should use
<methodname>add1()</methodname> and <methodname>add2()</methodname> instead of the
<methodname>add()</methodname> method.
</para>

<para>
You can adjust the position of the divider using the
<methodname>set_position()</methodname> method, and you will probably need to do
so.
</para>

<para><ulink url="&url_refdocs_base_gtk;Paned.html">Reference</ulink></para>

<sect3 id="paned-example"><title>Example</title>

<figure id="figure-paned">
  <title>Paned</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;paned.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;paned">Source Code</ulink></para>

</sect3>

</sect2>

<sect2 id="sec-scrolledwindow">
<title>ScrolledWindow</title>

<para>
<classname>ScrolledWindow</classname> widgets create a scrollable
area. You can insert any type of widget into a
<classname>ScrolledWindow</classname> window, and it will be accessible
regardless of its size by using the scrollbars. Note that
<classname>ScrolledWindow</classname> is not a
<classname>Gtk::Window</classname> despite the slightly misleading name.
</para>

<para>
Scrolled windows have <emphasis>scrollbar policies</emphasis> which determine
whether the <classname>Scrollbar</classname>s will be displayed. The policies
can be set with the <methodname>set_policy()</methodname> method. The policy may be
one of <literal>Gtk::POLICY_AUTOMATIC</literal> or
<literal>Gtk::POLICY_ALWAYS</literal>.
<literal>Gtk::POLICY_AUTOMATIC</literal> will cause the scrolled window
to display the scrollbar only if the contained widget is larger than the
visible area. <literal>Gtk::POLICY_ALWAYS</literal> will cause the
scrollbar to be displayed always.
</para>

<para><ulink url="&url_refdocs_base_gtk;ScrolledWindow.html">Reference</ulink></para>

<sect3 id="scrolledwindow-example"><title>Example</title>

<para>
Here is a simple example that packs 100 toggle buttons into a ScrolledWindow. Try resizing the window to see the scrollbars react.
</para>

<figure id="figure-scrolledwindow">
  <title>ScrolledWindow</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;scrolledwindow.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;scrolledwindow">Source Code</ulink></para>

</sect3>

</sect2>

<sect2 id="sec-aspectframe">
<title>AspectFrame</title>

<para>
The <classname>AspectFrame</classname> widget looks like a
<classname>Frame</classname> widget, but it also enforces the <emphasis>aspect
    ratio</emphasis> (the ratio of the width to the height) of the child
widget, adding extra space if necessary. For instance, this would allow you to
display a photograph without allowing the user to distort it horizontally or
vertically while resizing.
</para>

<para><ulink url="&url_refdocs_base_gtk;AspectFrame.html">Reference</ulink></para>

<sect3 id="aspectframe-example">
<title>Example</title>
<para>
The following program uses a <classname>Gtk::AspectFrame</classname> to present a
drawing area whose aspect ratio will always be 2:1, no matter how the user
resizes the top-level window.
</para>

<figure id="figure-aspectframe">
  <title>AspectFrame</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;aspectframe.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;aspectframe">Source Code</ulink></para>
</sect3>

</sect2>


<sect2 id="sec-alignment">
<title>Alignment</title>

<para>
The <classname>Alignment</classname> widget allows you to place a widget at a
position and size relative to the size of the <classname>Alignment</classname>
widget itself. For instance, it might be used to center a widget.
</para>

<para>
You need to specify the <classname>Alignment</classname>'s characteristics to
the constructor, or to the <methodname>set()</methodname> method. In particular, you
won't notice much effect unless you specify a number other than 1.0 for the
<literal>xscale</literal> and <literal>yscale</literal> parameters, because 1.0
simply means that the child widget will expand to fill all available space.
</para>

<para><ulink url="&url_refdocs_base_gtk;Alignment.html">Reference</ulink></para>

<sect3 id="alignment-example">
<title>Example</title>
<para>
This example right-aligns a button in a window by using an
<classname>Alignment</classname> widget.
</para>

<figure id="figure-alignment">
  <title>Alignment</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;alignment.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;alignment">Source Code</ulink></para>

<para>
See the <link linkend="sec-progressbar">ProgressBar</link> section for another
example that uses an <classname>Alignment</classname>.
</para>

</sect3>

</sect2>

</sect1>

<sect1 id="sec-multi-item-containers">
<title>Multiple-item widgets </title>

<para>
Multiple-item widgets inherit from <classname>Gtk::Container</classname>; just
as with <classname>Gtk::Bin</classname>, you use the <methodname>add()</methodname>
and <methodname>remove()</methodname> methods to add and remove contained widgets.
Unlike <methodname>Gtk::Bin::remove()</methodname>, however, the
<methodname>remove()</methodname> method for <classname>Gtk::Container</classname>
takes an argument, specifiying which widget to remove.
</para>

<sect2 id="container-packing">
<title>Packing</title>
<para>
You've probably noticed that &gtkmm; windows seem "elastic" - they can usually be stretched in many  different ways. This is due to the <emphasis>widget packing</emphasis>
system.
</para>

<para>
Many GUI toolkits require you to precisely place widgets in a window, using absolute positioning, often using a visual editor. This leads to several problems:
</para>

<itemizedlist>

<listitem>
<para>The widgets don't rearrange themselves when the window is resized. Some widgets are hidden when the window is made smaller, and lots of useless space appears when the window is made larger.</para>
</listitem>

<listitem>
<para>It's impossible to predict the amount of space necessary for text after it has been translated to other languages, or displayed in a different font. On Unix it is also impossible to anticipate the effects of every theme and window manager.</para>
</listitem>

<listitem>
<para>
Changing the layout of a window "on the fly", to make some extra widgets appear, for instance, is complex. It  requires tedious recalculation of every widget's position.</para>
</listitem>

</itemizedlist>

<para>
&gtkmm; uses the packing system to solve these problems. Rather than specifying the position and size of each widget in the window,
you can arrange your widgets in rows, columns,
and/or grids. &gtkmm; can size your window automatically, based on the
sizes of the widgets it contains. And the sizes of the widgets are, in turn, determined by the amount of text they contain, or the minimum and maximum sizes that you specify, and/or how you have requested that the available space should be shared between sets of widgets.
You can perfect your layout by
specifying padding distance and centering values for each of your widgets. &gtkmm; then uses
all this information to resize and reposition everything sensibly and smoothly when the user manipulates the window. </para>

<para>
&gtkmm; arranges widgets hierarchically, using <emphasis>containers</emphasis>.
A Container widget contains other widgets. Most &gtkmm; widgets are
containers. Windows, Notebook tabs, and Buttons are all container widgets.
There are two flavours of containers: single-child containers, which are all
descendants of <classname>Gtk::Bin</classname>, and multiple-child containers,
which are descendants of <classname>Gtk::Container</classname>. Most widgets
in &gtkmm; are descendants of <classname>Gtk::Bin</classname>, including
<classname>Gtk::Window</classname>.
</para>

<para>
Yes, that's correct: a Window can contain at most one widget. How, then, can
we use a window for anything useful?  By placing a multiple-child container in
the window. The most useful container widgets are
<classname>Gtk::Grid</classname> and <classname>Gtk::Box</classname>.
</para>


<itemizedlist>

<listitem>
<para>
<classname>Gtk::Grid</classname> arranges its child widgets in rows and
columns. Use <methodname>attach()</methodname>,
<methodname>attach_next_to()</methodname> and <methodname>add()</methodname> to
insert child widgets.
</para>
</listitem>

<listitem>
<para>
<classname>Gtk::Box</classname> arranges its child widgets vertically or horizontally. Use
<methodname>pack_start()</methodname> and <methodname>pack_end()</methodname> to insert
child widgets.
</para>
</listitem>

</itemizedlist>

<para>
 There are several other containers, which we will also discuss.
</para>

<para>
If you've never used a packing toolkit before, it can take some
getting used to. You'll probably find, however, that you don't
need to rely on visual form editors quite as much as you might with
other toolkits.
</para>

</sect2>

<sect2 id="sec-helloworld2">
<title>An improved Hello World</title>

<para>
Let's take a look at a slightly improved <literal>helloworld</literal>, showing what we've learnt.
</para>

<figure id="figure-helloworld2">
  <title>Hello World 2</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;helloworld2.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;helloworld2">Source Code</ulink></para>

<para>
After building and running this program, try resizing the window to see the
behaviour. Also, try playing with the options to
<methodname>pack_start()</methodname> while reading the <link
    linkend="sec-boxes">Boxes</link> section.
</para>

</sect2>

<sect2 id="sec-boxes">
<title>Boxes</title>

<para>
Most packing uses boxes as in the above example. These
are invisible containers into which we can pack our widgets. When
packing widgets into a horizontal box, the objects are inserted
horizontally from left to right or right to left depending on whether
<methodname>pack_start()</methodname> or <methodname>pack_end()</methodname> is used.
In a vertical box, widgets are packed from top to bottom or vice
versa. You may use any combination of boxes inside or beside other
boxes to create the desired effect.
</para>

<sect3 id="boxes-adding-widgets"><title>Adding widgets</title>
<sect4 id="per-child-packing-options"><title>Per-child packing options</title>
<para>
The <methodname>pack_start()</methodname> and
<methodname>pack_end()</methodname> methods place widgets inside these
containers. The <methodname>pack_start()</methodname> method will start at
the top and work its way down in a <classname>Box</classname> with vertical
orientation, or pack left to right in a <classname>Box</classname> with horizontal
orientation. <methodname>pack_end()</methodname> will do the opposite, packing from
bottom to top or from right to left. Using these methods allows us to right justify or
left justify our widgets. We will use <methodname>pack_start()</methodname>
in most of our examples.
</para>

<para>
There are several options governing how  widgets are to be packed, and this can
be confusing at first. If you have difficulties then it is sometimes a good
idea to play with the <application>glade</application> GUI designer to see what
is possible. You might even decide to use the
<application>Gtk::Builder</application> API to load your GUI at runtime.
</para>

<para>
There are basically five
different styles, as shown in this picture:
</para>

<figure id="figure-box-packing1">
  <title>Box Packing 1</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;box_packing1.png"/>
  </screenshot>
</figure>

<para>
Each line contains one horizontal <classname>Box</classname> with
several buttons. Each of the buttons on a line is packed into the
<classname>Box</classname> with the same arguments to the
<methodname>pack_start()</methodname> method.
</para>

<para>
This is the declaration of the <methodname>pack_start()</methodname> method:
</para>
<programlisting>void pack_start(Gtk::Widget&amp; child,
                Gtk::PackOptions options = Gtk::PACK_EXPAND_WIDGET,
                guint padding = 0);</programlisting>

<para>
The first argument is the widget you're packing. In our example these are all <classname>Button</classname>s.
</para>

<para>
The <parameter>options</parameter> argument can take one of these three options:
<itemizedlist>
<listitem><para><literal>Gtk::PACK_SHRINK</literal>: Space is contracted to the child widget size. The widget will take up just-enough space and never expand.</para></listitem>
<listitem><para><literal>Gtk::PACK_EXPAND_PADDING</literal>: Extra space is filled with padding. The widgets will be spaced out evenly, but their sizes won't change - there will be empty space between the widgets instead. </para></listitem>
<listitem><para><literal>Gtk::PACK_EXPAND_WIDGET</literal>: Extra space is taken up by increasing the child widget size, without changing the amount of space between widgets.</para></listitem>
</itemizedlist>
</para>

<para>
The <parameter>padding</parameter> argument specifies the width of an extra
border area to leave around the packed widget.
</para>

<para><ulink url="&url_refdocs_base_gtk;Box.html">Reference</ulink></para>

</sect4>

<sect4 id="per-container-packing-options"><title>Per-container packing options</title>
<para>
Here's the constructor for the <classname>Box</classname> widget,
and methods that set per-container packing options:
<programlisting>Gtk::Box(Gtk::Orientation orientation = Gtk::ORIENTATION_HORIZONTAL, int spacing = 0);
void set_spacing(int spacing);
void set_homogeneous(bool homogeneous = true);</programlisting>
Passing <literal>true</literal> to <methodname>set_homogeneous()</methodname> will
cause all of the contained widgets to be the same size.
<parameter>spacing</parameter> is a (minimum) number of pixels to leave between
each widget.
</para>

<para>
What's the difference between spacing (set when the box is created)
and padding (set when elements are packed)? Spacing is added between
objects, and padding is added on either side of a widget. The following
figure should make it clearer:
</para>

<figure id="figure-box-packing2">
  <title>Box Packing 2</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;box_packing2.png"/>
  </screenshot>
</figure>

</sect4>
</sect3>

<sect3 id="boxes-command-line-options">
<title>Gtk::Application and command-line options</title>
<para>The following example program requires a command-line option.
The source code shows two ways of handling command-line options in combination
with <classname>Gtk::Application</classname>.
</para>

<itemizedlist>
<listitem><para>
Handle the options in <function>main()</function> and hide them from
<classname>Gtk::Application</classname> by setting <literal>argc = 1</literal>
in the call to <methodname>Gtk::Application::create()</methodname>.
</para></listitem>

<listitem><para>
Give all command-line options to <methodname>Gtk::Application::create()</methodname>
and add the flag <literal>Gio::APPLICATION_HANDLES_COMMAND_LINE</literal>.
Connect a signal handler to the <literal>command_line</literal> signal, and
handle the command-line options in the signal handler.</para>

<para>You must set the optional parameter <literal>after = false</literal> in
the call to <literal>signal_command_line().connect()</literal>, because your signal
handler must be called before the default signal handler. You must also call
<methodname>Gio::Application::activate()</methodname> in the signal handler,
unless you want your application to exit without showing its main window.
(<classname>Gio::Application</classname> is a base class of
<classname>Gtk::Application</classname>.)
</para></listitem>
</itemizedlist>
</sect3>

<sect3 id="box-packing-example">
<title>Example</title>
<para>
Here is the source code for the example that produced the screenshots above. When you run this example, provide a number between 1 and 3 as a command-line option, to see different packing options in use.</para>

<para><ulink url="&url_examples_base;box">Source Code</ulink></para>
</sect3>

</sect2>

<sect2 id="sec-buttonbox">
<title>ButtonBoxes</title>

<para>
Button boxes are a convenient way to quickly arrange a group of buttons. Their
orientation can be either horizontal or vertical.
</para>

<para>
<classname>ButtonBox</classname>es help to make applications appear consistent
because they use standard settings, such as inter-button spacing and packing.
</para>

<para>
Buttons are added to a <classname>ButtonBox</classname> with the
<methodname>add()</methodname> method.
</para>

<para>
Button boxes support several layout styles. The style can be retrieved and
changed using <methodname>get_layout()</methodname> and
<methodname>set_layout()</methodname>.
</para>

<para><ulink url="&url_refdocs_base_gtk;ButtonBox.html">Reference</ulink></para>

<sect3 id="buttonbox-example">
<title>Example</title>

<figure id="figure-buttonbox">
  <title>ButtonBox</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;buttonbox.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;buttonbox">Source Code</ulink></para>

</sect3>

</sect2>

<sect2 id="sec-grid">
<title>Grid</title>

<para>
A <classname>Grid</classname> dynamically lays out child widgets in rows and
columns. The dimensions of the grid do not need to be specified in the constructor.
</para>

<para>
Child widgets can span multiple rows or columns, using
<methodname>attach()</methodname>, or added next to an existing widget inside
the grid with <methodname>attach_next_to()</methodname>. Individual rows and columns of the grid can be set to have uniform height or width with
<methodname>set_row_homogeneous()</methodname> and
<methodname>set_column_homogeneous()</methodname>.
</para>
<para>You can set the <emphasis>margin</emphasis> and <emphasis>expand</emphasis> properties of the
child <classname>Widget</classname>s to control their spacing and their behaviour when the Grid is resized.
</para>

<para><ulink url="&url_refdocs_base_gtk;Grid.html">Reference</ulink></para>

<sect3 id="grid-example"><title>Example</title>
<para>
This example creates a window with three buttons in a grid.
The first two buttons are in the upper row, from left to right. A
third button is attached underneath the first button, in a new lower row,
spanning two columns.
</para>

<figure id="figure-grid">
  <title>Grid</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;grid.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;grid">Source Code</ulink></para>

</sect3>

</sect2>

<sect2 id="sec-table">
<title>Table</title>

<para>
<classname>Gtk::Table</classname> allows us to place widgets in a grid,
similar to <classname>Gtk::Grid</classname>.
</para>
<para>
<classname>Gtk::Table</classname> is deprecated from &gtkmm; version 3.4 and should
not be used in newly-written code. Use <classname>Gtk::Grid</classname> instead.
</para>
</sect2>

<sect2 id="sec-notebook">
<title>Notebook</title>

<para>
A <classname>Notebook</classname> has a set of stacked
<literal>pages</literal>, each of which contains widgets. Labelled
<literal>tabs</literal> allow the user to select the pages.
<classname>Notebook</classname>s allow several sets of widgets to be placed in a
small space, by only showing one page at a time. For instance, they are often
used in preferences dialogs.
</para>

<para>
Use the <methodname>append_page()</methodname>, <methodname>prepend_page()</methodname>
and <methodname>insert_page()</methodname> methods to add tabbed pages to the
<literal>Notebook</literal>, supplying the child widget and the name for the
tab.
</para>

<para>
To discover the currently visible page, use the
<methodname>get_current_page()</methodname> method. This returns the page number,
and then calling <methodname>get_nth_page()</methodname> with that number will give
you a pointer to the actual child widget.
</para>

<para>
To programmatically change the selected page, use the
<methodname>set_current_page()</methodname> method.
</para>

<para><ulink url="&url_refdocs_base_gtk;Notebook.html">Reference</ulink></para>

<sect3 id="notebook-example"><title>Example</title>

<figure id="figure-notebook">
  <title>Notebook</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;notebook.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;notebook/">Source Code</ulink></para>

</sect3>

</sect2>

<sect2 id="sec-assistant">
<title>Assistant</title>

<para>
An <classname>Assistant</classname> splits a complex operation into steps. Each step is a page, containing a header, a child widget and an action area. The Assistant's action area has navigation buttons which update automatically depending on the type of the page, set with <methodname>set_page_type()</methodname>.
</para>

<para>
Use the <methodname>append_page()</methodname>, <methodname>prepend_page</methodname> and <methodname>insert_page()</methodname> methods to add pages to the <classname>Assistant</classname>, supplying the child widget for each page.
</para>

<para>
To determine the currently-visible page, use the <methodname>get_current_page()</methodname> method, and pass the result to <methodname>get_nth_page()</methodname>, which returns a pointer to the actual widget. To programmatically change the current page, use the <methodname>set_current_page()</methodname> method.
</para>

<para>
To set the title of a page, use the <methodname>set_page_title()</methodname> method. The header and side images of a page can be set with the <methodname>set_page_header_image()</methodname> and <methodname>set_page_side_image()</methodname> methods.
</para>

<para>
To add widgets to the action area, use the <methodname>add_action_widget()</methodname> method. They will be packed alongside the default buttons. Use the <methodname>remove_action_widget()</methodname> method to remove widgets.
</para>

<para><ulink url="&url_refdocs_base_gtk;Assistant.html">Reference</ulink></para>

<sect3 id="assistant-example"><title>Example</title>

<figure id="figure-assistant">
  <title>Assistant</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;assistant.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;assistant/">Source Code</ulink></para>

</sect3>

</sect2>

</sect1>

</chapter>

<chapter id="chapter-treeview">

<title>The TreeView widget</title>
<para>
The <classname>Gtk::TreeView</classname> widget can contain lists or trees of
data, in columns.
</para>

<sect1 id="sec-treeview-model">
<title>The Model</title>
<para>
Each <classname>Gtk::TreeView</classname> has an associated
<classname>Gtk::TreeModel</classname>, which contains the data displayed by the
<classname>TreeView</classname>. Each <classname>Gtk::TreeModel</classname> can
be used by more than one <classname>Gtk::TreeView</classname>. For instance,
this allows the same underlying data to be displayed and edited in 2 different
ways at the same time. Or the 2 Views might display different columns from the
same Model data, in the same way that 2 SQL queries (or "views") might
show different fields from the same database table.
</para>
<para>
Although you can theoretically implement your own Model, you will normally use
either the <classname>ListStore</classname> or <classname>TreeStore</classname>
model classes.
</para>

<para><ulink url="&url_refdocs_base_gtk;TreeModel.html">Reference</ulink></para>

<sect2 id="treeview-model-liststore">
<title>ListStore, for rows</title>
<para>
The <classname>ListStore</classname> contains simple rows of data, and each row
has no children.
</para>

<figure id="figure-treeview-liststore-model">
  <title>TreeView - ListStore</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;treeview_list.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_refdocs_base_gtk;ListStore.html">Reference</ulink></para>

</sect2>

<sect2 id="treeview-model-treestore">
<title>TreeStore, for a hierarchy</title>
<para>
The <classname>TreeStore</classname> contains rows of data, and each row may
have child rows.
</para>

<figure id="figure-treeview-treestore-model">
  <title>TreeView - TreeStore</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;treeview_tree.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_refdocs_base_gtk;TreeStore.html">Reference</ulink></para>

</sect2>

<sect2 id="treeview-model-columns">
<title>Model Columns</title>
<para>
The <classname>TreeModelColumnRecord</classname> class is used to keep track
of the columns and their data types. You add
<classname>TreeModelColumn</classname> instances to the
<classname>ColumnRecord</classname> and then use those
<classname>TreeModelColumns</classname> when getting and setting the data in
model rows. You will probably find it convenient to derive a new
<classname>TreeModelColumnRecord</classname> which has your
<classname>TreeModelColumn</classname> instances as member data.
</para>

<programlisting>class ModelColumns : public Gtk::TreeModelColumnRecord
{
public:

  ModelColumns()
    { add(m_col_text); add(m_col_number); }

  Gtk::TreeModelColumn&lt;Glib::ustring&gt; m_col_text;
  Gtk::TreeModelColumn&lt;int&gt; m_col_number;
};

ModelColumns m_Columns;</programlisting>

<para>
You specify the <classname>ColumnRecord</classname> when creating the Model,
like so:
</para>
<programlisting>Glib::RefPtr&lt;Gtk::ListStore&gt; refListStore =
    Gtk::ListStore::create(m_Columns);</programlisting>
<para>Note that the instance (such as m_Columns here) should usually not be static, because it often needs to be instantiated after
glibmm has been instantiated.</para>
</sect2>

<sect2 id="treeview-adding-rows">
<title>Adding Rows</title>
<para>
Add rows to the model with the <methodname>append()</methodname>,
<methodname>prepend()</methodname>, or <methodname>insert()</methodname> methods.
</para>
<programlisting>Gtk::TreeModel::iterator iter = m_refListStore-&gt;append();</programlisting>
<para>You can dereference the iterator to get the Row:
</para>
<programlisting>Gtk::TreeModel::Row row = *iter;</programlisting>
<sect3 id="treeview-adding-child-rows"><title>Adding child rows</title>
<para>
<classname>Gtk::TreeStore</classname> models can have child items. Add them
with the <methodname>append()</methodname>, <methodname>prepend()</methodname>, or
<methodname>insert()</methodname> methods, like so:
</para>
<programlisting>Gtk::TreeModel::iterator iter_child =
    m_refTreeStore-&gt;append(row.children());</programlisting>
</sect3>

</sect2>

<sect2 id="treeview-setting-values">
<title>Setting values</title>
<para>
You can use the <methodname>operator[]</methodname> override to set the data for a
particular column in the row, specifying the
<classname>TreeModelColumn</classname> used to create the model.
</para>
<programlisting>row[m_Columns.m_col_text] = "sometext";</programlisting>
</sect2>

<sect2 id="treeview-getting-values">
<title>Getting values</title>
<para>
You can use the <methodname>operator[]</methodname> override to get the data in a
particular column in a row, specifiying the
<classname>TreeModelColumn</classname> used to create the model.
</para>
<programlisting>Glib::ustring strText = row[m_Columns.m_col_text];
int number = row[m_Columns.m_col_number];</programlisting>
<para>
The compiler will complain if you use an inappropriate type. For
instance, this would generate a compiler error:
</para>
<programlisting>//compiler error - no conversion from ustring to int.
int number = row[m_Columns.m_col_text];</programlisting>
</sect2>

<sect2 id="treeview-hidden-columns">
<title>&quot;Hidden&quot; Columns</title>
<para>
You might want to associate extra data with each row. If so, just add
it as a Model column, but don't add it to the View.
</para>
</sect2>

</sect1>

<sect1 id="sec-treeview">
<title>The View</title>
<para>
The View is the actual widget (<classname>Gtk::TreeView</classname>) that
displays the model (<classname>Gtk::TreeModel</classname>) data and allows the
user to interact with it. The View can show all of the model's columns, or just
some, and it can show them in various ways.
</para>

<para><ulink url="&url_refdocs_base_gtk;TreeView.html">Reference</ulink></para>

<sect2 id="sec-treeview-using-a-model">
<title>Using a Model</title>
<para>
You can specify a <classname>Gtk::TreeModel</classname> when constructing the
<classname>Gtk::TreeView</classname>, or you can use the
<methodname>set_model()</methodname> method, like so:
</para>
<programlisting>m_TreeView.set_model(m_refListStore);</programlisting>
</sect2>

<sect2 id="treeview-adding-view-columns">
<title>Adding View Columns</title>
<para>
You can use the <methodname>append_column()</methodname> method to  tell the View
that it should display certain Model columns, in a certain order, with a
certain column title.
</para>
<programlisting>m_TreeView.append_column("Messages", m_Columns.m_col_text);</programlisting>
<para>
When using this simple <methodname>append_column()</methodname> override, the
<classname>TreeView</classname> will display the model data with an appropriate
<classname>CellRenderer</classname>. For instance, strings and numbers are
shown in a simple <classname>Gtk::Entry</classname> widget, and booleans are
shown in a <classname>Gtk::CheckButton</classname>. This is usually what you
need. For other column types you must either connect a callback that converts
your type into a string representation, with
<methodname>TreeViewColumn::set_cell_data_func()</methodname>, or derive a custom
<classname>CellRenderer</classname>. Note that (unsigned) short is not
supported by default - You could use (unsigned) int or (unsigned) long as the
column type instead.
</para>
</sect2>

<sect2 id="treeview-multiple-model-columns-per-view-column">
<title>More than one Model Column per View Column</title>
<para>
To render more than one model column in a view column, you need to create the
<classname>TreeView::Column</classname> widget manually, and use
<methodname>pack_start()</methodname> to add the model columns to it.
</para>

<para>
Then use <methodname>append_column()</methodname> to add the view Column to the
View. Notice that <methodname>Gtk::TreeView::append_column()</methodname> is overridden
to accept either a prebuilt <classname>Gtk::TreeView::Column</classname> widget, or
just the <classname>TreeModelColumn</classname> from which it generates an
appropriate <classname>Gtk::TreeView::Column</classname> widget.
</para>
<para>
Here is some example code from
<filename>gtkmm/demos/gtk-demo/example_icontheme.cc</filename>, which has a pixbuf
icon and a text name in the same column:
</para>
<programlisting>Gtk::TreeView::Column* pColumn =
  Gtk::manage(new Gtk::TreeView::Column("Icon Name"));

// m_columns.icon and m_columns.iconname are columns in the model.
// pColumn is the column in the TreeView:
pColumn-&gt;pack_start(m_columns.icon, /* expand= */ false);
pColumn-&gt;pack_start(m_columns.iconname);

m_TreeView.append_column(*pColumn);</programlisting>
</sect2>

<sect2 id="treeview-cellrenderer-details">
<title>Specifying CellRenderer details</title>
<para>
The default <classname>CellRenderers</classname> and their default behaviour
will normally suffice, but you might occasionally need finer control. For
instance, this example code from
<filename>gtkmm/demos/gtk-demo/example_treeview_treestore.cc</filename>, appends a
<classname>Gtk::CellRenderer</classname> widget and instructs it to render the
data from various model columns through various aspects of its appearance.
</para>
<programlisting>int cols_count = m_TreeView.append_column_editable("Alex", m_columns.alex);
Gtk::TreeViewColumn* pColumn = m_TreeView.get_column(cols_count-1);
if(pColumn)
{
  Gtk::CellRendererToggle* pRenderer =
    static_cast&lt;Gtk::CellRendererToggle*&gt;(pColumn->get_first_cell());
  pColumn-&gt;add_attribute(pRenderer->property_visible(), m_columns.visible);
  pColumn-&gt;add_attribute(pRenderer->property_activatable(), m_columns.world);</programlisting>

<para>
    You can also connect to <classname>CellRenderer</classname> signals to detect user
actions. For instance:
</para>
<programlisting>Gtk::CellRendererToggle* pRenderer =
    Gtk::manage( new Gtk::CellRendererToggle() );
pRenderer-&gt;signal_toggled().connect(
    sigc::bind( sigc::mem_fun(*this,
        &amp;Example_TreeView_TreeStore::on_cell_toggled), m_columns.dave)
);</programlisting>
</sect2>

<sect2 id="treeview-editable-cells">
<title>Editable Cells</title>

<sect3 id="treeview-editable-cells-automatic">
<title>Automatically-stored editable cells.</title>
<para>
Cells in a <classname>TreeView</classname> can be edited in-place by the user.
To allow this, use the <classname>Gtk::TreeView</classname>
<methodname>insert_column_editable()</methodname> and
<methodname>append_column_editable()</methodname> methods instead of
<methodname>insert_column()</methodname> and <methodname>append_column()</methodname>.
When these cells are edited the new values will be stored immediately in the
Model. Note that these methods are templates which can only be instantiated for
simple column types such as <classname>Glib::ustring</classname>, int, and
long.
</para>
</sect3>

<sect3 id="treeview-editable-cells-custom">
<title>Implementing custom logic for editable cells.</title>
<para>
However, you might not want the new values to be stored
immediately. For instance, maybe you want to restrict the input to
certain characters or ranges of values.
</para>
<para>
To achieve this, you should use the normal <classname>Gtk::TreeView</classname>
<methodname>insert_column()</methodname> and <methodname>append_column()</methodname>
methods, then use <methodname>get_column_cell_renderer()</methodname> to get the
<classname>Gtk::CellRenderer</classname> used by that column.
</para>
<para>
You should then cast that <classname>Gtk::CellRenderer*</classname> to the
specific <classname>CellRenderer</classname> that you expect, so you can use specific API.
</para>
<para>For instance, for a CellRendererText, you would set the cell's <emphasis>editable</emphasis> property to true, like
so:
</para>
<programlisting>cell.property_editable() = true;</programlisting>
<para>
For a CellRendererToggle, you would set the <emphasis>activatable</emphasis>
property instead.
</para>
<para>You can then connect
to the appropriate "edited" signal. For instance, connect to
<methodname>Gtk::CellRendererText::signal_edited()</methodname>, or
<methodname>Gtk::CellRendererToggle::signal_toggled()</methodname>. If the column
contains more than one <classname>CellRenderer</classname> then you will need
to use <methodname>Gtk::TreeView::get_column()</methodname> and then call
<methodname>get_cell_renderers()</methodname> on that view Column.
</para>
<para>
In your signal handler, you should examine the new value and then
store it in the Model if that is appropriate for your application.
</para>
</sect3>

</sect2>


</sect1>

<sect1 id="sec-iterating-over-model-rows">
<title>Iterating over Model Rows</title>
<para>
<classname>Gtk::TreeModel</classname> provides a C++ Standard Library-style container of its
children, via the <methodname>children()</methodname> method. You can use the
familiar <methodname>begin()</methodname> and <methodname>end()</methodname> methods
iterator incrementing, like so:
</para>
<programlisting>typedef Gtk::TreeModel::Children type_children; //minimise code length.
type_children children = refModel-&gt;children();
for(type_children::iterator iter = children.begin();
    iter != children.end(); ++iter)
{
  Gtk::TreeModel::Row row = *iter;
  //Do something with the row - see above for set/get.
}</programlisting>

<sect2 id="treeview-row-children">
<title>Row children</title>
<para>
When using a <classname>Gtk::TreeStore</classname>, the rows can have child
rows, which can have their own children in turn. Use
<methodname>Gtk::TreeModel::Row::children()</methodname> to get the container of child <classname>Row</classname>s:
<programlisting>Gtk::TreeModel::Children children = row.children();</programlisting>
</para>
</sect2>

</sect1>

<sect1 id="sec-treeview-selection">
<title>The Selection</title>
<para>
To find out what rows the user has selected, get the
<classname>Gtk::TreeView::Selection</classname> object from the
<classname>TreeView</classname>, like so:
</para>
<programlisting>Glib::RefPtr&lt;Gtk::TreeSelection&gt; refTreeSelection =
    m_TreeView.get_selection();</programlisting>

<sect2 id="treeview-selection-mode">
<title>Single or multiple selection</title>
<para>
By default, only single rows can be selected, but you can allow
multiple selection by setting the mode, like so:
<programlisting>refTreeSelection-&gt;set_mode(Gtk::SELECTION_MULTIPLE);</programlisting>
</para>
</sect2>

<sect2 id="treeview-selected-rows">
<title>The selected rows</title>
<para>
For single-selection, you can just call <methodname>get_selected()</methodname>,
like so:
</para>
<programlisting>TreeModel::iterator iter = refTreeSelection-&gt;get_selected();
if(iter) //If anything is selected
{
  TreeModel::Row row = *iter;
  //Do something with the row.
}</programlisting>

<para>
For multiple-selection, you need to define a callback, and give it to
<methodname>selected_foreach()</methodname>,
<methodname>selected_foreach_path()</methodname>, or
<methodname>selected_foreach_iter()</methodname>, like so:
</para>
<programlisting>refTreeSelection-&gt;selected_foreach_iter(
    sigc::mem_fun(*this, &amp;TheClass::selected_row_callback) );

void TheClass::selected_row_callback(
    const Gtk::TreeModel::iterator&amp; iter)
{
  TreeModel::Row row = *iter;
  //Do something with the row.
}</programlisting>

</sect2>

<sect2 id="treeview-selection-changed-signal">
<title>The "changed" signal</title>
<para>
To respond to the user clicking on a row or range of rows, connect to the
signal like so:
</para>
<programlisting>refTreeSelection-&gt;signal_changed().connect(
    sigc::mem_fun(*this, &amp;Example_IconTheme::on_selection_changed)
);</programlisting>
</sect2>

<sect2 id="treeview-selection-preventing">
<title>Preventing row selection</title>
<para>
Maybe the user should not be able to select every item in your list or tree.
For instance, in the gtk-demo, you can select a demo to see the source code,
but it doesn't make any sense to select a demo category.
</para>
<para>
To control which rows can be selected, use the
<methodname>set_select_function()</methodname> method, providing a
<classname>sigc::slot</classname> callback. For instance:
</para>
<programlisting>m_refTreeSelection-&gt;set_select_function( sigc::mem_fun(*this,
    &amp;DemoWindow::select_function) );</programlisting>
<para>
and then
</para>
<programlisting>bool DemoWindow::select_function(
    const Glib::RefPtr&lt;Gtk::TreeModel&gt;&amp; model,
    const Gtk::TreeModel::Path&amp; path, bool)
{
  const Gtk::TreeModel::iterator iter = model-&gt;get_iter(path);
  return iter-&gt;children().empty(); // only allow leaf nodes to be selected
}</programlisting>
</sect2>

<sect2 id="treeview-selection-changing">
<title>Changing the selection</title>
<para>
To change the selection, specify a
<classname>Gtk::TreeModel::iterator</classname> or
<classname>Gtk::TreeModel::Row</classname>, like so:
</para>
<programlisting>Gtk::TreeModel::Row row = m_refModel-&gt;children()[5]; //The fifth row.
if(row)
  refTreeSelection-&gt;select(row);</programlisting>
<para>
or
</para>
<programlisting>Gtk::TreeModel::iterator iter = m_refModel-&gt;children().begin()
if(iter)
  refTreeSelection-&gt;select(iter);</programlisting>
</sect2>

</sect1>


<sect1 id="sec-treeview-sort">
<title>Sorting</title>
<para>
The standard tree models (<classname>TreeStore</classname> and <classname>ListStore</classname>) derive from <classname>TreeSortable</classname>, so they offer sorting functionality. For instance, call <methodname>set_sort_column()</methodname>, to sort the model by the specified column. Or supply a callback function to <methodname>set_sort_func()</methodname> to implement a more complicated sorting algorithm.
</para>

<para><ulink url="&url_refdocs_base_gtk;TreeSortable.html">TreeSortable Reference</ulink></para>

<sect2 id="treeview-sort-headers">
<title>Sorting by clicking on columns</title>
<para>
So that a user can click on a <classname>TreeView</classname>'s column header to sort the <classname>TreeView</classname>'s contents, call <methodname>Gtk::TreeView::Column::set_sort_column()</methodname>, supplying the model column on which model should be sorted when the header is clicked. For instance:
</para>
<programlisting>Gtk::TreeView::Column* pColumn = treeview.get_column(0);
if(pColumn)
  pColumn->set_sort_column(m_columns.m_col_id);</programlisting>
</sect2>

<sect2 id="treeview-sort-independent-views">
<title>Independently sorted views of the same model</title>
<para>
The <classname>TreeView</classname> already allows you to show the same <classname>TreeModel</classname> in two <classname>TreeView</classname> widgets. If you need one of these TreeViews to sort the model differently than the other then you should use a <classname>TreeModelSort</classname> instead of just, for instance, <methodname>Gtk::TreeViewModel::set_sort_column()</methodname>. <classname>TreeModelSort</classname> is a model that contains another model, presenting a sorted version of that model. For instance, you might add a sorted version of a model to a <classname>TreeView</classname> like so:
</para>
<programlisting>Glib::RefPtr&lt;Gtk::TreeModelSort&gt; sorted_model =
    Gtk::TreeModelSort::create(model);
sorted_model->set_sort_column(columns.m_col_name, Gtk::SORT_ASCENDING);
treeview.set_model(sorted_model);</programlisting>

<para>Note, however, that the TreeView will provide iterators to the sorted model. You must convert them to iterators to the underlying child model in order to perform actions on that model. For instance:
</para>
<programlisting>void ExampleWindow::on_button_delete()
{
  Glib::RefPtr&lt;Gtk::TreeSelection&gt; refTreeSelection =
      m_treeview.get_selection();
  if(refTreeSelection)
  {
    Gtk::TreeModel::iterator sorted_iter =
        m_refTreeSelection->get_selected();
    if(sorted_iter)
    {
      Gtk::TreeModel::iterator iter =
          m_refModelSort->convert_iter_to_child_iter(sorted_iter);
      m_refModel->erase(iter);
    }
  }
}</programlisting>

<para><ulink url="&url_refdocs_base_gtk;TreeModelSort.html">TreeModelSort Reference</ulink></para>
</sect2>

</sect1>

<sect1 id="sec-treeview-draganddrop">
<title>Drag and Drop</title>
<para>
<classname>Gtk::TreeView</classname> already implements simple drag-and-drop
when used with the <classname>Gtk::ListStore</classname> or
<classname>Gtk::TreeStore</classname> models. If necessary, it also allows you
to implement more complex behaviour when items are dragged and dropped, using
the normal <link linkend="chapter-draganddrop">Drag and Drop</link> API.
</para>

<sect2 id="treeview-reorderable-rows">
<title>Reorderable rows</title>
<para>
If you call <methodname>Gtk::TreeView::set_reorderable()</methodname> then your
TreeView's items can be moved within the treeview itself. This is demonstrated
in the <classname>TreeStore</classname> example.
</para>
<para>However, this does not allow you any control of which items can be dragged, and where they can be dropped. If you need that extra control then you might create a derived <literal>Gtk::TreeModel</literal> from <literal>Gtk::TreeStore</literal> or <literal>Gtk::ListStore</literal> and override the <literal>Gtk::TreeDragSource::row_draggable()</literal> and <literal>Gdk::TreeDragDest::row_drop_possible()</literal> virtual methods. You can examine the <literal>Gtk::TreeModel::Path</literal>s provided and allow or disallow dragging or dropping by returning <literal>true</literal> or <literal>false</literal>.</para>
<para>This is demonstrated in the drag_and_drop example.</para>
</sect2>

</sect1>

<sect1 id="sec-treeview-contextmenu">
<title>Popup Context Menu</title>
<para>
Lots of people need to implement right-click context menus for
<classname>TreeView</classname>'s so we will explain how to do that  here to
save you some time. Apart from one or two points, it's  much the same as a
normal context menu, as described in the <link linkend="sec-menus-popup">menus
    chapter</link>.
</para>

<sect2 id="treeview-button-press-event">
<title>Handling <literal>button_press_event</literal></title>
<para>
To detect a click of the right mouse button, you need to handle the
<literal>button_press_event</literal> signal, and check exactly which button
was pressed. Because the <classname>TreeView</classname> normally handles this
signal completely, you need to either override the default signal handler in a
derived <classname>TreeView</classname> class, or use
<methodname>connect_notify()</methodname> instead of <methodname>connect()</methodname>.
You probably also want to call the default handler before doing anything else,
so that the right-click will cause the row to be selected first.
</para>
<para>This is demonstrated in the Popup Context Menu example.</para>
</sect2>

</sect1>

<sect1 id="sec-treeview-examples"><title>Examples</title>

<sect2 id="liststore-example"><title>ListStore</title>
<para>
This example has a <classname>Gtk::TreeView</classname> widget, with a
<classname>Gtk::ListStore</classname> model.
</para>


<figure id="figure-treeview-liststore">
  <title>TreeView - ListStore</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;treeview_list.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;treeview/list/">Source Code</ulink></para>

</sect2>

<sect2 id="treestore-example"><title>TreeStore</title>

<para>
This example is very similar to the <classname>ListStore</classname> example,
but uses a <classname>Gtk::TreeStore</classname> model instead, and adds
children to the rows.
</para>

<figure id="figure-treeview-treestore">
  <title>TreeView - TreeStore</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;treeview_tree.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;treeview/tree/">Source Code</ulink></para>

</sect2>

<sect2 id="sec-editable-cells-example"><title>Editable Cells</title>

<para>
This example is identical to the <classname>ListStore</classname> example, but
it uses <methodname>TreeView::append_column_editable()</methodname> instead of
<methodname>TreeView::append_column()</methodname>.
</para>

<figure id="figure-treeview-editablecells">
  <title>TreeView - Editable Cells</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;treeview_editablecells.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;treeview/editable_cells/">Source Code</ulink></para>

</sect2>

<sect2 id="treeview-dnd-example"><title>Drag and Drop</title>

<para>
This example is much like the <classname>TreeStore</classname> example, but has
2 extra columns to indicate whether the row can be dragged, and whether it can
receive drag-and-dropped rows. It uses a derived
<classname>Gtk::TreeStore</classname> which overrides the virtual functions as
described in the <link linkend="sec-treeview-draganddrop">TreeView Drag and
    Drop</link> section.
</para>

<figure id="figure-treeview-draganddrop">
  <title>TreeView - Drag And Drop</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;treeview_draganddrop.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;treeview/drag_and_drop/">Source Code</ulink></para>

</sect2>

<sect2 id="treeview-popup-menu-example"><title>Popup Context Menu</title>

<para>
This example is much like the <classname>ListStore</classname> example, but
derives a custom <classname>TreeView</classname> in order to override the
<literal>button_press_event</literal>, and also to encapsulate the tree model
code in our derived class. See the <link
    linkend="sec-treeview-contextmenu">TreeView Popup Context Menu</link>
section.
</para>

<figure id="figure-treeview-popup">
  <title>TreeView - Popup Context Menu</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;treeview_popup.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;treeview/popup/">Source Code</ulink></para>

</sect2>


</sect1>

</chapter>


<chapter id="chapter-combobox">
<title>Combo Boxes</title>

<para>The <classname>ComboBox</classname> widget offers a list (or tree) of choices in a dropdown menu. If appropriate, it can show extra information about each item, such as text, a picture, a checkbox, or a progress bar. The <classname>ComboBox</classname> widget usually restricts the user to the available choices, but it can optionally have an <classname>Entry</classname>, allowing the user to enter arbitrary text if none of the available choices are suitable.
</para>

<para>The list is provided via a <classname>TreeModel</classname>, and columns from this model are added to the ComboBox's view with the <methodname>ComboBox::pack_start()</methodname> method. This provides flexibility and compile-time type-safety, but the <classname>ComboBoxText</classname> class provides a simpler text-based specialization in case that flexibility is not required.
</para>

<para><ulink url="&url_refdocs_base_gtk;ComboBox.html">Reference</ulink></para>

<sect1 id="sec-combobox-model">
<title>The model</title>
<para>The model for a ComboBox can be defined and filled exactly as for a <classname>TreeView</classname>. For instance, you might derive a ComboBox class with one integer and one text column, like so:
</para>
<programlisting>ModelColumns()
{ add(m_col_id); add(m_col_name); }

  Gtk::TreeModelColumn&lt;int&gt; m_col_id;
  Gtk::TreeModelColumn&lt;Glib::ustring&gt; m_col_name;
};

ModelColumns m_columns;</programlisting>

<para>After appending rows to this model, you should provide the model to the <classname>ComboBox</classname> with the <methodname>set_model()</methodname> method. Then use the <methodname>pack_start()</methodname> or <methodname>pack_end()</methodname> methods to specify what columns will be displayed in the ComboBox. As with the TreeView you may either use the default cell renderer by passing the <classname>TreeModelColumn</classname> to the pack methods, or you may instantiate a specific <classname>CellRenderer</classname> and specify a particular mapping with either <methodname>add_attribute()</methodname> or <methodname>set_cell_data_func()</methodname>. Note that these methods are in the <classname>CellLayout</classname> base class.</para>
</sect1>

<sect1 id="sec-combobox-get">
<title>The chosen item</title>
<para>To discover what item, if any, the user has chosen from the ComboBox, call <methodname>ComboBox::get_active()</methodname>. This returns a <classname>TreeModel::iterator</classname> that you can dereference to a <classname>Row</classname> in order to read the values in your columns. For instance, you might read an integer ID value from the model, even though you have chosen only to show the human-readable description in the ComboBox. For instance:
</para>
<programlisting>Gtk::TreeModel::iterator iter = m_Combo.get_active();
if(iter)
{
  Gtk::TreeModel::Row row = *iter;

  //Get the data for the selected row, using our knowledge
  //of the tree model:
  int id = row[m_Columns.m_col_id];
  set_something_id_chosen(id); //Your own function.
}
else
  set_nothing_chosen(); //Your own function.</programlisting>
</sect1>

<sect1 id="sec-combobox-changes">
<title>Responding to changes</title>
<para>
You might need to react to every change of selection in the ComboBox, for instance to update other widgets. To do so, you should handle the <literal>changed</literal> signal. For instance:
</para>
<programlisting>m_combo.signal_changed().connect( sigc::mem_fun(*this,
      &amp;ExampleWindow::on_combo_changed) );</programlisting>
</sect1>

<sect1 id="combobox-example-full"><title>Full Example</title>

<figure id="figure-combobox-complex">
  <title>ComboBox</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;combobox_complex.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;combobox/complex">Source Code</ulink></para>

</sect1>

<sect1 id="combobox-example-simple"><title>Simple Text Example</title>

<figure id="figure-combobox-text">
  <title>ComboBoxText</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;combobox_text.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;combobox/text">Source Code</ulink></para>

</sect1>

<sect1 id="sec-comboboxentry">
<title>ComboBox with an Entry</title>

<para>A <classname>ComboBox</classname> may contain an <classname>Entry</classname> widget for entering of arbitrary text, by specifying <literal>true</literal> for the constructor's <literal>has_entry</literal> parameter.</para>

<sect2 id="sec-comboboxentry-text-column">
<title>The text column</title>
<para>So that the <classname>Entry</classname> can interact with the drop-down list of choices, you must specify which of your model columns is the text column, with <methodname>set_entry_text_column()</methodname>. For instance:
<programlisting>m_combo.set_entry_text_column(m_columns.m_col_name);</programlisting>
</para>
<para>
When you select a choice from the drop-down menu, the value from this column will be placed in the <classname>Entry</classname>.
</para>
</sect2>

<sect2 id="sec-comboboxentry-model">
<title>The entry</title>
<para>Because the user may enter arbitrary text, an active model row isn't enough to tell us what text the user has entered. Therefore, you should retrieve the <classname>Entry</classname> widget with the <methodname>ComboBox::get_entry()</methodname> method and call <methodname>get_text()</methodname> on that.
</para>
</sect2>

<sect2 id="sec-comboboxentry-changes">
<title>Responding to changes</title>
<para>
When the user enters arbitrary text, it may not be enough to connect to the
<literal>changed</literal> signal, which is emitted for every typed character.
It is not emitted when the user presses the Enter key. Pressing the Enter key or
moving the keyboard focus to another widget may signal that the user has finished
entering text. To be notified of these events, connect to the
<classname>Entry</classname>'s <literal>activate</literal> and
<literal>focus_out_event</literal> signals, like so
<programlisting>Gtk::Entry* entry = m_Combo.get_entry();
if (entry)
{
  // The Entry shall receive focus-out events.
  entry->add_events(Gdk::FOCUS_CHANGE_MASK);

  // Alternatively you can connect to m_Combo.signal_changed().
  entry->signal_changed().connect(sigc::mem_fun(*this,
    &amp;ExampleWindow::on_entry_changed) );

  entry->signal_activate().connect(sigc::mem_fun(*this,
    &amp;ExampleWindow::on_entry_activate) );

  entry->signal_focus_out_event().connect(sigc::mem_fun(*this,
    &amp;ExampleWindow::on_entry_focus_out_event) );
}</programlisting>
The <literal>changed</literal> signals of <classname>ComboBox</classname> and
<classname>Entry</classname> are both emitted for every change. It doesn't matter
which one you connect to. But only <classname>Entry</classname>'s
<literal>focus_out_event</literal> signal is useful here.
</para>
<para>
X events are described in more detail in the
<link linkend="sec-xeventsignals">X Event signals</link> section in the appendix.
</para>
</sect2>

<sect2 id="comboboxentry-example-full"><title>Full Example</title>

<figure id="figure-comboboxentry-complex">
  <title>ComboBox with Entry</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;comboboxentry_complex.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;combobox/entry_complex">Source Code</ulink></para>

</sect2>

<sect2 id="comboboxentry-example-simple"><title>Simple Text Example</title>

<figure id="figure-comboboxentry-text">
  <title>ComboBoxText with Entry</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;comboboxentry_text.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;combobox/entry_text">Source Code</ulink></para>

</sect2>




</sect1>

</chapter>


<chapter id="chapter-textview">
<title>TextView</title>
<para>
The <classname>TextView</classname> widget can be used to display and edit
large amounts of formatted text. Like the <classname>TreeView</classname>, it
has a model/view design. In this case the <classname>TextBuffer</classname> is
the model.
</para>

<sect1 id="sec-textview-buffer">
<title>The Buffer</title>
<para>
<classname>Gtk::TextBuffer</classname> is a model containing the data for the
<classname>Gtk::TextView</classname>, like the
<classname>Gtk::TreeModel</classname> used by <classname>Gtk::TreeView</classname>.
This allows two or more <classname>Gtk::TextView</classname>s to share the same
<classname>TextBuffer</classname>, and allows those TextBuffers to be displayed
slightly differently. Or you could maintain several
<classname>Gtk::TextBuffer</classname>s and choose to display each one at different
times in the same <classname>Gtk::TextView</classname> widget.
</para>
<para>
The <classname>TextView</classname> creates its own default
<classname>TextBuffer</classname>, which you can access via the
<methodname>get_buffer()</methodname> method.
</para>

<para><ulink url="&url_refdocs_base_gtk;TextBuffer.html">Reference</ulink></para>

<sect2 id="textview-iterators">
<title>Iterators</title>
<para>
</para>
</sect2>

<sect2 id="textview-formatting">
<title>Tags and Formatting</title>

<sect3 id="textview-formatting-tags">
<title>Tags</title>
<para>
To specify that some text in the buffer should have specific formatting, you must define a tag to hold that formatting information, and then apply that tag to the region of text. For instance, to define the tag and its properties:
</para>
<programlisting>Glib::RefPtr&lt;Gtk::TextBuffer::Tag&gt; refTagMatch =
    Gtk::TextBuffer::Tag::create();
refTagMatch-&gt;property_background() = "orange";</programlisting>
<para>
You can specify a name for the <classname>Tag</classname> when using the
<methodname>create()</methodname> method, but it is not necessary.
</para>

<para>
The <classname>Tag</classname> class has many other properties.
</para>

<para><ulink url="&url_refdocs_base_gtk;TextTag.html">Reference</ulink></para>

</sect3>

<sect3 id="textview-formatting-tagtable">
<title>TagTable</title>

<para>
Each <classname>Gtk::TextBuffer</classname> uses a
<classname>Gtk::TextBuffer::TagTable</classname>, which contains the
<classname>Tag</classname>s for that buffer. 2 or more
<classname>TextBuffer</classname>s may share the same
<classname>TagTable</classname>. When you create <classname>Tag</classname>s
you should add them to the <classname>TagTable</classname>. For instance:
</para>
<programlisting>Glib::RefPtr&lt;Gtk::TextBuffer::TagTable&gt; refTagTable =
    Gtk::TextBuffer::TagTable::create();
refTagTable-&gt;add(refTagMatch);
//Hopefully a future version of &gtkmm; will have a set_tag_table() method,
//for use after creation of the buffer.
Glib::RefPtr&lt;Gtk::TextBuffer&gt; refBuffer =
    Gtk::TextBuffer::create(refTagTable);</programlisting>

<para>
You can also use <methodname>get_tag_table()</methodname> to get, and maybe modify,
the <classname>TextBuffer</classname>'s default <classname>TagTable</classname>
instead of creating one explicitly.
</para>

<para><ulink url="&url_refdocs_base_gtk;TextTagTable.html">Reference</ulink></para>

</sect3>

<sect3 id="textview-formatting-applying-tags">
<title>Applying Tags</title>
<para>
If you have created a <classname>Tag</classname> and added it to the
<classname>TagTable</classname>, you may apply that tag to part of the
<classname>TextBuffer</classname> so that some of the text is displayed with that
formatting. You define the start and end of the range of text by specifying
<classname>Gtk::TextBuffer::iterator</classname>s. For instance:
</para>
<programlisting>refBuffer-&gt;apply_tag(refTagMatch, iterRangeStart, iterRangeStop);</programlisting>
<para>
Or you could specify the tag when first inserting the text:
<programlisting>refBuffer-&gt;insert_with_tag(iter, "Some text", refTagMatch);</programlisting>
</para>

<para>
You can apply more than one <classname>Tag</classname> to the same text, by
using <methodname>apply_tag()</methodname> more than once, or by using
<methodname>insert_with_tags()</methodname>. The <classname>Tag</classname>s might
specify different values for the same properties, but you can resolve these
conflicts by using <methodname>Tag::set_priority()</methodname>.
</para>

</sect3>
</sect2>

<sect2 id="textview-marks">
<title>Marks</title>
<para>
<classname>TextBuffer</classname> iterators are generally invalidated when the
text changes, but you can use a <classname>Gtk::TextBuffer::Mark</classname> to
remember a position in these situations. For instance,
</para>
<programlisting>Glib::RefPtr&lt;Gtk::TextBuffer::Mark&gt; refMark =
    refBuffer-&gt;create_mark(iter);</programlisting>

<para>
You can then use the <methodname>get_iter()</methodname> method later to create an
iterator for the <classname>Mark</classname>'s new position.
</para>

<para>
There are two built-in <classname>Mark</classname>s - <literal>insert</literal>
and <literal>selection_bound</literal>, which you can access with
<classname>TextBuffer</classname>'s <methodname>get_insert()</methodname> and
<methodname>get_selection_bound()</methodname> methods.
</para>

<para><ulink url="&url_refdocs_base_gtk;TextMark.html">Reference</ulink></para>

</sect2>

<sect2 id="textview-view">
<title>The View</title>
<para>
As mentioned above, each <classname>TextView</classname> has a
<classname>TextBuffer</classname>, and one or more
<classname>TextView</classname>s can share the same
<classname>TextBuffer</classname>.
</para>

<para>
Like the <classname>TreeView</classname>, you should probably put your
<classname>TextView</classname> inside a <classname>ScrolledWindow</classname>
to allow the user to see and move around the whole text area with
scrollbars.
</para>

<para><ulink url="&url_refdocs_base_gtk;TextView.html">Reference</ulink></para>

<sect3 id="textview-default-formatting">
<title>Default formatting</title>
<para>
<classname>TextView</classname> has various methods which allow you to change
the presentation of the buffer for this particular view. Some of these may be
overridden by the <classname>Gtk::TextTag</classname>s in the buffer, if they
specify the same things. For instance, <methodname>set_left_margin()</methodname>,
<methodname>set_right_margin()</methodname>, <methodname>set_indent()</methodname>,
etc.
</para>
</sect3>

<sect3 id="textview-scrolling">
<title>Scrolling</title>
<para>
<classname>Gtk::TextView</classname> has various
<methodname>scroll_to_*()</methodname> methods. These allow you to ensure that a
particular part of the text buffer is visible. For instance, your application's
Find feature might use <methodname>Gtk::TextView::scroll_to_iter()</methodname> to
show the found text.
</para>
</sect3>

</sect2>


</sect1>

<sect1 id="sec-widgets-and-childanchors">
<title>Widgets and ChildAnchors</title>
<para>
You can embed widgets, such as <classname>Gtk::Button</classname>s, in the
text. Each such child widget needs a <classname>ChildAnchor</classname>.
ChildAnchors are associated with <classname>iterators</classname>. For
instance, to create a child anchor at a particular position, use
<methodname>Gtk::TextBuffer::create_child_anchor()</methodname>:
</para>
<programlisting>Glib::RefPtr&lt;Gtk::TextChildAnchor&gt; refAnchor =
    refBuffer-&gt;create_child_anchor(iter);</programlisting>

<para>
Then, to add a widget at that position, use
<methodname>Gtk::TextView::add_child_at_anchor()</methodname>:
</para>
<programlisting>m_TextView.add_child_at_anchor(m_Button, refAnchor);</programlisting>

<para><ulink url="&url_refdocs_base_gtk;TextChildAnchor.html">Reference</ulink></para>

</sect1>

<sect1 id="sec-textview-examples"><title>Examples</title>

<sect2 id="textview-example-simple"><title>Simple Example</title>

<figure id="figure-textview">
  <title>TextView</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;textview.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;textview/">Source Code</ulink></para>

</sect2>

</sect1>

</chapter>

<chapter id="chapter-menus-and-toolbars">
<title>Menus and Toolbars</title>

<para>
There are specific APIs for Menus and toolbars, but you should usually deal
with them together, using the <classname>UIManager</classname> to define
<classname>Action</classname>s which you can then arrange in menus and toolbars.
In this way you can handle activation of the action instead of responding to
the menu and toolbar items separately. And you can enable or disable both the
menu and toolbar item via the action.
</para>
<para>
This involves the use of the <classname>Gtk::ActionGroup</classname>,
<classname>Gtk::Action</classname>, and <classname>UIManager</classname>
classes, all of which should be instantiated via their
<methodname>create()</methodname> methods, which return
<classname>RefPtr</classname>s.
</para>

<sect1 id="sec-actions">
<title>Actions</title>
<para>
First create the <classname>Action</classname>s and add them to an
<classname>ActionGroup</classname>, with
<methodname>ActionGroup::add()</methodname>.
</para>

<para>
The arguments to <methodname>Action::create()</methodname> specify the action's
name and how it will appear in menus and toolbars.
</para>
<para>
You can also specify a signal handler when calling
<methodname>ActionGroup::add()</methodname>. This signal handler will be called
when the action is activated via either a menu item or a toolbar button.
</para>
<para>Note that you must specify actions for sub menus as well as menu items.</para>

<para>For instance:
</para>
<programlisting>m_refActionGroup = Gtk::ActionGroup::create();

m_refActionGroup-&gt;add( Gtk::Action::create(&quot;MenuFile&quot;, &quot;_File&quot;) );
m_refActionGroup-&gt;add( Gtk::Action::create(&quot;New&quot;, &quot;_New&quot;),
  sigc::mem_fun(*this, &amp;ExampleWindow::on_action_file_new) );
m_refActionGroup-&gt;add( Gtk::Action::create(&quot;ExportData&quot;, &quot;Export Data&quot;),
  sigc::mem_fun(*this, &amp;ExampleWindow::on_action_file_open) );
m_refActionGroup-&gt;add( Gtk::Action::create(&quot;Quit&quot;, &quot;_Quit&quot;),
  sigc::mem_fun(*this, &amp;ExampleWindow::on_action_file_quit) );</programlisting>

<para>Note that this is where we specify the names of the actions as they will be seen by users in menus and toolbars. Therefore, this is where you should make strings translatable, by putting them inside the _() macro.</para>
</sect1>


<sect1 id="sec-uimanager">
<title>UIManager</title>
<para>
Next you should create a <classname>UIManager</classname> and add the
<classname>ActionGroup</classname> to the <classname>UIManager</classname> with
<methodname>insert_action_group()</methodname> At this point is also a good idea to
tell the parent window to respond to the specified keyboard shortcuts, by using
<methodname>add_accel_group()</methodname>.
</para>

<para>For instance,
</para>
<programlisting>Glib::RefPtr&lt;Gtk::UIManager&gt; m_refUIManager =
    Gtk::UIManager::create();
m_refUIManager-&gt;insert_action_group(m_refActionGroup);
add_accel_group(m_refUIManager-&gt;get_accel_group());</programlisting>
<para>
Then, you can define the actual visible layout of the menus and toolbars, and
add the UI layout to the <classname>UIManager</classname>. This &quot;ui
string&quot; uses an XML format, in which you should mention the names of the
actions that you have already created. For instance:
</para>
<programlisting>Glib::ustring ui_info =
    &quot;&lt;ui&gt;&quot;
    &quot;  &lt;menubar name='MenuBar'&gt;&quot;
    &quot;    &lt;menu action='MenuFile'&gt;&quot;
    &quot;      &lt;menuitem action='New'/&gt;&quot;
    &quot;      &lt;menuitem action='Open'/&gt;&quot;
    &quot;      &lt;separator/&gt;&quot;
    &quot;      &lt;menuitem action='Quit'/&gt;&quot;
    &quot;    &lt;/menu&gt;&quot;
    &quot;    &lt;menu action='MenuEdit'&gt;&quot;
    &quot;      &lt;menuitem action='Cut'/&gt;&quot;
    &quot;      &lt;menuitem action='Copy'/&gt;&quot;
    &quot;      &lt;menuitem action='Paste'/&gt;&quot;
    &quot;    &lt;/menu&gt;&quot;
    &quot;  &lt;/menubar&gt;&quot;
    &quot;  &lt;toolbar  name='ToolBar'&gt;&quot;
    &quot;    &lt;toolitem action='Open'/&gt;&quot;
    &quot;    &lt;toolitem action='Quit'/&gt;&quot;
    &quot;  &lt;/toolbar&gt;&quot;
    &quot;&lt;/ui&gt;&quot;;

m_refUIManager-&gt;add_ui_from_string(ui_info);</programlisting>

<para>Remember that these names are just the identifiers that we used when creating the actions. They are not the text that the user will see in the menus and toolbars. We provided those human-readable names when we created the actions.</para>
<para>
To instantiate a <classname>Gtk::MenuBar</classname> or
<classname>Gtk::Toolbar</classname> which you can actually show, you should use
the <methodname>UIManager::get_widget()</methodname> method, and then add the widget
to a container. For instance:
</para>
<programlisting>Gtk::Widget* pMenubar = m_refUIManager-&gt;get_widget(&quot;/MenuBar&quot;);
pBox-&gt;add(*pMenuBar, Gtk::PACK_SHRINK);</programlisting>

</sect1>


<sect1 id="sec-menus-popup"><title>Popup Menus</title>
<para>
<classname>Menus</classname> are normally just added to a window, but they can
also be displayed temporarily as the result of a mouse button click. For
instance, a context menu might be displayed when the user clicks their right
mouse button.
</para>

<para>The UI layout for a popup menu should use the <literal>popup</literal> node. For instance:
</para>
<programlisting>Glib::ustring ui_info =
    &quot;&lt;ui&gt;&quot;
    &quot;  &lt;popup name='PopupMenu'&gt;&quot;
    &quot;    &lt;menuitem action='ContextEdit'/&gt;&quot;
    &quot;    &lt;menuitem action='ContextProcess'/&gt;&quot;
    &quot;    &lt;menuitem action='ContextRemove'/&gt;&quot;
    &quot;  &lt;/popup&gt;&quot;
    &quot;&lt;/ui&gt;&quot;;

m_refUIManager-&gt;add_ui_from_string(ui_info);</programlisting>

<para>
To show the popup menu, use <classname>Gtk::Menu</classname>'s
<methodname>popup()</methodname> method, providing the button identifier and the
time of activation, as provided by the <literal>button_press_event</literal>
signal, which you will need to handle anyway. For instance:
</para>
<programlisting>bool ExampleWindow::on_button_press_event(GdkEventButton* event)
{
  if( (event-&gt;type == GDK_BUTTON_PRESS) &amp;&amp;
      (event-&gt;button == 3) )
  {
    m_Menu_Popup->popup(event-&gt;button, event-&gt;time);
    return true; //It has been handled.
  }
  else
    return false;
}</programlisting>

</sect1>

<sect1 id="sec-menus-examples">
    <title>Examples</title>

<sect2 id="menu-example-main"><title>Main Menu example</title>

<figure id="figure-menus-mainmenu">
  <title>Main Menu</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;main_menu.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;menus/main_menu/">Source Code</ulink></para>

</sect2>

<sect2 id="menu-example-popup"><title>Popup Menu example</title>

<figure id="figure-menus-popup">
  <title>Popup Menu</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;menu_popup.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;menus/popup/">Source Code</ulink></para>

</sect2>

</sect1>

</chapter>

<chapter id="chapter-toolpalette">
<title>ToolPalette</title>

<para>A <classname>ToolPalette</classname> is similar to a <classname>Toolbar</classname> but can contain a grid of items, categorized into groups. The user may hide or expand each group. As in a toolbar, the items may be displayed as only icons, as only text, or as icons with text.
</para>
<para>The <classname>ToolPalette</classname>'s items might be dragged or simply activated. For instance, the user might drag objects to a canvas to create new items there. Or the user might click an item to activate a certain brush size in a drawing application.</para>
<para><classname>ToolItemGroup</classname>s should be added to the tool palette via the base class's <function>Gtk::Container::add()</function> method, for instance like so:
</para>
<para>
<programlisting>
Gtk::ToolItemGroup* group_brushes =
  Gtk::manage(new Gtk::ToolItemGroup("Brushes"));
m_ToolPalette.add(*group_brushes);
</programlisting>
</para>
<para>
<classname>Gtk::ToolItem</classname>s can then be added to the group. For instance, like so:
</para>
<para>
<programlisting>
Gtk::ToolButton* button = Gtk::manage(new Gtk::ToolButton(icon, "Big"));
button->set_tooltip_text("Big Brush);
group_brushes->insert(*button);
</programlisting>
</para>
<para>You might then handle the <classname>ToolButton</classname>'s <literal>clicked</literal> signal. Alternatively, you could allow the item to be dragged to another widget, by calling <methodname>Gtk::ToolPalette::add_drag_dest()</methodname> and then using <methodname>Gtk::ToolPalette::get_drag_item()</methodname> in the other widget's <literal>drag_data_received</literal> signal handler.</para>

<para><ulink url="&url_refdocs_base_gtk;ToolPalette.html">ToolPalette Reference</ulink></para>
<para><ulink url="&url_refdocs_base_gtk;ToolItemGroup.html">ToolItemGroup Reference</ulink></para>
<para><ulink url="&url_refdocs_base_gtk;ToolItem.html">ToolItem Reference</ulink></para>

<sect1 id="toolpallete-dranganddrop">
<title>Drag and Drop</title>
<para>Call <methodname>add_drag_dest()</methodname> to allow items or groups to be dragged from the tool palette to a particular destination widget. You can then use <methodname>get_drag_item()</methodname> to discover which ToolItem or ToolItemGroup is being dragged. You can use <literal>dynamic_cast</literal> to discover whether it is an item or a group. For instance, you might use this in your <literal>drag_data_received</literal> signal handler, to add a dropped item, or to show a suitable icon while dragging.</para>
<para>See the <link linkend="chapter-draganddrop">Drag and Drop</link> chapter for general advice about Drag and Drop with gtkmm.</para>
</sect1>

<sect1 id="toolpalette-example"><title>ToolPalette Example</title>

<para>This example adds a <classname>ToolPalette</classname> and a <classname>DrawingArea</classname> to a window and allows the user to drag icons from the tool palette to the drawing area. The tool palette contains several groups of items. The combo boxes allow the user to change the style and orientation of the tool palette.</para>

<figure id="figure-toolpalette">
  <title>ToolPalette</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;toolpalette.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;toolpalette/">Source Code</ulink></para>

</sect1>

</chapter>

<chapter id="chapter-adjustment">
<title>Adjustments</title>

<para>
&gtkmm; has various widgets that can be visually adjusted using the mouse or
the keyboard, such as the <classname>Range</classname> widgets (described in
the <link linkend="chapter-range-widgets">Range Widgets</link> section). There are
also a few widgets that display some adjustable part of a larger area, such as
the <classname>Viewport</classname> widget. These widgets have
<classname>Gtk::Adjustment</classname> objects that express this common part of
their API.
</para>

<para>
So that applications can react to changes, for instance when a user moves a
scrollbar, <classname>Gtk::Adjustment</classname> has a
<literal>value_changed</literal> signal. You can then use the
<methodname>get_value()</methodname> method to discover the new value.
</para>

<sect1 id="sec-creating-adjustment">
<title>Creating an Adjustment</title>

<para>
The <classname>Gtk::Adjustment</classname> is created by its
<methodname>create()</methodname> method which is as follows:
</para>

<programlisting>Glib::RefPtr&lt;Gtk::Adjustment&gt; Gtk::Adjustment::create(
  double value,
  double lower,
  double upper,
  double step_increment = 1,
  double page_increment = 10,
  double page_size = 0);</programlisting>

<para>
The <parameter>value</parameter> argument is the initial value of the
adjustment, usually corresponding to the topmost or leftmost position of an
adjustable widget. The <parameter>lower</parameter> and
<parameter>upper</parameter> arguments specify the possible range of values
which the adjustment can hold. The
<parameter>step_increment</parameter> argument specifies the smaller of
the two increments by which the user can change the value, while the
<parameter>page_increment</parameter> is the larger one. The
<parameter>page_size</parameter> argument usually corresponds somehow to
the visible area of a panning widget. The <parameter>upper</parameter> argument
is used to represent the bottommost or rightmost coordinate in a panning
widget's child.
<!-- TODO: Investigate the upper argument properly. There was some unclear stuff about it not always being the upper value. -->
</para>

</sect1>

<sect1 id="sec-adjustments-easy">
<title>Using Adjustments the Easy Way</title>

<para>
The adjustable widgets can be roughly divided into those which use and
require specific units for these values, and those which treat them as
arbitrary numbers.
</para>
<para>
The group which treats the values as arbitrary numbers includes the
<classname>Range</classname> widgets (<classname>Scrollbar</classname> and
<classname>Scale</classname>), the <classname>ScaleButton</classname> widget,
and the <classname>SpinButton</classname> widget. These widgets  are typically
"adjusted" directly by the user with the mouse or keyboard. They will treat the
<parameter>lower</parameter> and <parameter>upper</parameter> values of an
adjustment as a range within which the user can manipulate the adjustment's
<parameter>value</parameter>. By default, they will only modify the
<parameter>value</parameter> of an adjustment.
</para>

<para>
The other group includes the <classname>Viewport</classname> widget and the
<classname>ScrolledWindow</classname> widget. All of these widgets use pixel
values for their adjustments. These are also typically adjusted indirectly
using scrollbars. While all widgets which use adjustments can either create
their own adjustments or use ones you supply, you'll generally want to let this
particular category of widgets create its own adjustments.
</para>

<para>
If you share an adjustment object between a Scrollbar and a TextView
widget, manipulating the scrollbar will automagically adjust the TextView
widget. You can set it up like this:
</para>
<programlisting>// creates its own adjustments
Gtk::TextView textview;
// uses the newly-created adjustment for the scrollbar as well
Gtk::Scrollbar vscrollbar (textview.get_vadjustment(), Gtk::ORIENTATION_VERTICAL);</programlisting>

</sect1>

<sect1 id="sec-adjustment-internals">
<title>Adjustment Internals</title>

<para>
OK, you say, that's nice, but what if I want to create my own handlers to
respond when the user adjusts a <classname>Range</classname> widget or a
<classname>SpinButton</classname>. To access the value of a
<classname>Gtk::Adjustment</classname>, you can use the
<methodname>get_value()</methodname> and <methodname>set_value()</methodname> methods:
</para>

<para>
As mentioned earlier, <classname>Gtk::Adjustment</classname> can emit signals.
This is, of course, how updates happen automatically when you share an
<classname>Adjustment</classname> object between a
<classname>Scrollbar</classname> and another adjustable widget; all adjustable
widgets connect signal handlers to their adjustment's
<literal>value_changed</literal> signal, as can your program.
</para>

<para>
So, for example, if you have a <classname>Scale</classname> widget, and you
want to change the rotation of a picture whenever its value changes, you would
create a signal handler like this:
</para>
<programlisting>void cb_rotate_picture (MyPicture* picture)
{
  picture-&#62;set_rotation(adj-&gt;get_value());
...</programlisting>
<para>
and connect it to the scale widget's adjustment like this:
</para>
<programlisting>adj-&gt;signal_value_changed().connect(sigc::bind&#60;MyPicture*&#62;(sigc::mem_fun(*this,
    &amp;cb_rotate_picture), picture));</programlisting>

<para>
What if a widget reconfigures the <parameter>upper</parameter> or
<parameter>lower</parameter> fields of its <classname>Adjustment</classname>,
such as when a user adds more text to a text widget?  In this case, it emits
the <literal>changed</literal> signal.
</para>

<para>
<classname>Range</classname> widgets typically connect a handler to this
signal, which changes their appearance to reflect the change - for example, the
size of the slider in a scrollbar will grow or shrink in inverse proportion to
the difference between the <parameter>lower</parameter> and
<parameter>upper</parameter> values of its
<classname>Adjustment</classname>.
</para>

<para>
You probably won't ever need to attach a handler to this signal, unless you're
writing a new type of range widget.
</para>
<programlisting>adjustment-&#62;signal_changed();</programlisting>

</sect1>

</chapter>

<chapter id="chapter-widgets-without-xwindows">
<title>Widgets Without X-Windows</title>

<para>
Some Widgets do not have an associated X-Window, so they therefore do not
receive X events. This means that the signals described in the  <link
    linkend="sec-xeventsignals">X event signals</link> section will not be
emitted. If you want to capture events for these widgets you can use a special
container called <classname>Gtk::EventBox</classname>, which is described in
the <link linkend="sec-eventbox">EventBox</link> section.
</para>

<para>
Here is a list of some of these Widgets:
</para>
<programlisting>Gtk::Alignment
Gtk::Arrow
Gtk::AspectFrame
Gtk::Bin
Gtk::Box
Gtk::Button
Gtk::CheckButton
Gtk::Fixed
Gtk::Frame
Gtk::Grid
Gtk::Image
Gtk::Label
Gtk::MenuItem
Gtk::Notebook
Gtk::Paned
Gtk::RadioButton
Gtk::Range
Gtk::ScrolledWindow
Gtk::Separator
Gtk::Table (deprecated from &gtkmm; version 3.4)
Gtk::Toolbar</programlisting>

<para>
These widgets are mainly used for decoration or layout, so you won't often need
to capture events on them. They are intended to have no X-Window in order to improve performance.
</para>

<sect1 id="sec-eventbox">
<title>EventBox</title>

<para>
Some &gtkmm; widgets don't have associated X windows; they draw on
their parents' windows. Because of this, they cannot receive events.
Also, if they are incorrectly sized, they don't clip, so you can get
messy overwriting etc. To receive events on one of these widgets, you can place it
inside an <classname>EventBox</classname> widget and then call
<methodname>Gtk::Widget::set_events()</methodname> on the EventBox before showing it.</para>

<para>Although the name
<classname>EventBox</classname> emphasises the event-handling method, the
widget can also be used for clipping (and more; see the example below).
</para>
<!--
<para>TODO: Why don't they have X Windows - explain clipping.
Also, how does this affect platform such as Windows and MacOS that don't use X.
</para>
-->

<para>
The constructor for <classname>Gtk::EventBox</classname> is:
</para>

<programlisting>Gtk::EventBox();</programlisting>

<para>
A child widget can be added to the <classname>EventBox</classname> using:
</para>

<programlisting>event_box.add(child_widget);</programlisting>

<para><ulink url="&url_refdocs_base_gtk;EventBox.html">Reference</ulink></para>

<sect2 id="eventbox-example">
<title>Example</title>
<para>
The following example demonstrates both uses of an
<classname>EventBox</classname> - a label is created that is clipped to a small
box, and set up so that a mouse-click on the label causes the program to exit.
Resizing the window reveals varying amounts of the label.
</para>

<figure id="figure-eventbox">
  <title>EventBox</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;eventbox.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;eventbox">Source Code</ulink></para>
</sect2>

</sect1>

</chapter>

<chapter id="chapter-dialogs">
<title>Dialogs</title>

<para>
Dialogs are used as secondary windows, to provide specific information or to
ask questions. <classname>Gtk::Dialog</classname> windows contain a few pre-packed
widgets to ensure consistency, and a <methodname>run()</methodname> method which
blocks until the user dismisses the dialog.
</para>

<para>
There are several derived <classname>Dialog</classname> classes which you might
find useful. <classname>Gtk::MessageDialog</classname> is used for most simple
notifications. But at other times you might need to derive your own dialog
class to provide more complex functionality.
</para>

<para>
To pack widgets into a custom dialog, you should pack them into the
<classname>Gtk::Box</classname>, available via
<methodname>get_content_area()</methodname>. To just add a <classname>Button</classname>
to the bottom of the <classname>Dialog</classname>, you could use the
<methodname>add_button()</methodname> method.
</para>

<para>
The <methodname>run()</methodname> method returns an <literal>int</literal>. This
may be a value from the <literal>Gtk::ResponseType</literal> if the user
closed the dialog by clicking a standard button, or it could be the custom
response value that you specified when using <methodname>add_button()</methodname>.
</para>

<para><ulink url="&url_refdocs_base_gtk;Dialog.html">Reference</ulink></para>

<sect1 id="sec-dialogs-messagedialog"><title>MessageDialog</title>
<para>
<classname>MessageDialog</classname> is a convenience class, used to create
simple, standard message dialogs, with a message, an icon, and buttons for user
response. You can specify the type of message and the text in the constructor,
as well as specifying standard buttons via the
<literal>Gtk::ButtonsType</literal> enum.
</para>

<para><ulink url="&url_refdocs_base_gtk;MessageDialog.html">Reference</ulink></para>

<sect2 id="messagedialog-example">
<title>Example</title>

<figure id="figure-dialogs-messagedialog">
  <title>MessageDialog</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;dialogs_messagedialog.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;dialogs/messagedialog">Source Code</ulink></para>
</sect2>

</sect1>

<sect1 id="sec-dialogs-filechooserdialog"><title>FileChooserDialog</title>
<para>
The <classname>FileChooserDialog</classname> is suitable for use with
&quot;Open&quot; or &quot;Save&quot; menu items.
</para>
<para>
Most of the useful member methods for this class are actually in the
<classname>Gtk::FileChooser</classname> base class.
</para>

<para><ulink url="&url_refdocs_base_gtk;FileChooserDialog.html">Reference</ulink></para>

<sect2 id="filechooserdialog-example">
<title>Example</title>

<figure id="figure-dialogs-filechooser">
  <title>FileChooser</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;dialogs_filechooser.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;dialogs/filechooserdialog">Source Code</ulink></para>
</sect2>
</sect1>

<sect1 id="sec-color-selection-dialog"><title>ColorChooserDialog</title>
<para>
The <classname>ColorChooserDialog</classname> allows the user to choose a
color. The <classname>ColorButton</classname> opens a color selection dialog
when it is clicked.
</para>

<para><ulink url="&url_refdocs_base_gtk;ColorChooserDialog.html">Reference</ulink></para>

<sect2 id="colorchooserdialog-example">
<title>Example</title>

<figure id="figure-dialogs-colorchooserdialog">
  <title>ColorChooserDialog</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;dialogs_colorchooserdialog.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;dialogs/colorchooserdialog">Source Code</ulink></para>
</sect2>

</sect1>

<sect1 id="sec-font-chooser-dialog"><title>FontChooserDialog</title>
<para>
The <classname>FontChooserDialog</classname> allows the user to choose a
font. The <classname>FontButton</classname> opens a font chooser dialog
when it is clicked.
</para>

<para><ulink url="&url_refdocs_base_gtk;FontChooserDialog.html">Reference</ulink></para>

<sect2 id="fontchooserdialog-example">
<title>Example</title>

<figure id="figure-dialogs-fontchooserdialog">
  <title>FontChooserDialog</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;dialogs_fontchooserdialog.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;dialogs/fontchooserdialog">Source Code</ulink></para>
</sect2>

</sect1>

<sect1 id="sec-about-dialog"><title>Non-modal AboutDialog</title>
<para>
The <classname>AboutDialog</classname> offers a simple way to display information
about a program, like its logo, name, copyright, website and license.
</para>
<para>
Most dialogs in this chapter are modal, that is, they freeze the rest of
the application while they are shown. It's also possible to create a non-modal
dialog, which does not freeze other windows in the application.
The following example shows a non-modal <classname>AboutDialog</classname>. This is
perhaps not the kind of dialog you would normally make non-modal, but non-modal
dialogs can be useful in other cases. E.g. <application>gedit</application>'s
search-and-replace dialog is non-modal.
</para>

<para><ulink url="&url_refdocs_base_gtk;AboutDialog.html">Reference</ulink></para>

<sect2 id="aboutdialog-example">
<title>Example</title>

<figure id="figure-dialogs-about">
  <title>AboutDialog</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;dialogs_about.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;dialogs/aboutdialog">Source Code</ulink></para>
</sect2>

</sect1>

</chapter>

<chapter id="chapter-drawingarea">
  <title>The Drawing Area Widget</title>
  <para>
    The <classname>DrawingArea</classname> widget is a blank window that gives
    you the freedom to create any graphic you desire. Along with that freedom
    comes the responsibility to handle draw signals on the widget. When a
    widget is first shown, or when it is covered and then uncovered again it
    needs to redraw itself. Most widgets have code to do this, but the
    DrawingArea does not, allowing you to write your own draw signal
    handler to determine how the contents of the widget will be drawn. This is
    most often done by overriding the virtual
    <methodname>on_draw()</methodname> member function.
  </para>

  <para>
      GTK+ uses the <ulink url="http://cairographics.org">Cairo</ulink> drawing API.
      With &gtkmm;, you may use the <ulink url="http://www.cairographics.org/cairomm/">cairomm</ulink> C++ API for cairo.
  </para>

  <para>
      You can draw very sophisticated shapes using Cairo, but the methods to do
      so are quite basic. Cairo provides methods for drawing straight lines,
      curved lines, and arcs (including circles). These basic shapes can be
      combined to create more complex shapes and paths which can be filled with
      solid colors, gradients, patterns, and other things. In addition, Cairo
      can perform complex transformations, do compositing of images, and render
      antialiased text.
  </para>
  <note>
      <title>Cairo and Pango</title>
      <para>Although Cairo can render text, it's not meant to be a replacement for
      Pango. Pango is a better choice if you need to perform more advanced
      text rendering such as wrapping or ellipsizing text. Drawing text with
      Cairo should only be done if the text is part of a graphic.</para>
  </note>
  <para>
      In this section of the tutorial, we'll cover the basic Cairo drawing
      model, describe each of the basic drawing elements in some detail (with
      examples), and then present a simple application that uses Cairo to draw
      a custom clock widget.
  </para>
  <sect1 id="sec-cairo-drawing-model">
    <title>The Cairo Drawing Model</title>
    <para>
        The basic concept of drawing in Cairo involves defining 'invisible'
        paths and then stroking or filling them to make them visible.
    </para>
    <para>
        To do any drawing in &gtkmm; with Cairo, you must first create a
        <classname>Cairo::Context</classname> object. This class holds all of the graphics state parameters that
        describe how drawing is to be done. This includes information such as
        line width, color, the surface to draw to, and many other things. This
        allows the actual drawing functions to take fewer arguments to simplify
        the interface. In &gtkmm;, a <classname>Cairo::Context</classname> is
        created by calling the
        <methodname>Gdk::Window::create_cairo_context()</methodname> function.
        Since Cairo contexts are reference-counted objects, this function
        returns a <classname>Cairo::RefPtr&lt;Cairo::Context&gt;</classname>
        object.
    </para>
    <para>
        The following example shows  how to set up a Cairo context with a
        foreground color of red and a width of 2. Any drawing functions that
        use this context will use these settings.
    </para>
    <programlisting>Gtk::DrawingArea myArea;
Cairo::RefPtr&lt;Cairo::Context&gt; myContext = myArea.get_window()->create_cairo_context();
myContext->set_source_rgb(1.0, 0.0, 0.0);
myContext->set_line_width(2.0);</programlisting>
    <para>
        Each <classname>Cairo::Context</classname> is associated with a
        particular <classname>Gdk::Window</classname>, so the first line of the
        above example creates a <classname>Gtk::DrawingArea</classname> widget
        and the second line uses its associated
        <classname>Gdk::Window</classname> to create a
        <classname>Cairo::Context</classname> object. The final two lines
        change the graphics state of the context.
    </para>
    <para>
        There are a number of graphics state variables that can be set for a
        Cairo context. The most common context attributes are color (using
        <methodname>set_source_rgb()</methodname> or
        <methodname>set_source_rgba()</methodname> for translucent colors), line
        width (using <methodname>set_line_width()</methodname>), line dash pattern
        (using <methodname>set_dash()</methodname>), line cap style (using
        <methodname>set_line_cap()</methodname>), and line join style (using
        <methodname>set_line_join()</methodname>), and font styles (using
        <methodname>set_font_size()</methodname>,
        <methodname>set_font_face()</methodname> and others).
        There are many other settings as well, such as transformation matrices,
        fill rules, whether to perform antialiasing, and others. For further
        information, see the <ulink url="http://www.cairographics.org/cairomm/">cairomm</ulink> API documentation.
    </para>
    <para>
        The current state of a <classname>Cairo::Context</classname> can be
        saved to an internal stack of saved states and later be restored to the
        state it was in when you saved it. To do this, use the
        <methodname>save()</methodname>
        method and the <methodname>restore()</methodname> method. This can be
        useful if you need to temporarily change the line width and color (or
        any other graphics setting) in order to draw something and then return
        to the previous settings. In this situation, you could call
        <methodname>Cairo::Context::save()</methodname>, change the graphics
        settings, draw the lines, and then call
        <methodname>Cairo::Context::restore()</methodname> to restore the original
        graphics state. Multiple calls to <methodname>save()</methodname> and
        <methodname>restore()</methodname> can be nested; each call to
        <methodname>restore()</methodname> restores the state from the
        matching paired <methodname>save()</methodname>.
        <tip>
            <para>It is good practice to put all modifications to the graphics state
            between <methodname>save()</methodname>/<methodname>restore()</methodname>
            function calls. For example, if you have a function that takes a
            <classname>Cairo::Context</classname> reference as an argument, you
            might implement it as follows:
          </para>
          <programlisting>void doSomething(const Cairo::RefPtr&lt;Cairo::Context&gt;&amp; context, int x)
{
    context->save();
    // change graphics state
    // perform drawing operations
    context->restore();
}</programlisting>
        </tip>
    </para>
    <para>
        The virtual <methodname>on_draw()</methodname> method provides a
        Cairo context that you shall use for drawing in the
        <classname>Gtk::DrawingArea</classname> widget. It is not necessary to
        save and restore this Cairo context in <methodname>on_draw()</methodname>.
    </para>
  </sect1>
  <sect1 id="sec-cairo-drawing-lines">
    <title>Drawing Straight Lines</title>
    <para>
        Now that we understand the basics of the Cairo graphics library, we're
        almost ready to start drawing. We'll start with the simplest of
        drawing elements: the straight line. But first you need to know a
        little bit about Cairo's coordinate system. The origin of the Cairo
        coordinate system is located in the upper-left corner of the window
        with positive x values to the right and positive y values going down.
        <tip>
            <para>Since the Cairo graphics library was written with support for
            multiple output targets (the X window system, PNG images, OpenGL,
            etc), there is a distinction between user-space and device-space
            coordinates. The mapping between these two coordinate systems
            defaults to one-to-one so that integer values map roughly to pixels
            on the screen, but this setting can be adjusted if desired.
            Sometimes it may be useful to scale the coordinates so that the
            full width and height of a window both range from 0 to 1 (the 'unit
            square') or some other mapping that works for your application.
            This can be done with the
            <methodname>Cairo::Context::scale()</methodname> function.</para>
        </tip>
    </para>

    <sect2 id="cairo-example-lines"><title>Example</title>
    <para>
        In this example, we'll construct a small but fully functional &gtkmm;
        program and draw some lines into the window. The lines are drawn by
        creating a path and then stroking it. A path is created using the
        functions <methodname>Cairo::Context::move_to()</methodname> and
        <methodname>Cairo::Context::line_to()</methodname>. The function
        <methodname>move_to()</methodname> is similar to the act of lifting your
        pen off of the paper and placing it somewhere else -- no line is drawn
        between the point you were at and the point you moved to. To draw a
        line between two points, use the <methodname>line_to()</methodname>
        function.
    </para>
    <para>
        After you've finished creating your path, you still haven't
        drawn anything visible yet. To make the path visible, you must use the
        function <methodname>stroke()</methodname> which will stroke the current
        path with the line width and style specified in your
        <classname>Cairo::Context</classname> object. After stroking, the
        current path will be cleared so that you can start on your next path.
    </para>
        <tip>
            <para>Many Cairo drawing functions have a <methodname>_preserve()</methodname>
            variant. Normally drawing functions such as
            <methodname>clip()</methodname>, <methodname>fill()</methodname>, or
            <methodname>stroke()</methodname> will clear the current path. If you
            use the <methodname>_preserve()</methodname> variant, the current path
            will be retained so that you can use the same path with the next
            drawing function.</para>
        </tip>

    <figure id="figure-drawingarea-lines">
      <title>Drawing Area - Lines</title>
      <screenshot>
        <graphic format="PNG" fileref="&url_figures_base;drawingarea_lines.png"/>
      </screenshot>
    </figure>

    <para><ulink url="&url_examples_base;drawingarea/simple">Source Code</ulink></para>

    <para>
        This program contains a single class, <classname>MyArea</classname>,
        which is a subclass of <classname>Gtk::DrawingArea</classname> and
        contains an <methodname>on_draw()</methodname> member function.
        This function is called whenever the image in the drawing area needs to
        be redrawn. It is passed a <classname>Cairo::RefPtr</classname>
        pointer to a <classname>Cairo::Context</classname> that we use
        for the drawing.
        The actual drawing code sets the color we want to use for drawing by
        using <methodname>set_source_rgb()</methodname> which takes arguments
        defining the Red, Green, and Blue components of the desired color
        (valid values are between 0 and 1). After setting the color, we
        created a new path using the functions <methodname>move_to()</methodname>
        and <methodname>line_to()</methodname>, and then stroked this path with
        <methodname>stroke()</methodname>.
    </para>
    <tip>
        <title>Drawing with relative coordinates</title>
        <para>In the example above we drew everything using absolute coordinates. You can also draw using
        relative coordinates. For a straight line, this is done with the
        function <methodname>Cairo::Context::rel_line_to()</methodname>.</para>
    </tip>
    </sect2>
    <sect2 id="cairo-line-styles">
        <title>Line styles</title>
        <para>
            In addition to drawing basic straight lines, there are a number of
            things that you can customize about a line. You've already seen
            examples of setting a line's color and width, but there are others
            as well.
        </para>
        <para>
            If you've drawn a series of lines that form a path, you may
            want them to join together in a certain way. Cairo offers
            three different ways to join lines together: Miter, Bevel, and
            Round. These are show below:
        </para>
        <figure id="figure-cairo-joins">
            <title>Different join types in Cairo</title>
            <screenshot>
                <graphic format="PNG" fileref="&url_figures_base;cairo_joins.png"/>
            </screenshot>
        </figure>
        <para>
            The line join style is set using the function
            <methodname>Cairo::Context::set_line_join()</methodname>.
        </para>
        <para>
            Line ends can have different styles as well. The default style
            is for the line to start and stop exactly at the destination
            points of the line. This is called a Butt cap. The other
            options are Round (uses a round ending, with the center of the
            circle at the end point) or Square (uses a squared ending, with
            the center of the square at the end point). This setting is set
            using the function
            <methodname>Cairo::Context::set_line_cap()</methodname>.
        </para>
        <para>
            There are other things you can customize as well, including
            creating dashed lines and other things. For more information, see
            the Cairo API documentation.
        </para>
    </sect2>
    <sect2 id="sec-cairo-thin-lines">
      <title>Drawing thin lines</title>
      <para>
        If you try to draw one pixel wide lines, you may notice that the line
        sometimes comes up blurred and wider than it ought to be.
        This happens because Cairo will try to draw from the selected position,
        to both sides (half to each), so if you're positioned right on the
        intersection of the pixels, and want a one pixel wide line, Cairo will try
        to use half of each adjacent pixel, which isn't possible (a pixel is the
        smallest unit possible). This happens when the width of the line is an
        odd number of pixels (not just one pixel).
      </para>
      <para>
        The trick is to position in the middle of the pixel where you want the
        line to be drawn, and thus guaranteeing you get the desired results.
        See <ulink url="http://cairographics.org/FAQ/#sharp_lines">Cairo FAQ</ulink>.
      </para>

      <figure id="figure-drawingarea-thin-lines">
        <title>Drawing Area - Thin Lines</title>
        <screenshot>
          <graphic format="PNG" fileref="&url_figures_base;drawingarea_thin_lines.png"/>
        </screenshot>
      </figure>

      <para><ulink url="&url_examples_base;drawingarea/thin_lines">Source Code</ulink></para>
    </sect2>
  </sect1>

    <sect1 id="sec-cairo-curved-lines">
        <title>Drawing Curved Lines</title>
        <para>
            In addition to drawing straight lines Cairo allows you to easily
            draw curved lines (technically a cubic Bézier spline) using the
            <methodname>Cairo::Context::curve_to()</methodname> and
            <methodname>Cairo::Context::rel_curve_to()</methodname> functions.
            These functions take coordinates for a destination point as well as
            coordinates for two 'control' points. This is best explained using
            an example, so let's dive in.
        </para>
        <sect2 id="cairo-example-curves">
            <title>Example</title>
            <para>
                This simple application draws a curve with Cairo and displays
                the control points for each end of the curve.
            </para>
        <figure id="figure-drawingarea-curve">
            <title>Drawing Area - Lines</title>
            <screenshot>
                <graphic format="PNG" fileref="&url_figures_base;drawingarea_curve.png"/>
            </screenshot>
        </figure>

        <para><ulink url="&url_examples_base;drawingarea/curve">Source Code</ulink></para>
        <para>
            The only difference between this example and the straight line
            example is in the <methodname>on_draw()</methodname> function,
            but there are a few new concepts and functions introduced here, so
            let's examine them briefly.
        </para>
        <para>
            We make a call to
            <methodname>Cairo::Context::scale()</methodname>, passing in the width
            and height of the drawing area. This scales the user-space
            coordinate system such that the width and height of the widget
            are both equal to 1.0 'units'. There's no particular reason to
            scale the coordinate system in this case, but sometimes it can make
            drawing operations easier.
        </para>
        <para>
            The call to <methodname>Cairo::Context::curve_to()</methodname> should
            be fairly self-explanatory. The first pair of coordinates define
            the control point for the beginning of the curve. The second set
            of coordinates define the control point for the end of the curve,
            and the last set of coordinates define the destination point. To
            make the concept of control points a bit easier to visualize, a
            line has been drawn from each control point to the end-point on the
            curve that it is associated with. Note that these control point
            lines are both translucent. This is achieved with a variant of
            <methodname>set_source_rgb()</methodname> called
            <methodname>set_source_rgba()</methodname>. This function takes a
            fourth argument specifying the alpha value of the color (valid
            values are between 0 and 1).
        </para>
        </sect2>
  </sect1>
  <sect1 id="sec-cairo-drawing-arcs">
      <title>Drawing Arcs and Circles</title>
      <para>
          With Cairo, the same function is used to draw arcs, circles, or
          ellipses: <methodname>Cairo::Context::arc()</methodname>. This function
          takes five arguments. The first two are the coordinates of the
          center point of the arc, the third argument is the radius of the arc,
          and the final two arguments define the start and end angle of the
          arc. All angles are defined in radians, so drawing a circle is the
          same as drawing an arc from 0 to 2 * M_PI radians.
          An angle of 0 is in the direction of the positive X axis (in user-space). An
          angle of M_PI/2 radians (90 degrees) is in the direction of the positive Y axis
          (in user-space). Angles increase in the direction from the positive X axis
          toward the positive Y axis. So with the default transformation matrix, angles
          increase in a clockwise direction. (Remember that the positive Y axis
          points downwards.)
      </para>
      <para>
          To draw an ellipse, you can scale the current transformation matrix
          by different amounts in the X and Y directions. For example, to draw
          an ellipse with center at <varname>x</varname>, <varname>y</varname>
          and size <varname>width</varname>, <varname>height</varname>:

          <programlisting>context->save();
context->translate(x, y);
context->scale(width / 2.0, height / 2.0);
context->arc(0.0, 0.0, 1.0, 0.0, 2 * M_PI);
context->restore();</programlisting>
      </para>
      <sect2 id="cairo-example-arcs">
          <title>Example</title>
          <para>
              Here's an example of a simple program that draws an arc, a circle
              and an ellipse into a drawing area.
          </para>
          <figure id="figure-drawingarea-arc">
              <title>Drawing Area - Arcs</title>
              <screenshot>
                  <graphic format="PNG"
                      fileref="&url_figures_base;drawingarea_arcs.png"/>
              </screenshot>
          </figure>

          <para><ulink url="&url_examples_base;drawingarea/arcs">Source Code</ulink></para>

          <para>
              There are a couple of things to note about this example code.
              Again, the only real difference between this example and the
              previous ones is the <methodname>on_draw()</methodname>
              function, so we'll limit our focus to that function. In
              addition, the first part of the function is nearly identical to
              the previous examples, so we'll skip that portion.
          </para>
          <para>
              Note that in this case, we've expressed nearly everything in
              terms of the height and width of the window, including the width
              of the lines. Because of this, when you resize the window,
              everything scales with the window. Also note that there are
              three drawing sections in the function and each is wrapped with a
              <methodname>save()</methodname>/<methodname>restore()</methodname> pair
              so that we're back at a known state after each drawing.
          </para>
          <para>
              The section for drawing an arc introduces one new function,
              <methodname>close_path()</methodname>. This function will in effect
              draw a straight line from the current point back to the first
              point in the path. There is a significant difference between
              calling <methodname>close_path()</methodname> and manually drawing a
              line back to the starting point, however. If you use
              <methodname>close_path()</methodname>, the lines will be nicely
              joined together. If you use <methodname>line_to()</methodname>
              instead, the lines will end at the same point, but Cairo won't do
              any special joining.
          </para>
          <note>
              <title>Drawing counter-clockwise</title>
              <para>
                  The function
                  <methodname>Cairo::Context::arc_negative()</methodname> is
                  exactly the same as
                  <methodname>Cairo::Context::arc()</methodname> but the angles go
                  the opposite direction.
              </para>
          </note>

      </sect2>
  </sect1>
  <sect1 id="sec-drawing-text">
      <title>Drawing Text</title>
      <sect2 id="drawing-text-pango">
          <title>Drawing Text with Pango</title>
          <para>
              Text is drawn via Pango Layouts. The easiest way to create a
              <classname>Pango::Layout</classname> is to use
              <methodname>Gtk::Widget::create_pango_layout()</methodname>.
              Once created, the layout can be manipulated in various ways,
              including changing the text, font, etc. Finally, the layout can
              be rendered using the
              <methodname>Pango::Layout::show_in_cairo_context()</methodname> method.
          </para>
      </sect2>
      <sect2 id="pango-text-example">
        <title>Example</title>
        <para>
           Here is an example of a program that draws some text, some of it
           upside-down. The Printing chapter contains another
           <link linkend="sec-printing-example">example</link> of drawing text.
        </para>
        <figure id="figure-drawingarea-pango-text">
            <title>Drawing Area - Text</title>
            <screenshot>
                <graphic format="PNG" fileref="&url_figures_base;drawingarea_pango_text.png"/>
            </screenshot>
        </figure>

        <para><ulink url="&url_examples_base;drawingarea/pango_text">Source Code</ulink></para>
      </sect2>

      <!--
      <sect2 id="drawing-text-cairo">
          <title>Drawing Text with Cairo</title>
          <warning>TODO: Add Cairo content.</warning>
      </sect2>
      -->
  </sect1>
  <sect1 id="sec-draw-images">
      <title>Drawing Images</title>
          <para>
              There is a method for drawing from a
              <classname>Gdk::Pixbuf</classname> to a <classname>Cairo::Context</classname>.
              A <classname>Gdk::Pixbuf</classname> buffer is a useful wrapper
              around a collection of pixels, which can be read from files, and
              manipulated in various ways.
          </para>
          <para>
              Probably the most common way of creating
              <classname>Gdk::Pixbuf</classname>s is to use
              <methodname>Gdk::Pixbuf::create_from_file()</methodname>, which can
              read an image file, such as a png file into a pixbuf ready for
              rendering.
          </para>
          <para>
              The <classname>Gdk::Pixbuf</classname> can be rendered by setting
              it as the source pattern of the Cairo context with
              <methodname>Gdk::Cairo::set_source_pixbuf()</methodname>.
              Then draw the image with either <methodname>Cairo::Context::paint()</methodname>
              (to draw the whole image), or <methodname>Cairo::Context::rectangle()</methodname>
              and <methodname>Cairo::Context::fill()</methodname> (to fill the
              specified rectangle). <methodname>set_source_pixbuf()</methodname>
              is not a member of <classname>Cairo::Context</classname>. It takes
              a <classname>Cairo::Context</classname> as its first parameter.
          </para>
          <para>
              Here is a small bit of code to tie it all together: (Note that
              usually you wouldn't load the image every time in the draw
              signal handler! It's just shown here to keep it all together.)
          </para>
          <programlisting>bool MyArea::on_draw(const Cairo::RefPtr&lt;Cairo::Context&gt;&amp; cr)
{
  Glib::RefPtr&lt;Gdk::Pixbuf&gt; image = Gdk::Pixbuf::create_from_file("myimage.png");
  // Draw the image at 110, 90, except for the outermost 10 pixels.
  Gdk::Cairo::set_source_pixbuf(cr, image, 100, 80);
  cr-&gt;rectangle(110, 90, image-&gt;get_width()-20, image-&gt;get_height()-20);
  cr-&gt;fill();
  return true;
}</programlisting>
        <sect2 id="cairo-example-image">
            <title>Example</title>
            <para>
                Here is an example of a simple program that draws an image.
            </para>
        <figure id="figure-drawingarea-image">
            <title>Drawing Area - Image</title>
            <screenshot>
                <graphic format="PNG" fileref="&url_figures_base;drawingarea_image.png"/>
            </screenshot>
        </figure>

        <para><ulink url="&url_examples_base;drawingarea/image">Source Code</ulink></para>
        </sect2>
  </sect1>
  <!--
  <sect1 id="sec-drawing-fill">
      <title>Gradients and other fill techniques</title>
      <warning>TODO: Add content.</warning>
  </sect1>
  <sect1 id="sec-drawing-transformations">
      <title>Transformations with Cairo</title>
      <warning>TODO: Add content.</warning>
  </sect1>
  -->
  <sect1 id="sec-drawing-clock-example">
      <title>Example Application: Creating a Clock with Cairo</title>
      <para>
          Now that we've covered the basics of drawing with Cairo, let's try to
          put it all together and create a simple application that actually
          does something. The following example uses Cairo to create a custom
          <classname>Clock</classname> widget. The clock has a second hand, a
          minute hand, and an hour hand, and updates itself every second.
      </para>
      <screenshot>
          <graphic format="PNG"
              fileref="&url_figures_base;cairo_clock.png"/>
      </screenshot>
      <para><ulink url="&url_examples_base;drawingarea/clock">Source Code</ulink></para>
      <para>
          As before, almost all of the interesting stuff is done in the draw
          signal handler <methodname>on_draw()</methodname>. Before we dig
          into the draw signal handler, notice that the constructor for the
          <classname>Clock</classname> widget connects a handler function
          <methodname>on_timeout()</methodname> to a timer with a timeout
          period of 1000 milliseconds (1 second). This means that
          <methodname>on_timeout()</methodname> will get called once per
          second. The sole responsibility of this function is to invalidate
          the window so that &gtkmm; will be forced to redraw it.
      </para>
      <para>
          Now let's take a look at the code that performs the actual drawing.
          The first section of <methodname>on_draw()</methodname> should be
          pretty familiar by now. This example again scales the coordinate system
          to be a unit square so that it's easier to draw the clock as a
          percentage of window size so that it will automatically scale when
          the window size is adjusted. Furthermore, the coordinate system is
          scaled over and down so that the (0, 0) coordinate is in the very
          center of the window.
      </para>
      <para>
          The function <methodname>Cairo::Context::paint()</methodname> is used here
          to set the background color of the window. This function takes no
          arguments and fills the current surface (or the clipped portion of
          the surface) with the source color currently active. After setting
          the background color of the window, we draw a circle for the clock
          outline, fill it with white, and then stroke the outline in black.
          Notice that both of these actions use the
          <methodname>_preserve</methodname> variant to preserve the current path,
          and then this same path is clipped to make sure that our next lines
          don't go outside the outline of the clock.
      </para>
      <para>
          After drawing the outline, we go around the clock and draw ticks for
          every hour, with a larger tick at 12, 3, 6, and 9. Now we're finally
          ready to implement the time-keeping functionality of the clock, which
          simply involves getting the current values for hours, minutes and
          seconds, and drawing the hands at the correct angles.
      </para>
  </sect1>
</chapter>

<chapter id="chapter-draganddrop">
<title>Drag and Drop</title>
<para>
<classname>Gtk::Widget</classname> has several methods and signals which are
prefixed with "drag_". These are used for Drag and Drop.
</para>
<sect1 id="sec-dnd-sources-destinations">
<title>Sources and Destinations</title>
<para>
Things are dragged from <literal>sources</literal> to be dropped on
<literal>destinations</literal>. Each source and destination has infomation
about the data formats that it can send or receive, provided by
<classname>Gtk::TargetEntry</classname> items. A drop destination will only
accept a dragged item if they both share a compatible
<classname>Gtk::TargetEntry</classname> item. Appropriate signals will then be
emitted, telling the signal handlers which
<classname>Gtk::TargetEntry</classname> was used.
</para>
<para>
<classname>Gtk::TargetEntry</classname> objects contain this information:
<itemizedlist>
<listitem><para>target: A name, such as &quot;STRING&quot;</para></listitem>
<listitem><para>info: An identifier which will be sent to your signals to tell you which TargetEntry was used.</para></listitem>
<listitem><para>flags: Used only for drag and drop, this specifies whether the data may be dragged to other widgets and applications, or only to the same ones.</para></listitem>
</itemizedlist>
</para>

</sect1>

<sect1 id="sec-dnd-methods">
<title>Methods</title>
<para>
<classname>Widget</classname>s can be identified as sources or destinations
using these <classname>Gtk::Widget</classname> methods:
</para>
<programlisting>void drag_source_set(const std::vector&lt;Gtk::TargetEntry&gt;&amp; targets,
      Gdk::ModifierType start_button_mask, Gdk::DragAction actions);</programlisting>

<itemizedlist>
<listitem>
    <para>
        <literal>targets</literal> is a vector of
        <classname>Gtk::TargetEntry</classname> elements.
    </para>
</listitem>
<listitem>
    <para>
        <literal>start_button_mask</literal> is an ORed combination of values,
        which specify which modifier key or mouse button must be pressed to
        start the drag.
    </para>
</listitem>
<listitem>
    <para>
        <literal>actions</literal> is an ORed combination of values, which
        specified which Drag and Drop operations will be possible from this
        source - for instance, copy, move, or link. The user can choose between
        the actions by using modifier keys, such as <keycap>Shift</keycap> to
        change from <literal>copy</literal> to <literal>move</literal>, and
        this will be shown by a different cursor.
    </para>
</listitem>
</itemizedlist>

<programlisting>void drag_dest_set(const std::vector&lt;Gtk::TargetEntry&gt;&amp; targets,
    Gtk::DestDefaults flags, Gdk::DragAction actions);</programlisting>

<itemizedlist>
<listitem>
    <para>
        <literal>flags</literal> is an ORed combination of values which
        indicates how the widget will respond visually to Drag and Drop items.
    </para>
</listitem>
<listitem>
    <para>
        <literal>actions</literal> indicates the Drag and Drop actions which
        this destination can receive - see the description above.
    </para>
</listitem>
</itemizedlist>
</sect1>

<sect1 id="sec-dnd-signals">
<title>Signals</title>
<para>
When a drop destination has accepted a dragged item, certain signals will be
emitted, depending on what action has been selected. For instance, the user
might have held down the <keycap>Shift</keycap> key to specify a
<literal>move</literal> rather than a <literal>copy</literal>. Remember that
the user can only select the actions which you have specified in your calls to
<methodname>drag_dest_set()</methodname> and
<methodname>drag_source_set()</methodname>.
</para>

<sect2 id="sec-dnd-signals-copy">
<title>Copy</title>
<para>
The source widget will emit these signals, in this order:
<itemizedlist>
<listitem><para><literal>drag_begin</literal>: Provides DragContext.</para></listitem>
<listitem><para><literal>drag_data_get</literal>: Provides <literal>info</literal> about the dragged data format, and a <literal>Gtk::SelectionData</literal> structure, in which you should put the requested data.</para></listitem>
<listitem><para><literal>drag_end</literal>: Provides DragContext.</para></listitem>
</itemizedlist>
</para>
<para>
The destination widget will emit these signals, in this order:
<itemizedlist>
<listitem><para><literal>drag_motion</literal>: Provides DragContext and coordinates.
  You can call the <methodname>drag_status()</methodname> method of the DragContext
  to indicate which action will be accepted.</para></listitem>
<listitem><para><literal>drag_drop</literal>: Provides DragContext and coordinates.
  You can call <methodname>drag_get_data()</methodname>, which triggers the
  <literal>drag_data_get</literal> signal in the source widget, and then the
  <literal>drag_data_received</literal> signal in the destination widget.</para></listitem>
<listitem>
    <para>
        <literal>drag_data_received</literal>: Provides <literal>info</literal>
        about the dragged data format, and a
        <literal>Gtk::SelectionData</literal> structure which contains the
        dropped data. You should  call the <methodname>drag_finish()</methodname>
        method of the <literal>DragContext</literal> to indicate whether the
        operation was successful.
    </para>
</listitem>
</itemizedlist>
</para>

</sect2>

<sect2 id="dnd-signal-move">
<title>Move</title>
<para>During a <literal>move</literal>, the source widget will also emit this signal:
<itemizedlist>
<listitem><para><literal>drag_data_delete</literal>: Gives the source the opportunity to delete the original data if that's appropriate.</para></listitem>
</itemizedlist>
</para>
</sect2>

<!--
<sect2 id="dnd-signal-link">
<title>Link</title>
<para>TODO: Find an example or documentation.</para>
</sect2>
-->
</sect1>

<sect1 id="sec-dragcontext">
<title>DragContext</title>
<para>
The drag and drop signals provide a DragContext, which contains some
information about the drag and drop operation and can be used to influence the
process. For instance, you can discover the source widget, or  change the drag
and drop icon, by using the <methodname>set_icon()</methodname> methods. More
importantly, you should call the <methodname>drag_finish()</methodname> method from
your <literal>drag_data_received</literal> signal handler to indicate whether
the drop was successful.
</para>
</sect1>

<sect1 id="sec-dnd-example">
<title>Example</title>
<para>Here is a very simple example, demonstrating a drag and drop <literal>Copy</literal> operation:</para>

<figure id="figure-drag-and-drop">
  <title>Drag and Drop</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;drag_and_drop.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;drag_and_drop">Source Code</ulink></para>

<para>
There is a more complex example in examples/others/dnd.
</para>

</sect1>

</chapter>

<chapter id="chapter-clipboard">
<title>The Clipboard</title>
<para>Simple text copy-paste functionality is provided for free by widgets such as
<classname>Gtk::Entry</classname> and <classname>Gtk::TextView</classname>,
but you might need special code to deal with your own data formats. For instance,
a drawing program would need special code to allow copy and paste within a view,
or between documents.</para>

<para>
You can usually pretend that <classname>Gtk::Clipboard</classname> is a singleton.
You can get the default clipboard instance with <methodname>Gtk::Clipboard::get()</methodname>.
This is probably the only clipboard you will ever need.
</para>

<para>
Your application doesn't need to wait for clipboard operations, particularly
between the time when the user chooses Copy and then later chooses Paste. Most
<classname>Gtk::Clipboard</classname> methods take
<classname>sigc::slot</classname>s which specify callback methods. When
<classname>Gtk::Clipboard</classname> is ready, it will call these methods,
either providing the requested data, or asking for data.
</para>

<para><ulink url="&url_refdocs_base_gtk;Clipboard.html">Reference</ulink></para>

<sect1 id="sec-clipboard-targets">
<title>Targets</title>
<para>
Different applications contain different types of data, and they might make that data available in
a variety of formats. &gtkmm; calls these data types <literal>target</literal>s.</para>

<para>
For instance, <application>gedit</application> can supply and receive the <literal>&quot;UTF8_STRING&quot;</literal>
target, so you can paste data into <application>gedit</application> from any application that supplies that target.
Or two different image editing applications might supply and receive a variety of image formats as targets.
As long as one application can receive one of the targets that the other supplies then you will be able to copy data from one to the other.
</para>

<para>
A target can be in a variety of binary formats. This chapter, and the examples,
assume that the data is 8-bit text. This would allow us to use an XML format
for the clipboard data. However this would probably not be appropriate for
binary data such as images. <classname>Gtk::Clipboard</classname> provides
overloads that allow you to specify the format in more detail if
necessary.
</para>

<para>The <link linkend="chapter-draganddrop">Drag and Drop</link> API uses the same mechanism.
You should probably use the same data targets and formats for both Clipboard and Drag and Drop operations.</para>
</sect1>

<sect1 id="sec-clipboard-copy">
<title>Copy</title>
<para>
When the user asks to copy some data, you should tell the
<classname>Clipboard</classname> what targets are available, and provide the
callback methods that it can use to get the data. At this point you should
store a copy of the data, to be provided when the clipboard calls your callback
method in response to a paste.
</para>
<para>For instance,
</para>
<programlisting>Glib::RefPtr&lt;Gtk::Clipboard&gt; refClipboard = Gtk::Clipboard::get();

//Targets:
std::vector&lt;Gtk::TargetEntry&gt; targets;
targets.push_back( Gtk::TargetEntry(&quot;example_custom_target&quot;) );
targets.push_back( Gtk::TargetEntry("UTF8_STRING") );

refClipboard-&gt;set( targets,
    sigc::mem_fun(*this, &amp;ExampleWindow::on_clipboard_get),
    sigc::mem_fun(*this, &amp;ExampleWindow::on_clipboard_clear) );</programlisting>

<para>Your callback will then provide the stored data when the user chooses to paste the data. For instance:
</para>
<programlisting>void ExampleWindow::on_clipboard_get(
    Gtk::SelectionData&amp; selection_data, guint /* info */)
{
  const std::string target = selection_data.get_target();

  if(target == &quot;example_custom_target&quot;)
    selection_data.set(&quot;example_custom_target&quot;, m_ClipboardStore);
}</programlisting>
<para>
The <literal>ideal</literal> example below can supply more than one clipboard target.
</para>

<para>The clear callback allows you to free the memory used by your stored data when the clipboard replaces its data with something else.
</para>

</sect1>

<sect1 id="sec-clipboard-paste">
<title>Paste</title>
<para>
When the user asks to paste data from the <classname>Clipboard</classname>, you
should request a specific format and provide a callback method which will be
called with the actual data. For instance:
</para>
<programlisting>refClipboard-&gt;request_contents(&quot;example_custom_target&quot;,
    sigc::mem_fun(*this, &amp;ExampleWindow::on_clipboard_received) );</programlisting>

<para>Here is an example callback method:
</para>
<programlisting>void ExampleWindow::on_clipboard_received(
    const Gtk::SelectionData&amp; selection_data)
{
  Glib::ustring clipboard_data = selection_data.get_data_as_string();
  //Do something with the pasted data.
}</programlisting>

<sect2 id="dnd-discovering-targets">
<title>Discovering the available targets</title>
<para>
To find out what targets are currently available on the
<classname>Clipboard</classname> for pasting, call the
<methodname>request_targets()</methodname> method, specifying a method to be called
with the information. For instance:
</para>
<programlisting>refClipboard-&gt;request_targets( sigc::mem_fun(*this,
    &amp;ExampleWindow::on_clipboard_received_targets) );</programlisting>

<para>
In your callback, compare the vector of available targets with those that your application supports for pasting. You could enable or disable a Paste menu item, depending on whether pasting is currently possible. For instance:
</para>
<programlisting>void ExampleWindow::on_clipboard_received_targets(
  const std::vector&lt;Glib::ustring&gt;&amp; targets)
{
  const bool bPasteIsPossible =
    std::find(targets.begin(), targets.end(),
      example_target_custom) != targets.end();

  // Enable/Disable the Paste button appropriately:
  m_Button_Paste.set_sensitive(bPasteIsPossible);
}</programlisting>
</sect2>

</sect1>

<sect1 id="sec-clipboard-examples"><title>Examples</title>

<sect2 id="sec-clipboard-example-simple"><title>Simple</title>
<para>
This example allows copy and pasting of application-specific data, using the
standard text target. Although this is simple, it's not ideal because it does
not identify the <classname>Clipboard</classname> data as being of a particular
type.
</para>

<figure id="figure-clipboard-simple">
  <title>Clipboard - Simple</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;clipboard_simple.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;clipboard/simple/">Source Code</ulink></para>

</sect2>

<sect2 id="sec-clipboard-example-ideal"><title>Ideal</title>
<para>This is like the simple example, but it
<orderedlist>
<listitem><simpara>Defines a custom clipboard target, though the format of that target is still text.</simpara></listitem>
<listitem><simpara>It supports pasting of 2 targets - both the custom one and a text one that creates an arbitrary text representation of the custom data.</simpara></listitem>
<listitem><simpara>It uses <methodname>request_targets()</methodname> and the <literal>owner_change</literal> signal and disables the Paste button if it can't use anything on the clipboard.</simpara></listitem>
</orderedlist>
</para>

<figure id="figure-clipboard-ideal">
  <title>Clipboard - Ideal</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;clipboard_ideal.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;clipboard/ideal/">Source Code</ulink></para>

</sect2>

</sect1>


</chapter>

<chapter id="chapter-printing">
<title>Printing</title>

<para>
At the application development level, &gtkmm;'s printing API
provides dialogs that are consistent across applications and allows use of Cairo's common drawing API, with Pango-driven text rendering. In the implementation of this common API, platform-specific backends and printer-specific drivers are used.
</para>

<sect1 id="sec-printoperation">
<title>PrintOperation</title>

<para>
The primary object is <classname>Gtk::PrintOperation</classname>, allocated
for each print operation. To handle page drawing connect to its signals,
or inherit from it and override the default virtual signal handlers.
<classname>PrintOperation</classname> automatically handles all the settings
affecting the print loop.
</para>

<sect2 id="sec-printoperation-signals">
<title>Signals</title>

<para>
The <methodname>PrintOperation::run()</methodname> method starts the print loop,
during which various signals are emitted:

<itemizedlist>
  <listitem>
    <para>
      <literal>begin_print</literal>:
      You must handle this signal, because this is where you
      create and set up a <classname>Pango::Layout</classname> using the
      provided <classname>Gtk::PrintContext</classname>, and break up your
      printing output into pages.
    </para>
  </listitem>

  <listitem>
    <para>
      <literal>paginate</literal>: Pagination is potentially slow so if you
      need to monitor it you can call the
      <methodname>PrintOperation::set_show_progress()</methodname> method and
      handle this signal.
    </para>
  </listitem>

  <listitem>
    <para>
      For each page that needs to be rendered, the following signals
      are emitted:
      <itemizedlist>
        <listitem>
          <para>
            <literal>request_page_setup</literal>: Provides a
            <classname>PrintContext</classname>, page number and
            <classname>Gtk::PageSetup</classname>. Handle this signal if you
            need to modify page setup on a per-page basis.
          </para>
        </listitem>

        <listitem>
          <para>
            <literal>draw_page</literal>: You must handle this signal, which provides a
            <classname>PrintContext</classname> and a page number.
            The <classname>PrintContext</classname> should be used
            to create a <classname>Cairo::Context</classname> into which
            the provided page should be drawn. To render text, iterate over
            the <classname>Pango::Layout</classname> you created in the
            <literal>begin_print</literal> handler.
          </para>
        </listitem>
      </itemizedlist>
    </para>
  </listitem>

  <listitem>
    <para>
      <literal>end_print</literal>: A handler for it is a safe place to free
      any resources related to a <classname>PrintOperation</classname>.
      If you have your custom class that inherits from
      <classname>PrintOperation</classname>, it is naturally simpler to do it
      in the destructor.
    </para>
  </listitem>

  <listitem>
    <para>
      <literal>done</literal>: This signal is emitted when printing is finished, meaning when the
      print data is spooled. Note that the provided
      <literal>Gtk::PrintOperationResult</literal> may indicate that
      an error occurred. In any case you probably want to notify the user
      about the final status.
    </para>
  </listitem>

  <listitem>
    <para>
      <literal>status_changed</literal>: Emitted whenever a print job's
      status changes, until it is finished. Call the
      <methodname>PrintOperation::set_track_print_status()</methodname> method to
      monitor the job status after spooling. To see the status, use
      <methodname>get_status()</methodname> or
      <methodname>get_status_string()</methodname>.
    </para>
  </listitem>
</itemizedlist>

</para>

<para>
<ulink url="&url_refdocs_base_gtk;PrintOperation.html">Reference</ulink>
</para>

</sect2>

</sect1>

<sect1 id="sec-page-setup">
<title>Page setup</title>

<para>
The <classname>PrintOperation</classname> class has a method called
<methodname>set_default_page_setup()</methodname> which selects the default
paper size, orientation and margins. To show a page setup dialog from your
application, use the <methodname>Gtk::run_page_setup_dialog()</methodname> method,
which returns a <classname>Gtk::PageSetup</classname> object with the chosen
settings. Use this object to update a <classname>PrintOperation</classname>
and to access the selected <classname>Gtk::PaperSize</classname>,
<literal>Gtk::PageOrientation</literal> and printer-specific margins.
</para>
<para>You should save the chosen <classname>Gtk::PageSetup</classname>
so you can use it again if the page setup dialog is shown again.</para>

<para>For instance,
<programlisting>
//Within a class that inherits from Gtk::Window and keeps m_refPageSetup and m_refSettings as members...
Glib::RefPtr&lt;Gtk::PageSetup&gt; new_page_setup = Gtk::run_page_setup_dialog(*this, m_refPageSetup, m_refSettings);
m_refPageSetup = new_page_setup;
</programlisting>
</para>

<para>
<ulink url="&url_refdocs_base_gtk;PageSetup.html">Reference</ulink>
</para>

<para>
The Cairo coordinate system, in the <literal>draw_page</literal> handler,
is automatically rotated to the current page orientation. It is normally
within the printer margins, but you can change that via the
<methodname>PrintOperation::set_use_full_page()</methodname>
method. The default measurement unit is device pixels. To select other units,
use the <methodname>PrintOperation::set_unit()</methodname> method.
</para>

</sect1>

<sect1 id="sec-printing-rendering-text">
<title>Rendering text</title>

<para>
Text rendering is done using Pango.
The <classname>Pango::Layout</classname> object for printing should be created by calling
the <methodname>PrintContext::create_pango_layout()</methodname> method.
The <classname>PrintContext</classname> object also provides the page metrics,
via <methodname>get_width()</methodname> and <methodname>get_height()</methodname>.
The number of pages can be set with
<methodname>PrintOperation::set_n_pages()</methodname>. To actually render the
 Pango text in <literal>on_draw_page</literal>, get a
<classname>Cairo::Context</classname> with
<methodname>PrintContext::get_cairo_context()</methodname> and show the
<classname>Pango::LayoutLine</classname>s that appear within the requested
page number.
</para>

<para>
See <link linkend="sec-printing-example-simple">an example</link>
of exactly how this can be done.
</para>

</sect1>

<sect1 id="sec-async-printing-ops">
<title>Asynchronous operations</title>

<para>
By default, <methodname>PrintOperation::run()</methodname> returns when a print
operation is completed. If you need to run a non-blocking print operation,
call <methodname>PrintOperation::set_allow_async()</methodname>. Note that <methodname>set_allow_async()</methodname> is not supported
on all platforms, however the <literal>done</literal> signal will still be emitted.
</para>

<para>
<methodname>run()</methodname> may return
<literal>PRINT_OPERATION_RESULT_IN_PROGRESS</literal>. To track status
and handle the result or error you need to implement signal handlers for
the <literal>done</literal> and <literal>status_changed</literal> signals:
</para>

<para>For instance,
<programlisting>
// in class ExampleWindow's method...
Glib::RefPtr&lt;PrintOperation&gt; op = PrintOperation::create();
// ...set up op...
op->signal_done().connect(sigc::bind(sigc::mem_fun(*this, &amp;ExampleWindow::on_printoperation_done), op));
// run the op
</programlisting>
</para>

<para>Second, check for an error and connect to the <literal>status_changed</literal> signal. For instance:
<programlisting>
void ExampleWindow::on_printoperation_done(Gtk::PrintOperationResult result, const Glib::RefPtr&lt;PrintOperation&gt;&amp; op)
{
  if (result == Gtk::PRINT_OPERATION_RESULT_ERROR)
    //notify user
  else if (result == Gtk::PRINT_OPERATION_RESULT_APPLY)
    //Update PrintSettings with the ones used in this PrintOperation

  if (! op->is_finished())
    op->signal_status_changed().connect(sigc::bind(sigc::mem_fun(*this, &amp;ExampleWindow::on_printoperation_status_changed), op));
}
</programlisting>
</para>

<para>Finally, check the status. For instance,
<programlisting>
void ExampleWindow::on_printoperation_status_changed(const Glib::RefPtr&lt;PrintFormOperation&gt;&amp; op)
{
  if (op->is_finished())
    //the print job is finished
  else
    //get the status with get_status() or get_status_string()

  //update UI
}
</programlisting>
</para>

</sect1>

<sect1 id="sec-printing-export-to-pdf">
<title>Export to PDF</title>
<para>
The 'Print to file' option is available in the print dialog, without the need for extra implementation. However, it is sometimes useful to generate a pdf file directly from code. For instance,

<programlisting>
Glib::RefPtr&lt;Gtk::PrintOperation&gt; op = Gtk::PrintOperation::create();
// ...set up op...
op->set_export_filename(&quot;test.pdf&quot;);
Gtk::PrintOperationResult res = op-&gt;run(Gtk::PRINT_OPERATION_ACTION_EXPORT);
</programlisting>

</para>

</sect1>

<sect1 id="sec-extending-print-dialog">
<title>Extending the print dialog</title>

<para>
You may add a custom tab to the print dialog:

<itemizedlist>
  <listitem>
    <para>
      Set the title of the tab via
      <methodname>PrintOperation::set_custom_tab_label()</methodname>,
      create a new widget and return it from the
      <literal>create_custom_widget</literal> signal handler. You'll probably
      want this to be a container widget, packed with some others.
    </para>
  </listitem>

  <listitem>
    <para>
      Get the data from the widgets in the
      <literal>custom_widget_apply</literal> signal handler.
    </para>
  </listitem>
</itemizedlist>
</para>

<para>
Although the <literal>custom_widget_apply</literal> signal provides the widget you
previously created, to simplify things you can keep the widgets you expect
to contain some user input as class members. For example, let's say you have
a <classname>Gtk::Entry</classname> called <literal>m_Entry</literal> as
a member of your <classname>CustomPrintOperation</classname> class:

<programlisting>
Gtk::Widget* CustomPrintOperation::on_create_custom_widget()
{
  set_custom_tab_label(&quot;My custom tab&quot;);

  Gtk::Box* hbox = new Gtk::Box(Gtk::ORIENTATION_HORIZONTAL, 8);
  hbox-&gt;set_border_width(6);

  Gtk::Label* label = Gtk::manage(new Gtk::Label("Enter some text: "));
  hbox-&gt;pack_start(*label, false, false);
  label-&gt;show();

  hbox-&gt;pack_start(m_Entry, false, false);
  m_Entry.show();

  return hbox;
}

void CustomPrintOperation::on_custom_widget_apply(Gtk::Widget* /* widget */)
{
  Glib::ustring user_input = m_Entry.get_text();
  //...
}
</programlisting>

</para>

<para>
The example in examples/book/printing/advanced demonstrates this.
</para>

</sect1>

<sect1 id="sec-printing-preview">
<title>Preview</title>

<para>
The native GTK+ print dialog has a preview button, but you may also start
a preview directly from an application:

<programlisting>
// in a class that inherits from Gtk::Window...
Glib::RefPtr&lt;PrintOperation&gt; op = PrintOperation::create();
// ...set up op...
op->run(Gtk::PRINT_OPERATION_ACTION_PREVIEW, *this);
</programlisting>
</para>

<para>
On Unix, the default preview handler uses an external viewer program.
On Windows, the native preview dialog will be shown. If necessary you may
override this behaviour and provide a custom preview dialog. See the example
located in /examples/book/printing/advanced.
</para>

</sect1>

<sect1 id="sec-printing-example">
<title>Example</title>

<sect2 id="sec-printing-example-simple">
<title>Simple</title>

<para>
The following example demonstrates how to print some input from a user
interface. It shows how to implement <literal>on_begin_print</literal>
and <literal>on_draw_page</literal>, as well as how to track print status
and update the print settings.
</para>

<figure id="figure-printing-simple">
  <title>Printing - Simple</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;printing.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;printing/simple/">Source Code</ulink></para>

</sect2>

</sect1>

</chapter>

<chapter id="chapter-recent-documents">
  <title>Recently Used Documents</title>

  <para>
    &gtkmm; provides an easy way to manage recently used documents. The classes
    involved in implementing this functionality are
    <classname>RecentManager</classname>,
    <classname>RecentChooserDialog</classname>,
    <classname>RecentChooserMenu</classname>,
    <classname>RecentChooserWidget</classname>,
    <classname>RecentAction</classname>, and
    <classname>RecentFilter</classname>.
  </para>
  <para>
    Each item in the list of recently used files is identified by its URI, and
    can have associated metadata. The metadata can be used to specify how the
    file should be displayed, a description of the file, its mime type, which
    application registered it, whether it's private to the registering
    application, and several other things.
  </para>
  <sect1 id="sec-recentmanager">
    <title>RecentManager</title>
    <para>
      <classname>RecentManager</classname> acts as a database of
      recently used files. You use this class to register new files, remove
      files from the list, or look up recently used files. There is one list
      of recently used files per user.
    </para>
    <para>
      You can create a new <classname>RecentManager</classname>, but you'll most
      likely just want to use the default one. You can get a reference to the
      default <classname>RecentManager</classname> with
      <methodname>get_default()</methodname>.
    </para>
    <para>
      <classname>RecentManager</classname> is the model of a model-view pattern,
      where the view is a class that implements the
      <classname>RecentChooser</classname> interface.
    </para>
    <sect2 id="recent-files-adding">
      <title>Adding Items to the List of Recent Files</title>
      <para>
        To add a new file to the list of recent documents, in the simplest case,
        you only need to provide the URI. For example:
      </para>
      <programlisting>Glib::RefPtr&lt;Gtk::RecentManager&gt; recent_manager = Gtk::RecentManager::get_default();
recent_manager->add_item(uri);</programlisting>
      <para>
        If you want to register a file with metadata, you can pass a
        <classname>RecentManager::Data</classname> parameter to
        <methodname>add_item()</methodname>. The metadata that can be set on a
        particular file item is as follows:
      </para>
      <itemizedlist id="list-file-metadata">
        <listitem>
          <para><varname>app_exec</varname>: The command line to be used to launch
            this resource. This string may contain the "f" and "u" escape
            characters which will be expanded to the resource file path and URI
            respectively</para>
        </listitem>
        <listitem>
          <para><varname>app_name</varname>: The name of the application that
            registered the resource</para>
        </listitem>
        <listitem>
          <para><varname>description</varname>: A short description of the
            resource as a UTF-8 encoded string</para>
        </listitem>
        <listitem>
          <para><varname>display_name</varname>: The name of the resource to be
            used for display as a UTF-8 encoded string</para>
        </listitem>
        <listitem>
          <para><varname>groups</varname>: A list of groups associated with this
            item. Groups are essentially arbitrary strings associated with a
            particular resource. They can be thought of as 'categories' (such
            as "email", "graphics", etc) or tags for the resource.</para>
        </listitem>
        <listitem>
          <para><varname>is_private</varname>: Whether this resource should be
            visible only to applications that have registered it or not</para>
        </listitem>
        <listitem>
          <para><varname>mime_type</varname>: The MIME type of the resource</para>
        </listitem>
      </itemizedlist>
      <para>
        In addition to adding items to the list, you can also look up items from
        the list and modify or remove items.
      </para>
    </sect2>
    <sect2 id="recent-files-lookup">
      <title>Looking up Items in the List of Recent Files</title>
      <para>
        To look up recently used files, <classname>RecentManager</classname>
        provides several functions. To look up a specific item by its URI, you
        can use the <methodname>lookup_item()</methodname> function, which will
        return a <classname>RecentInfo</classname> class. If the specified URI
        did not exist in the list of recent files,
        <methodname>lookup_item()</methodname> throws a
        <classname>RecentManagerError</classname> exception. For example:
      </para>
<programlisting>Glib::RefPtr&lt;Gtk::RecentInfo&gt; info;
try
{
  info = recent_manager-&gt;lookup_item(uri);
}
catch(const Gtk::RecentManagerError&amp; ex)
{
  std::cerr &lt;&lt; "RecentManagerError: " &lt;&lt; ex.what() &lt;&lt; std::endl;
}
if (info)
{
  // item was found
}</programlisting>
      <para>
        A <classname>RecentInfo</classname> object is essentially an object
        containing all of the metadata about a single recently-used file. You
        can use this object to look up any of the properties listed
        <link linkend="list-file-metadata">above</link>.
      </para>
      <para>
        If you don't want to look for a specific URI, but instead want to get a
        list of all recently used items, <classname>RecentManager</classname>
        provides the <methodname>get_items()</methodname> function. The return
        value of this function is a <classname>std::vector</classname> of all
        recently used files. The following code demonstrates how you might get a
        list of recently used files:
      </para>
      <programlisting>std::vector&lt; Glib::RefPtr&lt;Gtk::RecentInfo&gt; &gt; info_list = recent_manager-&gt;get_items();</programlisting>
      <para>
        The maximum age of items in the recently used files list can be set with
        <methodname>Gtk::Settings::property_gtk_recent_files_max_age()</methodname>.
        Default value: 30 days.
      </para>
    </sect2>
    <sect2 id="recent-files-modifying">
      <title>Modifying the List of Recent Files</title>
      <para>
        There may be times when you need to modify the list of recent files.
        For instance, if a file is moved or renamed, you may need to update the
        file's location in the recent files list so that it doesn't point to an
        incorrect location. You can update an item's location by using
        <methodname>move_item()</methodname>.
      </para>
      <para>
        In addition to changing a file's URI, you can also remove items from the
        list, either one at a time or by clearing them all at once. The former
        is accomplished with <methodname>remove_item()</methodname>, the latter with
        <methodname>purge_items()</methodname>.
      </para>
      <note>
        <para>
        The functions <methodname>move_item()</methodname>,
        <methodname>remove_item()</methodname> and
        <methodname>purge_items()</methodname> have no effect on the actual files
        that are referred to by the URIs, they only modify the list of recent
        files.
        </para>
      </note>
    </sect2>
  </sect1>

  <sect1 id="sec-recentchooser">
    <title>RecentChooser</title>
    <para>
      <classname>RecentChooser</classname> is an interface that can be
      implemented by widgets displaying the list of recently used files.
      &gtkmm; provides four built-in implementations for choosing recent files:
      <classname>RecentChooserWidget</classname>,
      <classname>RecentChooserDialog</classname>,
      <classname>RecentChooserMenu</classname>, and
      <classname>RecentAction</classname>.
    </para>
    <para>
      <classname>RecentChooserWidget</classname> is a simple widget for
      displaying a list of recently used files.
      <classname>RecentChooserWidget</classname> is the basic building block for
      <classname>RecentChooserDialog</classname>, but you can embed it into your
      user interface if you want to.
    </para>
    <para>
      <classname>RecentChooserMenu</classname> and
      <classname>RecentAction</classname> allow you to list recently used files
      as a menu.
    </para>
    <sect2 id="recentchooserdialog-example">
      <title>Simple RecentChooserDialog example</title>
      <para>
        Shown below is a simple example of how to use the
        <classname>RecentChooserDialog</classname> and the
        <classname>RecentAction</classname> classes in a program.
        This simple program has a menubar with a
        <guimenuitem>Recent Files Dialog</guimenuitem> menu item.
        When you select this menu item, a dialog pops up showing the list of
        recently used files.
      </para>
      <note>
        <para>
          If this is the first time you're using a program that uses the Recent
          Files framework, the dialog may be empty at first. Otherwise it
          should show the list of recently used documents registered by other
          applications.
        </para>
      </note>
      <para>
        After selecting the <guimenuitem>Recent Files Dialog</guimenuitem> menu
        item, you should see something similar to the following window.
      </para>
      <screenshot>
          <graphic format="PNG"
              fileref="&url_figures_base;recentchooserdialog.png"/>
      </screenshot>
      <para><ulink url="&url_examples_base;recent_files">Source Code</ulink></para>
      <para>
        The constructor for <classname>ExampleWindow</classname> creates the
        menu using <classname>UIManager</classname> (see <xref
          linkend="chapter-menus-and-toolbars"/> for more information). It then adds
        the menu and the toolbar to the window.
      </para>
    </sect2>
    <sect2 id="recent-files-filtering">
      <title>Filtering Recent Files</title>
      <para>
        For any of the <classname>RecentChooser</classname> classes, if you
        don't wish to display all of the items in the list of recent files, you
        can filter the list to show only those that you want. You can filter
        the list with the help of the <classname>RecentFilter</classname> class.
        This class allows you to filter recent files by their name
        (<methodname>add_pattern()</methodname>), their mime type
        (<methodname>add_mime_type()</methodname>), the application that registered
        them (<methodname>add_application()</methodname>), or by a custom filter
        function (<methodname>add_custom()</methodname>). It also provides the
        ability to filter based on how long ago the file was modified and which
        groups it belongs to.
      </para>
      <para>
        After you've created and set up the filter to match only the items you
        want, you can apply a filter to a chooser widget with the
        <methodname>RecentChooser::add_filter()</methodname> function.
      </para>
    </sect2>
  </sect1>
</chapter>

<chapter id="chapter-plugs-sockets">
  <title>Plugs and Sockets</title>
  <sect1 id="sec-plugs-sockets-overview">
    <title>Overview</title>
    <para>
      From time to time, it may be useful to be able to embed a widget from
      another application within your application. &gtkmm; allows you to do
      this with the <classname>Gtk::Socket</classname> and
      <classname>Gtk::Plug</classname> classes. It is not anticipated that very
      many applications will need this functionality, but in the rare case that
      you need to display a widget that is running in a completely different
      process, these classes can be very helpful.
    </para>
    <para>
      The communication between a <classname>Socket</classname> and a
      <classname>Plug</classname> follows the XEmbed protocol. This protocol has
      also been implemented in other toolkits (e.g. Qt), which allows the same
      level of integration when embedding a Qt widget in GTK+ or vice versa.
    </para>
    <para>
      The way that <classname>Sockets</classname> and
      <classname>Plugs</classname> work together is through their window ids.
      Both a <classname>Socket</classname> and a <classname>Plug</classname>
      have IDs that can be retrieved with their <methodname>get_id()</methodname>
      member functions. The use of these IDs will be explained below in <xref
          linkend="sec-connecting-plugs-sockets"/>.
    </para>
    <sect2 id="sec-sockets">
      <title>Sockets</title>
      <para>
        A <classname>Socket</classname> is a special kind of container widget that
        provides the ability to embed widgets from one process into another
        process in a way that is transparent to the user.
      </para>
    </sect2>
    <sect2 id="sec-plugs">
      <title>Plugs</title>
      <para>
        A <classname>Plug</classname> is a special kind of Window that can be
        plugged into a <classname>Socket</classname>. Besides the normal
        properties and methods of <classname>Gtk::Window</classname>, a
        <classname>Plug</classname> provides a constructor that takes the ID of
        a <classname>Socket</classname>, which will automatically embed the
        <classname>Plug</classname> into the <classname>Socket</classname> that
        matches that ID.
      </para>
      <para>
        Since a <classname>Plug</classname> is just a special type of
        <classname>Gtk::Window</classname> class, you can add containers or
        widgets to it like you would to any other window.
      </para>
    </sect2>
    <sect2 id="sec-connecting-plugs-sockets">
      <title>Connecting Plugs and Sockets</title>
      <para>
        After a <classname>Socket</classname> or <classname>Plug</classname>
        object is realized, you can obtain its ID with its
        <methodname>get_id()</methodname> function. This ID can then be shared with
        other processes so that other processes know how to connect to
        each other.
      </para>
      <para>
        There are two basic strategies that can be used:
        <itemizedlist>
          <listitem>
            <para>
              Create a <classname>Socket</classname> object in one process and
              pass the ID of that <classname>Socket</classname> to another
              process so that it can create a <classname>Plug</classname> object
              by specifying the given <classname>Socket</classname> ID in its
              constructor. There is no way to assign a
              <classname>Plug</classname> to a particular
              <classname>Socket</classname> after creation, so you must pass the
              <classname>Socket</classname> ID to the
              <classname>Plug</classname>'s constructor.
            </para>
          </listitem>
          <listitem>
            <para>
              Create a <classname>Plug</classname> independantly from any
              particular <classname>Socket</classname> and pass the ID of the
              <classname>Plug</classname> to other processes that need to use
              it. The ID of the <classname>Plug</classname> can be associated
              with a particular <classname>Socket</classname> object using the
              <methodname>Socket::add_id()</methodname> function. This is the
              approach used in the example below.
            </para>
          </listitem>
        </itemizedlist>
      </para>
    </sect2>
  </sect1>
  <sect1 id="sec-plugs-sockets-example">
    <title>Plugs and Sockets Example</title>
    <para>
      The following is a simple example of using sockets and plugs. The method
      of communication between processes is deliberately kept very simple: The
      <classname>Plug</classname> writes its ID out to a text file named
      <filename>plug.id</filename> and the process with the socket reads the ID
      from this file. In a real program, you may want to use a more
      sophisticated method of inter-process communication.
    </para>
    <para><ulink url="&url_examples_base;socket/">Source Code</ulink></para>
    <para>
      This example creates two executable programs: <filename>socket</filename>
      and <filename>plug</filename>. The idea is that
      <filename>socket</filename> has an application window that will embed a
      widget from the <filename>plug</filename> program. The way this example
      is designed, <filename>plug</filename> must be running first before
      starting <filename>socket</filename>. To see the example in action,
      execute the following commands in order from within the example directory:
    </para>
    <para>
      Start the <filename>plug</filename> program and send it to the background
      (or just use a different terminal).
    </para>
    <screen>$ ./plug &amp;</screen>
    <para>
      After which you should see something like the following:
    </para>
    <screen>The window ID is: 69206019</screen>
    <para>Then start the <filename>socket</filename> program:</para>
    <screen>$ ./socket</screen>
    <para>
      After starting <filename>socket</filename>, you should see the following
      output in the terminal:
    </para>
    <screen>I've been embedded.
A plug was added</screen>
    <para>
      The first line of output is from <filename>plug</filename>, after it has
      been notified that it has been embedded inside of a
      <classname>Socket</classname>. The second line was emitted by
      <filename>socket</filename> in response to its
      <methodname>plug_added</methodname> signal. If everything was done as
      described above, the <filename>socket</filename> window should look
      roughly like the following:
    </para>
    <screenshot>
      <graphic format="PNG" fileref="&url_figures_base;socket.png"/>
    </screenshot>
    <para>
      If for some reason the <classname>Socket</classname> couldn't attach the
      <classname>Plug</classname>, the window would look something like this:
    </para>
    <screenshot>
      <graphic format="PNG" fileref="&url_figures_base;socket-fail.png"/>
    </screenshot>
  </sect1>
</chapter>

<chapter id="chapter-keyboardevents">
  <title>Keyboard Events</title>
  <para>
    X events differ in some ways from other signals. These differences are described
    in the <link linkend="sec-xeventsignals">X Event signals</link> section in
    the appendix. Here we will use keyboard events to show how X events can be
    used in a program.
  </para>
  <sect1 id="sec-keyboardevents-overview">
    <title>Overview</title>
    <para>
      Whenever you press or release a key, an event is emitted. You can connect
      a signal handler to handle such events.
    </para>
    <para>
      To receive the keyboard events, you must first call the
      <methodname>Gtk::Widget::add_events()</methodname> function with a bit
      mask of the events you're interested in. The event signal handler will
      receive an argument that depends on the type of event. For keyboard
      events it's a <type>GdkEventKey*</type>. As discribed in the
      <link linkend="sec-xeventsignals">appendix</link>, the event signal handler
      returns a <type>bool</type> value, to indicate that the signal is fully
      handled (<literal>true</literal>) or allow event propagation
      (<literal>false</literal>).
    </para>
    <para>
      To determine which key was pressed or released, you read the value of
      <varname>GdkEventKey::keyval</varname> and compare it with a constant in the
      <filename>&lt;gdk/gdkkeysyms.h&gt;</filename> header file. The states of
      modifier keys (shift, ctrl, etc.) are available as bit-flags in
      <varname>GdkEventKey::state</varname>.
    </para>
    <para>
      Here's a simple example:
<programlisting>
bool on_key_press_or_release_event(GdkEventKey* event)
{
  if (event->type == GDK_KEY_PRESS &amp;&amp;
    event->keyval == GDK_KEY_1 &amp;&amp;
    (event->state &amp; (GDK_SHIFT_MASK | GDK_CONTROL_MASK | GDK_MOD1_MASK)) == GDK_MOD1_MASK)
  {
    handle_alt_1_press(); // GDK_MOD1_MASK is normally the Alt key
    return true;
  }
  return false;
}

Gtk::Entry m_entry; // in a class definition

// in the class constructor
m_entry.signal_key_press_event().connect( sigc::ptr_fun(&amp;on_key_press_or_release_event) );
m_entry.signal_key_release_event().connect( sigc::ptr_fun(&amp;on_key_press_or_release_event) );
m_entry.add_events(Gdk::KEY_PRESS_MASK | Gdk::KEY_RELEASE_MASK);
</programlisting>
    </para>

    <sect2 id="keyboardevents-simple-example">
    <title>Example</title>
      <para>
        In this example there are three keyboard shortcuts:
        <keycap>Alt</keycap>+<keycap>1</keycap> selects the first radio button,
        <keycap>Alt</keycap>+<keycap>2</keycap> selects the second one, and the
        <keycap>Esc</keycap> key hides (closes) the window.
        The default event signal handler is overridden, as described in the
        <link linkend="sec-overriding-default-signal-handlers">Overriding default signal handlers</link>
        section in the appendix.
      </para>

      <figure id="figure-keyboardevents-simple">
        <title>Keyboard Events - Simple</title>
        <screenshot>
          <graphic format="PNG" fileref="&url_figures_base;keyboardevents_simple.png"/>
        </screenshot>
      </figure>

      <para><ulink url="&url_examples_base;keyboard_events/simple/">Source Code</ulink></para>
    </sect2>
  </sect1>

  <sect1 id="sec-keyboardevents-propagation">
    <title>Event Propagation</title>
    <para>
      Event propagation means that, when an event is emitted on a particular
      widget, it can be passed to its parent widget (and that widget can pass
      it to its parent, and so on) and, if the parent has an event handler,
      that handler will be called. 
    </para>
    <para>
      Contrary to other events, keyboard events are first sent to the toplevel window
      (<classname>Gtk::Window</classname>), where it will be checked
      for any keyboard shortcuts that may be set (accelerator keys and mnemonics,
      used for selecting menu items from the keyboard). After this (and assuming
      the event wasn't handled), it is sent to the widget which has focus,
      and the propagation begins from there.
    </para>
    <para>
      The event will propagate until it reaches the top-level widget, or until
      you stop the propagation by returning <literal>true</literal> from an
      event handler.
    </para>
    <para>
      Notice, that after canceling an event, no other function will be called
      (even if it is from the same widget).
    </para>

    <sect2 id="keyboardevents-propagation-example">
    <title>Example</title>
      <para>
        In this example there are three event handlers that are called after
        <classname>Gtk::Window</classname>'s default event handler, one in the
        <classname>Gtk::Entry</classname>, one in the <classname>Gtk::Grid</classname>
        and one in the <classname>Gtk::Window</classname>.
      </para>
      <para>
        In the <classname>Gtk::Window</classname>, we have also the default handler
        overridden (<methodname>on_key_release_event()</methodname>), and
        another handler being called before the default handler
        (<methodname>windowKeyReleaseBefore()</methodname>).
      </para>
      <para>
        The purpose of this example is to show the steps the event takes when it is emitted.
      </para>
      <para>
        When you write in the entry, a key release event will be emitted,
        which will go first to the toplevel window (<classname>Gtk::Window</classname>),
        since we have one event handler set to be called before, that's what is
        called first (<methodname>windowKeyReleaseBefore()</methodname>).
        Then the default handler is called (which we have overridden), and after
        that the event is sent to the widget that has focus,
        the <classname>Entry</classname> in our example and, depending on whether we let
        it propagate, it can reach the <classname>Grid</classname>'s and the
        <classname>Window</classname>'s event handlers. If it propagates,
        the text you're writing will appear in the <classname>Label</classname>
        above the <classname>Entry</classname>.
      </para>

      <figure id="figure-keyboardevents-propagation">
        <title>Keyboard Events - Event Propagation</title>
        <screenshot>
          <graphic format="PNG" fileref="&url_figures_base;keyboardevents_propagation.png"/>
        </screenshot>
      </figure>

      <para><ulink url="&url_examples_base;keyboard_events/propagation/">Source Code</ulink></para>
    </sect2>
  </sect1>
</chapter>

<chapter id="chapter-chapter-timeouts">
<title>Timeouts, I/O and Idle Functions </title>

<sect1 id="sec-timeouts">
<title>Timeouts</title>

<para>
You may be wondering how to make &gtkmm; do useful work while it's idling along. Happily,
you have several options. Using the following methods you can create a timeout
method that will be called every few milliseconds.
</para>

<para>
<programlisting>
sigc::connection Glib::SignalTimeout::connect(const sigc::slot&lt;bool&gt;&amp; slot,
                                      unsigned int interval, int priority = Glib::PRIORITY_DEFAULT);
</programlisting>
</para>

<para>
The first argument is a <classname>slot</classname> you wish to have called
when the timeout occurs. The second argument is the number of milliseconds
between calls to that method. You receive a
<classname>sigc::connection</classname> object that can be used to deactivate
the connection using its <methodname>disconnect()</methodname> method:
</para>

<para>

<programlisting>
my_connection.disconnect();
</programlisting>
</para>

<para>
Another way of destroying the connection is your signal handler.
It has to be of the type <classname>sigc::slot&lt;bool&gt;</classname>.
As you see from the definition your signal handler has to return a value of
the type <literal>bool</literal>. A definition of a sample method might
look like this:

<programlisting>
bool MyCallback() { std::cout &lt;&lt; "Hello World!\n" &lt;&lt; std::endl; return true; }
</programlisting>

</para>

<para>
You can stop the timeout method by returning <literal>false</literal> from
your signal handler. Therefore, if you want your
method to be called repeatedly, it should return <literal>true</literal>.
</para>

<para>
Here's an example of this technique:
</para>

<para><ulink url="&url_examples_base;timeout/">Source Code</ulink></para>

</sect1>

<sect1 id="sec-monitoring-io">
<title>Monitoring I/O</title>

<para>
A nifty feature of Glib (one of the libraries underlying
&gtkmm;) is the ability to have it check for data on a file descriptor
for you. This is especially useful for networking applications. The
following method is used to do this:
</para>

<para>
<programlisting>
sigc::connection Glib::SignalIO::connect(const sigc::slot&lt;bool,Glib::IOCondition&gt;&amp; slot,
                                 int fd, Glib::IOCondition condition,
                                 int priority = Glib::PRIORITY_DEFAULT);
</programlisting>
</para>

<para>
The first argument is a slot you wish to have called when
the specified event (see argument 3) occurs on the file descriptor you specify
using argument two. Argument three may be one or more (using
<literal>&verbar;</literal>) of:
</para>

<itemizedlist>
<listitem>

<para>
Glib::IO_IN - Call your method when there is data ready for
reading on your file descriptor.

</para>
</listitem>
<listitem>

<para>
Glib::IO_OUT - Call your method when the file descriptor is
ready for writing.

</para>
</listitem>
<listitem>

<para>
Glib::IO_PRI - Call your method when the file descriptor has urgent data to be read.

</para>
</listitem>
<listitem>

<para>
Glib::IO_ERR - Call your method when an error has occurred on the file descriptor.

</para>
</listitem>
<listitem>

<para>
Glib::IO_HUP - Call your method when hung up (the connection has been broken usually for pipes and sockets).
</para>
</listitem>

</itemizedlist>

<para>
    The return value is a <classname>sigc::connection</classname> that may be used to stop monitoring
this file descriptor using its <methodname>disconnect()</methodname> method. The
<parameter>slot</parameter> signal handler should be declared as follows:
</para>

<para>
<programlisting>
bool input_callback(Glib::IOCondition condition);
</programlisting>
</para>

<para>
where <parameter>condition</parameter> is as
specified above. As usual the slot is created with
<function>sigc::mem_fun()</function> (for a member method of an object), or
<function>sigc::ptr_fun()</function> (for a function).
</para>

<para>
A little example follows. To use the example just execute it from a terminal;
it doesn't create a window. It will create a pipe named
<literal>testfifo</literal> in the current directory. Then start another shell
and execute <literal>echo "Hello" &#62; testfifo</literal>. The example will
print each line you enter until you execute <literal>echo "Q" &#62;
testfifo</literal>.
</para>

<para><ulink url="&url_examples_base;input/">Source Code</ulink></para>

</sect1>

<sect1 id="sec-idle-functions">
<title>Idle Functions</title>

<para>
If you want to specify a method that gets called when nothing else is happening, use the following:
</para>

<para>
<programlisting>
sigc::connection  Glib::SignalIdle::connect(const sigc::slot&lt;bool&gt;&amp; slot,
                                    int priority = Glib::PRIORITY_DEFAULT_IDLE);
</programlisting>
</para>

<para>
This causes &gtkmm; to call the specified method whenever nothing else is
happening. You can add a priority (lower numbers are higher priorities). There are two ways to remove the signal handler: calling
<methodname>disconnect()</methodname> on the
<classname>sigc::connection</classname> object, or returning
<literal>false</literal> in the signal handler, which should be declared
as follows:
</para>

<para>
<programlisting>
bool idleFunc();
</programlisting>
</para>

<para>
Since this is very similar to the methods above this explanation should
be sufficient to understand what's going on. However, here's a little example:
</para>

<para><ulink url="&url_examples_base;idle/">Source Code</ulink></para>

<para>
This example points out the difference of idle and timeout methods a
little. If you need methods that are called periodically, and speed
is not very important, then you want timeout methods. If
you want methods that are called as often as possible (like
calculating a fractal in background), then use idle methods.
</para>

<para>
Try executing the example and increasing the system load. The upper
progress bar will increase steadily; the lower one will slow down.
</para>

</sect1>

</chapter>

<chapter id="chapter-memory">
<title>Memory management</title>

<sect1 id="sec-memory-widgets">
<title>Widgets</title>

<sect2 id="memory-normal">
<title>Normal C++ memory management</title>

<para>
&gtkmm; allows the programmer to control the lifetime (that is, the construction
and destruction) of any widget in the same manner as any other C++ object.
This flexibility allows you to use <literal>new</literal> and
<literal>delete</literal> to create and destroy objects dynamically
or to use regular class members (that are destroyed automatically when the
class is destroyed) or to use local instances (that are destroyed when the
instance goes out of scope). This flexibility is not present in some C++ GUI
toolkits, which restrict the programmer to only a subset of C++'s memory
management features.
</para>

<para>Here are some examples of normal C++ memory management:</para>

<sect3 id="memory-class-scope">
<title>Class Scope widgets</title>

<para>
If a programmer does not need dynamic memory allocation, automatic widgets in class
scope may be used. One advantage of automatic widgets in class scope is that
memory management is grouped in one place. The programmer does not
risk memory leaks from failing to <literal>delete</literal> a widget.
</para>

<para>
The primary disadvantage of using class scope widgets is revealing
the class implementation rather than the class interface in the class header.
</para>

<para>
<programlisting>
#include &lt;gtkmm/button.h&gt;
#include &lt;gtkmm/window.h&gt;
class Foo : public Gtk::Window
{
private:
  Gtk::Button theButton;
  // will be destroyed when the Foo object is destroyed
};
</programlisting>
</para>
</sect3>

<sect3 id="memory-function-scope">
<title>Function scope widgets</title>

<para>
If a programmer does not need a class scope widget, a function scope widget
may also be used. The advantages to function scope over class scope are the
increased data hiding and reduced dependencies.
<programlisting>
{
  Gtk::Button aButton;
  aButton.show();
  ...
  app-&gt;run();
}
</programlisting>
</para>
</sect3>

<sect3 id="memory-dynamic-allocation">
<title>Dynamic allocation with new and delete</title>

<para>
Although, in most cases, the programmer will prefer to allow containers to
automatically destroy their children using <function>Gtk::manage()</function> (see
below), the programmer is not required to use <function>Gtk::manage()</function>.
The traditional <literal>new</literal> and <literal>delete</literal> operators
may also be used.
<programlisting>
Gtk::Button* pButton = new Gtk::Button("Test");

// do something useful with pButton

delete pButton;
</programlisting>
Here, the programmer deletes <varname>pButton</varname> to prevent a memory leak.
</para>
</sect3>

</sect2>

<sect2 id="memory-managed-widgets">
<title>Managed Widgets</title>

<para>
Alternatively, you can let a widget's container control when the widget is
destroyed. In most cases, you want a widget to last only as long as the
container it is in. To delegate the management of a widget's lifetime to its
container, first create it with <function>Gtk::manage()</function> and
pack it into its container with <methodname>Gtk::Container::add()</methodname>,
<methodname>Gtk::Box::pack_start()</methodname>, or a similar method. Now the
widget will be destroyed whenever its container is destroyed.
</para>

<sect3 id="memory-managed-dynamic">
<title>Dynamic allocation with manage() and add()</title>

<para>
&gtkmm; provides the <function>manage()</function> function and
<methodname>add()</methodname> methods to create and destroy widgets. Every widget
except a top-level window must be added or packed into a container in order to
be displayed. The <function>manage()</function> function marks a widget
so that when the widget is added to a container, the container becomes
responsible for deleting the widget.
</para>

<para>
<programlisting>
MyContainer::MyContainer()
{
  Gtk::Button* pButton = Gtk::manage(new Gtk::Button("Test"));
  add(*pButton); //add *pButton to MyContainer
}
</programlisting>
Now, when objects of type <classname>MyContainer</classname> are destroyed, the
button will also be deleted. It is no longer necessary to delete <varname>pButton</varname>
to free the button's memory; its deletion has been delegated to the
<classname>MyContainer</classname> object.
</para>

<para>
Of course, a top-level container will not be added to another container. The
programmer is responsible for destroying the top-level container using one of
the traditional C++ techniques. For instance, your top-level Window might just
be an instance in your <function>main()</function> function.
</para>

</sect3>
</sect2>
</sect1>

<sect1 id="sec-memory-shared-resources">
<title>Shared resources</title>

<para>
Some objects, such as <classname>Gdk::Pixbuf</classname>s and
<classname>Pango::Font</classname>s, are obtained from a shared store.
Therefore you cannot instantiate your own instances. These classes typically
inherit from <classname>Glib::Object</classname>. Rather than requiring you to
reference and unreference these objects, &gtkmm; uses the
<classname>Glib::RefPtr&lt;&gt;</classname> smartpointer. Cairomm has its own
smartpointer, <classname>Cairo::RefPtr&lt;&gt;</classname>.
</para>

<para>
Objects such as <classname>Gdk::Pixbuf</classname> can only be instantiated
with a <methodname>create()</methodname> function. For instance,
<programlisting>
Glib::RefPtr&lt;Gdk::Pixbuf&gt; pixbuf = Gdk::Pixbuf::create_from_file(filename);
</programlisting>
</para>

<para>
You have no way of getting a bare <classname>Gdk::Pixbuf</classname>. In the
example, <varname>pixbuf</varname> is a smart pointer, so you can do this, much
like a normal pointer:
<programlisting>
int width = 0;
if(pixbuf)
{
  width = pixbuf-&gt;get_width();
}
</programlisting>
</para>

<para>
When <varname>pixbuf</varname> goes out of scope an
<methodname>unref()</methodname> will happen in the background and you don't need
to worry about it anymore. There's no <literal>new</literal> so there's no
<literal>delete</literal>.
</para>
<para>
If you copy a <classname>RefPtr</classname>, for instance
<programlisting>
Glib::RefPtr&lt;Gdk::Pixbuf&gt; pixbuf2 = pixbuf;
</programlisting>
, or if you pass it as a method argument or a return type, then
<classname>RefPtr</classname> will do any necessary referencing to ensure that
the instance will not be destroyed until the last <classname>RefPtr</classname>
has gone out of scope.
</para>
<para>See the <link linkend="chapter-refptr">appendix</link> for detailed information about RefPtr.</para>
<para>
If you wish to learn more about smartpointers, you might look in these
books:
<itemizedlist>
<listitem><para>
Bjarne Stroustrup, "The C++ Programming Language" Forth Edition - section 34.3
</para></listitem>
<listitem><para>
Nicolai M. Josuttis, "The C++ Standard Library" - section 4.2
</para></listitem>
</itemizedlist>
</para>

</sect1>

</chapter>

<chapter id="chapter-builder">
<title>Glade and Gtk::Builder</title>
<para>
Although you can use C++ code to instantiate and arrange widgets, this
can soon become tedious and repetitive. And it requires a recompilation to show
changes. The <application>Glade</application> application allows you to layout
widgets on screen and then save an XML description of the arrangement. Your
application can then use the <application>Gtk::Builder</application> API to load
that XML file at runtime and obtain a pointer to specifically named widget
instances.
</para>

<para>
This has the following advantages:
<orderedlist>
<listitem><simpara>Less C++ code is required.</simpara></listitem>
<listitem><simpara>UI changes can be seen more quickly, so UIs are able to improve.</simpara></listitem>
<listitem><simpara>Designers without programming skills can create and edit UIs.</simpara></listitem>
</orderedlist>
</para>

<para>
You still need C++ code to deal with User Interface changes triggered by user
actions, but using <application>Gtk::Builder</application> for the widget
layout allows you to focus on implementing that functionality.
</para>

<sect1 id="sec-builder-loading-glade-file">
<title>Loading the .glade file</title>
<para>
<classname>Gtk::Builder</classname> must be used via a
<classname>Glib::RefPtr</classname>. Like all such classes, you need to use a
<methodname>create()</methodname> method to instantiate it. For instance,
<programlisting>
Glib::RefPtr&lt;Gtk::Builder&gt; builder = Gtk::Builder::create_from_file(&quot;basic.glade&quot;);
</programlisting>
This will instantiate the windows defined in the .glade file, though they will
not be shown immediately unless you have specified that via the <guilabel>Properties</guilabel>
window in <application>Glade</application>.
</para>

<para>To instantiate just one window, or just one of the child widgets, you can specify the name of a widget as the second parameter. For instance,
<programlisting>
Glib::RefPtr&lt;Gtk::Builder&gt; builder = Gtk::Builder::create_from_file(&quot;basic.glade&quot;, &quot;treeview_products&quot;);
</programlisting>
</para>

</sect1>

<sect1 id="sec-builder-accessing-widgets">
<title>Accessing widgets</title>

<para>
To access a widget, for instance to <methodname>show()</methodname> a dialog, use
the <methodname>get_widget()</methodname> method, providing the widget's name. This
name should be specified in the <application>Glade</application> Properties
window. If the widget could not be found, or is of the wrong type, then the
pointer will be set to 0.
<programlisting>
Gtk::Dialog* pDialog = 0;
builder-&gt;get_widget(&quot;DialogBasic&quot;, pDialog);
</programlisting>
</para>

<para>
<application>Gtk::Builder</application> checks for a null pointer, and checks
that the widget is of the expected type, and will show warnings on the command
line about these.
</para>

<para>
Remember that you are not instantiating a widget with
<methodname>get_widget()</methodname>, you are just obtaining a pointer to one that
already exists. You will always receive a pointer to the same instance when you
call <methodname>get_widget()</methodname> on the same
<classname>Gtk::Builder</classname>, with the same widget name. The
widgets are instantiated during <methodname>Gtk::Builder::create_from_file()</methodname>.
</para>

<para>
<methodname>get_widget()</methodname> returns child widgets that are
<function>manage()</function>ed (see the <link linkend="chapter-memory">Memory
Management</link> chapter), so they will be deleted when their parent
container is deleted. So, if you get only a child widget from
<application>Gtk::Builder</application>, instead of a whole window, then you must
either put it in a <classname>Container</classname> or delete it.
<classname>Windows</classname> (such as <classname>Dialogs</classname>) cannot
be managed because they have no parent container, so you must delete them at
some point.
</para>

<sect2 id="builder-example-loading">
<title>Example</title>
<para>
This simple example shows how to load a <application>Glade</application> file at runtime and access the widgets with
<application>Gtk::Builder</application>.
</para>

<para><ulink url="&url_examples_base;builder/basic">Source Code</ulink></para>

</sect2>

</sect1>


<sect1 id="sec-builder-using-derived-widgets">
<title>Using derived widgets</title>
<para>
You can use <application>Glade</application> to layout your own custom widgets
derived from &gtkmm; widget classes. This keeps your code organized and
encapsulated. Of course you won't see the exact appearance and properties of
your derived widget in <application>Glade</application>, but you can specify
its location and child widgets and the properties of its &gtkmm; base class.
</para>

<para>Use <methodname>Gtk::Builder::get_widget_derived()</methodname> like so:
<programlisting>
DerivedDialog* pDialog = 0;
builder-&gt;get_widget_derived(&quot;DialogBasic&quot;, pDialog);
</programlisting>
</para>

<para>
Your derived class must have a constructor that takes a pointer to the
underlying C type, and the <classname>Gtk::Builder</classname> instance.
All relevant classes of &gtkmm; typedef their underlying C type as
<classname>BaseObjectType</classname> (<classname>Gtk::Dialog</classname>
typedefs <classname>BaseObjectType</classname> as <type>GtkDialog</type>, for instance).
</para>
<para>
You must call the base class's constructor in the initialization list, providing the C pointer. For
instance,
<programlisting>
DerivedDialog::DerivedDialog(BaseObjectType* cobject, const Glib::RefPtr&lt;Gtk::Builder&gt;&amp; builder)
: Gtk::Dialog(cobject)
{
}
</programlisting>
</para>

<para>
You could then encapsulate the manipulation of the child widgets in the
constructor of the derived class, maybe using <methodname>get_widget()</methodname>
or <methodname>get_widget_derived()</methodname> again. For instance,
<programlisting>
DerivedDialog::DerivedDialog(BaseObjectType* cobject, const Glib::RefPtr&lt;Gtk::Builder&gt;&amp; builder)
: Gtk::Dialog(cobject),
  m_builder(builder),
  m_pButton(0)
{
  //Get the Glade-instantiated Button, and connect a signal handler:
  m_builder-&gt;get_widget(&quot;quit_button&quot;, m_pButton);
  if(m_pButton)
  {
    m_pButton-&gt;signal_clicked().connect( sigc::mem_fun(*this, &amp;DerivedDialog::on_button_quit) );
  }
}
</programlisting>
</para>

<sect2 id="builder-example-accessing">
<title>Example</title>
<para>
This example shows how to load a <application>Glade</application> file at runtime and access the widgets via a derived class.
</para>

<para><ulink url="&url_examples_base;builder/derived">Source Code</ulink></para>

</sect2>

</sect1>

</chapter>

<chapter id="chapter-internationalization">
  <title>Internationalization and Localization</title>

  <para>
    &gtkmm; applications can easily support multiple languages, including
    non-European languages such as Chinese and right-to-left languages such as
    Arabic. An appropriately-written and translated &gtkmm; application will use
    the appropriate language at runtime based on the user's environment.
  </para>
  <para>
    You might not anticipate the need to support additional languages, but
    you can never rule it out. And it's easier to develop the application
    properly in the first place rather than retrofitting later.
  </para>

  <para>
    The process of writing source code that allows for translation is called
    <literal>internationalization</literal>, often abbreviated to
    <literal>i18n</literal>. The <literal>Localization</literal> process,
    sometimes abbreviated as <literal>l10n</literal>, provides translated text
    for other languages, based on that source code.
  </para>

  <para>
    The main activity in the internationalization process is finding strings
    seen by users and marking them for translation. You do not need to do it all
    at once - if you set up the necessary project infrastructure correctly then
    your application will work normally regardless of how many strings you've
    covered.
  </para>

  <para>
    String literals should be typed in the source code in English, but
    surrounded by a macro. The <application>gettext</application> (or intltool)
    utility can then extract the marked strings for translation, and substitute
    the translated text at runtime.
  </para>

  <sect1 id="sec-internationalization-intro">
    <title>Preparing your project</title>

    <note>
      <para>
        In the instructions below we will assume that you will not be using
        <application>gettext</application> directly, but
        <application>intltool</application>, which was written specifically for
        <literal>GNOME</literal>. <application>intltool</application> uses
        <function>gettext()</function>, which extracts strings from source code,
        but <application>intltool</application> can also combine strings from
        other files, for example from desktop menu details, and GUI resource
        files such as <application>Glade</application> files, into standard
        <application>gettext</application> <filename>.pot/.po</filename> files.
      </para>
      <para>
        We also assume that you are using autotools (e.g.
        <application>automake</application> and
        <application>autoconf</application>) to build your project, and
        that you are using <ulink
          url="http://git.gnome.org/browse/gnome-common/tree/autogen.sh">
          <literal>./autogen.sh</literal> from
          <application>gnome-common</application></ulink>, which, among other
        things, takes care of some <application>intltool</application>
        initialization.
      </para>
    </note>

    <para>
      Create a sub-directory named <literal>po</literal> in your project's root
      directory. This directory will eventually contain all of your
      translations. Within it, create a file named <literal>LINGUAS</literal>
      and a file named <literal>POTFILES.in</literal>. It is common practice to
      also create a <literal>ChangeLog</literal> file in the
      <literal>po</literal> directory so that translators can keep track of
      translation changes.
    </para>

    <para>
      <literal>LINGUAS</literal> contains an alphabetically sorted list of codes
      identifying the languages for which your program is translated (comment
      lines starting with a <literal>#</literal> are ignored). Each language
      code listed in the <literal>LINGUAS</literal> file must have a
      corresponding <literal>.po</literal> file. So, if your program has German
      and Japanese translations, your <literal>LINGUAS</literal> file would
      look like this:
    </para>
    <programlisting># keep this file sorted alphabetically, one language code per line
de
ja</programlisting>
    <para>
      (In addition, you'd have the files <literal>ja.po</literal> and
      <literal>de.po</literal> in your
      <literal>po</literal> directory which contain the German and Japanese
      translations, respectively.)
    </para>

    <para>
      <literal>POTFILES.in</literal> is a list of paths to all files which
      contain strings marked up for translation, starting from the project root
      directory. So for example, if your project sources were located in a
      subdirectory named <literal>src</literal>, and you had two files that
      contained strings that should be translated, your
      <literal>POTFILES.in</literal> file might look like this:
    </para>

    <programlisting>src/main.cc
src/other.cc</programlisting>

    <para>
      If you are using <application>gettext</application> directly, you can only
      mark strings for translation if they are in source code file. However, if
      you use <application>intltool</application>, you can mark strings for
      translation in a variety of other file formats, including
      <application>Glade</application> UI files, xml, <ulink
        url="http://standards.freedesktop.org/desktop-entry-spec/latest/">.desktop
        files</ulink> and several more. So, if you have designed some of the
      application UI in <application>Glade</application> then also add your
      <filename>.glade</filename> files to the list in
      <literal>POTFILES.in</literal>.
    </para>

    <para>
      Now that there is a place to put your translations, you need to initialize
      <application>intltool</application> and <application>gettext</application>.
      Add the following code to your <literal>configure.ac</literal>,
      substituting 'programname' with the name of your program:
    </para>

    <programlisting>IT_PROG_INTLTOOL([0.35.0])

GETTEXT_PACKAGE=programname
AC_SUBST(GETTEXT_PACKAGE)
AC_DEFINE_UNQUOTED([GETTEXT_PACKAGE], ["$GETTEXT_PACKAGE"],
                   [The domain to use with gettext])
AM_GLIB_GNU_GETTEXT

PROGRAMNAME_LOCALEDIR=[${datadir}/locale]
AC_SUBST(PROGRAMNAME_LOCALEDIR)</programlisting>

    <para>
      This <varname>PROGRAMNAME_LOCALEDIR</varname> variable will be used later
      in the <literal>Makefile.am</literal> file, to define a macro that will be
      used when you initialize <application>gettext</application> in your source
      code.
    </para>

    <para>
      In the top-level Makefile.am:
      <itemizedlist>
        <listitem>
          <para>Add <literal>po</literal> to the <literal>SUBDIRS</literal>
            variable. Without this, your translations won't get built and
            installed when you build the program</para>
        </listitem>
        <listitem>
          <para>
            Define <literal>INTLTOOL_FILES</literal> as:
            <programlisting>INTLTOOL_FILES = intltool-extract.in \
                 intltool-merge.in \
                 intltool-update.in</programlisting>
          </para>
        </listitem>
        <listitem>
          <para>
            Add <literal>INTLTOOL_FILES</literal> to the
            <literal>EXTRA_DIST</literal> list of files. This ensures that when
            you do a <command>make dist</command>, these commands will be
            included in the source tarball.
          </para>
        </listitem>
        <listitem>
          <para>
            Update your <literal>DISTCLEANFILES</literal>:
            <programlisting>DISTCLEANFILES = ... intltool-extract \
                 intltool-merge \
                 intltool-update \
                 po/.intltool-merge-cache</programlisting>
          </para>
        </listitem>
      </itemizedlist>
    </para>

    <para>
      In your <literal>src/Makefile.am</literal>, update your
      <literal>AM_CPPFLAGS</literal> to add the following preprocessor macro
      definition:
    </para>
    <programlisting>AM_CPPFLAGS = ... -DPROGRAMNAME_LOCALEDIR=\"${PROGRAMNAME_LOCALEDIR}\"</programlisting>
    <para>
      This macro will be used when you initialize <literal>gettext</literal> in
      your source code.
    </para>
  </sect1>

<sect1 id="sec-i18n-marking-strings">
  <title>Marking strings for translation</title>

  <para>
    String literals should be typed in the source code in English, but
    they should be surrounded by a call to the <function>gettext()</function>
    function. These strings will be extracted for translation and the
    translations may be used at runtime instead of the original English
    strings.
  </para>

  <para>
    The <application>GNU gettext</application> package allows you to mark
    strings in source code, extract those strings for translation, and use
    the translated strings in your application.
  </para>

  <para>
    However, <application>Glib</application> defines
    <function>gettext()</function>
    support macros which are shorter wrappers in an easy-to-use form.
    To use these macros, include <literal>&lt;glibmm/i18n.h&gt;</literal>,
    and then, for example, substitute:
    <programlisting>display_message("Getting ready for i18n.");</programlisting>
    with:
    <programlisting>display_message(_("Getting ready for i18n."));</programlisting>
  </para>

  <para>
    For reference, it is possible to generate a file which contains all
    strings which appear in your code, even if they are not marked for translation,
    together with file name and line
    number references. To generate such a file named
    <literal>my-strings</literal>, execute the following command,
    within the source code directory:

    <programlisting>xgettext -a -o my-strings --omit-header *.cc *.h</programlisting>
  </para>

  <para>
    Finally, to let your program use the translation for the current locale,
    add this code to the beginning of your <filename>main.cc</filename> file, to initialize gettext.

<programlisting>bindtextdomain(GETTEXT_PACKAGE, PROGRAMNAME_LOCALEDIR);
bind_textdomain_codeset(GETTEXT_PACKAGE, "UTF-8");
textdomain(GETTEXT_PACKAGE);</programlisting>
  </para>

  <sect2 id="sec-i18n-gettext">
    <title>How gettext works</title>

    <para>
      <application>intltool</application> /
      <application>xgettext</application> script extracts the strings
      and puts them in a <filename>mypackage.pot</filename> file.
      The translators of your application create their translations by
      first copying this <filename>.pot</filename> file to a
      <filename>localename.po</filename> file. A locale identifies a
      language and an encoding for that language, including date and numerical
      formats. Later, when the text in your source code has changed, the
      <literal>msmerge</literal> script is used to update the
      <filename>localename.po</filename> files from the regenerated
      <filename>.pot</filename> file.
    </para>

    <para>
      At install time, the <filename>.po</filename> files are converted to
      a binary format (with the extension <filename>.mo</filename>) and
      placed in a system-wide directory for locale files, for example
      <filename>/usr/share/locale/</filename>.
    </para>

    <para>
      When the application runs, the <application>gettext</application>
      library checks the system-wide directory to see if there is a
      <filename>.mo</filename> file for the user's locale environment
      (you can set the locale with, for instance, "export LANG=de_DE.UTF-8"
      from a bash console). Later, when the program reaches a
      <literal>gettext</literal> call, it looks for a translation of a
      particular string. If none is found, the original string is used.
    </para>
  </sect2>

  <sect2 id="sec-i18n-testing">
    <title>Testing and adding translations</title>

    <para>
      To convince yourself that you've done well, you may wish to add a
      translation for a new locale. In order to do that, go to the
      <filename>po</filename> subdirectory of your project and
      execute the following command:
      <programlisting>intltool-update --pot</programlisting>
    </para>

    <para>
      That will create a file named <filename>programname.pot</filename>.
      Now copy that file to <filename>languagecode.po</filename>, such as
      <filename>de.po</filename> or <filename>hu.po</filename>. Also add
      that language code to <literal>LINGUAS</literal>. The
      <filename>.po</filename> file contains a header and a list of English strings,
      with space for the translated strings to be entered. Make sure you set the
      encoding of the <filename>.po</filename> file (specified in the header, but
      also as content) to <literal>UTF-8</literal>.
    </para>

    <!-- TODO: This need more explanation. What's the point of the fuzzy tag then? murrayc -->
    <note>
      <para>
      It's possible that certain strings will be marked as
      <literal>fuzzy</literal> in the <filename>.po</filename> file.
      These translations will not substitute the original string. To make
      them appear, simply remove the <literal>fuzzy</literal> tag.
      </para>
    </note>
  </sect2>

  <sect2 id="sec-i18n-resources">
    <title>Resources</title>

    <para>
      More information about what lies behind the internationalization and localization process
      is presented and demonstrated in:

      <itemizedlist>
        <listitem>
          <para>
            <ulink url="https://wiki.gnome.org/TranslationProject/DevGuidelines">
              L10N Guidelines for Developers</ulink>
          </para>
        </listitem>

        <listitem>
          <para>
            <ulink url="http://bazaar.launchpad.net/~intltool/intltool/trunk/view/head:/README">Intltool README</ulink>
          </para>
        </listitem>

        <listitem>
          <para>
            <ulink url="https://wiki.gnome.org/TranslationProject/GitHowTo">How to use Git for GNOME translators</ulink>
          </para>
        </listitem>

        <listitem>
          <para>
            <ulink url="http://www.gnu.org/software/gettext/manual/gettext.html">gettext manual</ulink>
          </para>
        </listitem>

        <listitem>
          <para>
            <ulink url="http://ftp.gnome.org/pub/GNOME/sources/gtkmm_hello/"><literal>gtkmm_hello</literal> example package</ulink>
          </para>
        </listitem>

        <listitem>
          <para>
            <ulink url="http://ftp.gnome.org/pub/GNOME/sources/gnomemm_hello/"><literal>gnomemm_hello</literal> example package</ulink>
          </para>
        </listitem>
      </itemizedlist>
    </para>
  </sect2>

</sect1>

<sect1 id="sec-i18n-expecting-utf8">
<title>Expecting UTF8</title>
<para>
A properly internationalized application will not make assumptions about the
number of bytes in a character. That means that you shouldn't use pointer
arithmetic to step through the characters in a string, and it means you
shouldn't use <classname>std::string</classname> or standard C functions such
as <function>strlen()</function> because they make the same assumption.
</para>
<para>
However, you probably already avoid bare char* arrays and pointer arithmetic by
using <classname>std::string</classname>, so you just need to start using
<classname>Glib::ustring</classname> instead. See the <link
    linkend="sec-basics-ustring">Basics</link> chapter about
<classname>Glib::ustring</classname>.
</para>

<sect2 id="i18n-ustring-iostreams"><title>Glib::ustring and std::iostreams</title>
<!-- <para>TODO: This section is not clear - it needs to spell things out more clearly and obviously.</para> -->
<para>
Unfortunately, the integration with the standard iostreams is not completely
foolproof. &gtkmm; converts <classname>Glib::ustring</classname>s to a
locale-specific encoding (which usually is not UTF-8) if you output them to an
<classname>ostream</classname> with <function>operator&lt;&lt;</function>.
Likewise, retrieving <classname>Glib::ustrings</classname> from
<classname>istream</classname> with <function>operator&gt;&gt;</function>
causes a conversion in the opposite direction. But this scheme breaks down if
you go through a <classname>std::string</classname>, e.g. by inputting text
from a stream to a <classname>std::string</classname> and then implicitly
converting it to a <classname>Glib::ustring</classname>. If the string
contained non-ASCII characters and the current locale is not UTF-8 encoded, the
result is a corrupted <classname>Glib::ustring</classname>. You can work around
this with a manual conversion. For instance, to retrieve the
<classname>std::string</classname> from a <classname>ostringstream</classname>:
<programlisting>std::ostringstream output;
output.imbue(std::locale("")); // use the user's locale for this stream
output &lt;&lt; percentage &lt;&lt; " % done";
label-&gt;set_text(Glib::locale_to_utf8(output.str()));</programlisting>
</para>
</sect2>

</sect1>

<sect1 id="sec-i18n-pitfalls">
      <title>Pitfalls</title>

      <para>There are a few common mistakes that you would discover eventually yourself. But this section might help you to avoid them.</para>

<sect2 id="i18n-string-semantics">
        <title>Same strings, different semantics</title>

        <para>Sometimes two english strings are identical but have different meanings in
different contexts, so they would probably not be identical when translated. Since the English strings are
          used as look-up keys, this causes problems.</para>

<para>
In these cases, you should add extra characters to the strings. For instance,
use <literal>"jumps[noun]"</literal> and <literal>"jumps[verb]"</literal>
instead of just <literal>"jumps"</literal> and strip them again outside the
<function>gettext</function> call. If you add extra characters you should also
add a comment for the translators before the <function>gettext</function> call.
Such comments will be shown in the <filename>.po</filename> files. For
instance:
</para>

<programlisting>// note to translators: don't translate the "[noun]" part - it is
// just here to distinguish the string from another "jumps" string
text = strip(gettext("jumps[noun]"), "[noun]");</programlisting>
      </sect2>

<sect2 id="i18n-composition">
  <title>Composition of strings</title>

<para>
C programmers use <function>sprintf()</function> to compose and concatenate
strings. C++ favours streams, but unfortunately, this approach makes
translation difficult, because each fragment of text is translated separately,
without allowing the translators to rearrange them according to the grammar of
the language.</para>

<para>For instance, this code would be problematic:</para>

<programlisting>std::cout &lt;&lt; _("Current amount: ") &lt;&lt; amount
          &lt;&lt; _(" Future: ") &lt;&lt; future &lt;&lt; std::endl;

label.set_text(_("Really delete ") + filename + _(" now?"));</programlisting>

<para>
So you should either avoid this situation or use
<ulink url="&url_refdocs_base_glib;ustring.html"><function>Glib::ustring::compose()</function></ulink>
which supports syntax such as:
<programlisting>std::cout &lt;&lt; Glib::ustring::compose(
             _("Current amount: %1 Future: %2"), amount, future) &lt;&lt; std::endl;

label.set_text(Glib::ustring::compose(_("Really delete %1 now?"), filename));</programlisting>
</para>
</sect2>

<sect2 id="i18n-display-size">
        <title>Assuming the displayed size of strings</title>

        <para>You never know how much space a string will take on screen when translated. It might very possibly be twice the size of the original English string. Luckily, most &gtkmm; widgets will expand at runtime to the required size.</para>
</sect2>

<sect2 id="i18n-unusual-words">
        <title>Unusual words</title>

        <para>You should avoid cryptic abbreviations, slang, or jargon.
          They are usually difficult to translate, and are often difficult
for even native speakers to understand. For instance, prefer &quot;application&quot; to &quot;app&quot;</para>
</sect2>

<sect2 id="i18n-non-ascii-characters">
<title>Using non-ASCII characters in strings</title>

<para>
Currently, <application>gettext</application> does not support non-ASCII
characters (i.e. any characters with a code above 127) in source code. For
instance, you cannot use the copyright sign (&copy;).
</para>

        <para>To work around this, you could write a comment in the
          source code just before the string, telling the translators to
          use the special character if it is available in their languages. For english, you could then make an American English
          <filename>en_US.po</filename> translation which used that special character.</para>
      </sect2>
    </sect1>

    <sect1 id="sec-i18n-getting-help-with-translations">
      <title>Getting help with translations</title>

      <para>If your program is free software, there is a whole <literal>GNOME</literal>
        subproject devoted to helping you make translations, the
        <ulink url="https://wiki.gnome.org/TranslationProject/"><literal>GNOME</literal>
        Translation Project</ulink>.</para>

      <para>The way it works is that you upload your source code to a git
        repository where translators can access it, then contact the gnome-i18n
        mailing list and ask to have your program added to the
        <ulink url="http://l10n.gnome.org/module/">list of modules to translate</ulink>.</para>

      <para>Then you make sure you update the file
        <filename>POTFILES.in</filename> in the
        <filename>po/</filename> subdirectory
        (<command>intltool-update -M</command> can help with this) so
        that the translators always access updated
        <filename>myprogram.pot</filename> files, and simply freeze
        the strings at least a couple of days before you make a new
        release, announcing it on gnome-i18n. Depending on the number
        of strings your program contains and how popular it is, the
        translations will then start to tick in as
        <filename>languagename.po</filename> files.</para>

      <para>Note that most language teams only consist of 1-3 persons,
        so if your program contains a lot of strings, it might last a
        while before anyone has the time to look at it. Also, most
        translators do not want to waste their time (translating is
        a very time-consuming task) so if they do not assess your
        project as being really serious (in the sense that it is
        polished and being maintained) they may decide to spend their
        time on some other project.</para>
    </sect1>
</chapter>

<chapter id="chapter-customwidgets">
    <title>Custom Widgets</title>

    <para>&gtkmm; makes it very easy to derive new widgets by inheriting from an
      existing widget class, either by deriving from a container and adding child
      widgets, or by deriving from a single-item widget, and changing its behaviour.
      But you might occasionally find that no suitable starting point already exists.
      In this case, you can implement a widget from scratch.</para>

    <sect1 id="sec-custom-containers">
    <title>Custom Containers</title>
    <para>When deriving from <classname>Gtk::Container</classname>, you should override the following virtual methods:
    <itemizedlist>
      <listitem><para><methodname>get_request_mode_vfunc()</methodname>: Return what <literal>Gtk::SizeRequestMode</literal> is preferred by the container.</para></listitem>
      <listitem><para><methodname>get_preferred_width_vfunc()</methodname>: Calculate the minimum and natural width of the container.</para></listitem>
      <listitem><para><methodname>get_preferred_height_vfunc()</methodname>: Calculate the minimum and natural height of the container.</para></listitem>
      <listitem><para><methodname>get_preferred_width_for_height_vfunc()</methodname>: Calculate the minimum and natural width of the container, if it would be given the specified height.</para></listitem>
      <listitem><para><methodname>get_preferred_height_for_width_vfunc()</methodname>: Calculate the minimum and natural height of the container, if it would be given the specified width.</para></listitem>
      <listitem><para><methodname>on_size_allocate()</methodname>: Position the child widgets, given the height and width that the container has actually been given.</para></listitem>
      <listitem><para><methodname>forall_vfunc()</methodname>: Call the same callback for each of the children.</para></listitem>
      <listitem><para><methodname>on_add()</methodname>: Add a child widget to the container.</para></listitem>
      <listitem><para><methodname>on_remove()</methodname>: Remove a child widget from the container.</para></listitem>
      <listitem><para><methodname>child_type_vfunc()</methodname>: Return what type of child can be added.</para></listitem>
    </itemizedlist>
    </para>

    <para>The <methodname>get_request_mode_vfunc()</methodname>,
        <methodname>get_preferred_width_vfunc()</methodname>,
        <methodname>get_preferred_height_vfunc()</methodname>,
        <methodname>get_preferred_width_for_height_vfunc()</methodname>,
        <methodname>get_preferred_height_for_width_vfunc()</methodname>, and
        <methodname>on_size_allocate()</methodname> virtual methods control the
        layout of the child widgets. For instance, if your container has 2
        child widgets, with one below the other, your
        <methodname>get_request_mode_vfunc()</methodname> might request
        height-for-width layout. Then your
        <methodname>get_preferred_width_vfunc()</methodname>
        might report the maximum of the widths of the child widgets, and
        <methodname>get_preferred_height_for_width_vfunc()</methodname>
        might report the sum of their heights. If you want padding between
        the child widgets then you would add that to the width and height too.
        Your widget's container will use this result to ensure that your widget
        gets enough space, and not less. By examining each widget's parent, and
        its parent, this logic will eventually decide the size of the top-level
        window.</para>

    <para>You are not guaranteed to get the <literal>Gtk::SizeRequestMode</literal>
        that you request. Therefore all four of the
        <methodname>get_preferred_xxx_vfunc()</methodname> methods must return
        sensible values.</para>

   <para><methodname>on_size_allocate()</methodname> receives the actual
       height and width that the parent container has decided to give to your
       widget. This might be more than the minimum, or even more than the natural
       size, for instance if the
       top-level window has been expanded. You might choose to ignore the extra
       space and leave a blank area, or you might choose to expand your child
       widgets to fill the space, or you might choose to expand the padding
       between your widgets. It's your container, so you decide. Don't forget to
       call <methodname>set_allocation()</methodname> inside your
       <methodname>on_size_allocate()</methodname> implementation to actually use the
       allocated space that has been offered by the parent container.</para>

  <para>Unless your container is a top-level window that derives from
      <classname>Gtk::Window</classname>, you should probably also call
      <methodname>Gtk::Widget::set_has_window(false)</methodname> in your
      constructor. This means that your container does not create its own
      <classname>Gdk::Window</classname>, but uses its parent's
      window. (Note the difference between <classname>Gtk::Window</classname>
      and <classname>Gdk::Window</classname>.) If your container does need
      its own <classname>Gdk::Window</classname>, and does not derive from
      <classname>Gtk::Window</classname>, you must also override the
      <methodname>on_realize()</methodname> method as described in the
      <link linkend="sec-custom-widgets">Custom Widgets</link> section.
      And unless your container draws directly onto the underlying
      <classname>Gdk::Window</classname>, you should probably call
      <methodname>set_redraw_on_allocate(false)</methodname> to improve
      performance.</para>

  <para>By overriding <methodname>forall_vfunc()</methodname> you can allow
      applications to operate on all of the container's child widgets. For
      instance, <methodname>show_all_children()</methodname> uses this to find all
      the child widgets and show them.</para>

  <para>Although your container might have its own method to set the child
      widgets, you should still provide an implementation for the virtual
      <methodname>on_add()</methodname> and <methodname>on_remove()</methodname>
      methods from the base class, so that the add() and remove() methods will
      do something appropriate if they are called.</para>

  <para>Your implementation of the <methodname>child_type_vfunc()</methodname>
      method should report the type of widget that may be added to your
      container, if it is not yet full. This is usually
      <methodname>Gtk::Widget::get_type()</methodname> to indicate that the
      container may contain any class derived from
      <classname>Gtk::Widget</classname>. If the container may not contain any
      more widgets, then this method should return
      <literal>G_TYPE_NONE</literal>.</para>


<sect2 id="custom-container-example"><title>Example</title>

    <para>This example implements a container with two child widgets, one above
        the other. Of course, in this case it would be far simpler just to use
        a vertical <classname>Gtk::Box</classname>.</para>

<figure id="figure-custom-container">
  <title>Custom Container</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;custom_container.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;custom/custom_container/">Source Code</ulink></para>
</sect2>

    </sect1>

    <sect1 id="sec-custom-widgets">
    <title>Custom Widgets</title>
    <para>By deriving directly from <classname>Gtk::Widget</classname> you can
        do all the drawing for your widget directly, instead of just arranging
        child widgets. For instance, a <classname>Gtk::Label</classname> draws
        the text of the label, but does not do this by using other
        widgets.</para>

    <para>When deriving from <classname>Gtk::Widget</classname>, you should
        override the following virtual methods. The methods marked (optional)
        need not be overridden in all custom widgets. The base class's methods
        may be appropriate.
    <itemizedlist>
      <listitem><para><methodname>get_request_mode_vfunc()</methodname>: (optional) Return what <literal>Gtk::SizeRequestMode</literal> is preferred by the widget.</para></listitem>
      <listitem><para><methodname>get_preferred_width_vfunc()</methodname>: Calculate the minimum and natural width of the widget.</para></listitem>
      <listitem><para><methodname>get_preferred_height_vfunc()</methodname>: Calculate the minimum and natural height of the widget.</para></listitem>
      <listitem><para><methodname>get_preferred_width_for_height_vfunc()</methodname>: Calculate the minimum and natural width of the widget, if it would be given the specified height.</para></listitem>
      <listitem><para><methodname>get_preferred_height_for_width_vfunc()</methodname>: Calculate the minimum and natural height of the widget, if it would be given the specified width.</para></listitem>
      <listitem><para><methodname>on_size_allocate()</methodname>: Position the widget, given the height and width that it has actually been given.</para></listitem>
      <listitem><para><methodname>on_realize()</methodname>: Associate a <classname>Gdk::Window</classname> with the widget.</para></listitem>
      <listitem><para><methodname>on_unrealize()</methodname>: (optional) Break the association with the <classname>Gdk::Window</classname>. </para></listitem>
      <listitem><para><methodname>on_map()</methodname>: (optional)</para></listitem>
      <listitem><para><methodname>on_unmap()</methodname>: (optional)</para></listitem>
      <listitem><para><methodname>on_draw()</methodname>: Draw on the supplied <classname>Cairo::Context</classname>.</para></listitem>
    </itemizedlist>
    </para>

    <para>The first 6 methods in the previous table are also overridden in custom
        containers. They are briefly described in the
        <link linkend="sec-custom-containers">Custom Containers</link> section.
    </para>

    <para>Most custom widgets need their own <classname>Gdk::Window</classname>
      to draw on. Then you can call
      <methodname>Gtk::Widget::set_has_window(true)</methodname> in your
      constructor. (This is the default value.) If you do not call
      <methodname>set_has_window(false)</methodname>, you must override
      <methodname>on_realize()</methodname> and call
      <methodname>Gtk::Widget::set_realized()</methodname> and
      <methodname>Gtk::Widget::set_window()</methodname> from there.</para>

<sect2 id="custom-widget-example"><title>Example</title>

<para>This example implements a widget which draws a Penrose triangle.</para>

<figure id="figure-custom-widget">
  <title>Custom Widget</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;custom_widget.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;custom/custom_widget/">Source Code</ulink></para>
</sect2>

    </sect1>



</chapter>

<chapter id="chapter-multi-threaded-programs">
<title>Multi-threaded programs</title>

<sect1 id="sec-the-constraints">
<title>The constraints</title>

<para>
<application>glibmm</application> provides the normal set of thread
launching functions, mutexes, condition variables and scoped locking
classes required for writing multi-threaded programs using C++.
</para>

<para>
However, care is required when writing programs based on &gtkmm; using
multiple threads of execution, arising from the fact that
<application>libsigc++</application>, and in particular
<classname>sigc::trackable</classname>, are not thread-safe. That's
because none of the complex interactions that occur behind the scenes
when using <application>libsigc++</application> are protected by a
mutex or other means of synchronization.
<footnote>
<para>
These interactions arise from the fact that, amongst other things, a
class inheriting from <classname>sigc::trackable</classname> will, via
that inheritance, have a <classname>std::list</classname> object
keeping track of slots created by calls to
<function>sigc::mem_fun()</function> representing any of its
non-static methods (more particularly it keeps a list of callbacks
which will null the connected slots on its destruction). Each
<classname>sigc::slot</classname> object also keeps, via
<classname>sigc::slot_rep</classname>, its own
<classname>sigc::trackable</classname> object to track any
<classname>sigc::connection</classname> objects which it needs to
inform about its demise, and also has a function to deregister itself
from any <classname>sigc::trackable</classname> on disconnection or
destruction. <classname>sigc::signal</classname> objects also keep
lists of slots, which will be updated by a call to their
<methodname>connect()</methodname> method or calls to any
<classname>sigc::connection</classname> object relating to such a
connection.
</para>
</footnote>
</para>

<sect2 id="the-rules">
<title>The rules</title>

<para>
This requires a number of rules to be observed when writing
multi-threaded programs using &gtkmm;. These are set out below, but
one point to note is that extra care is required when deriving classes
from <classname>sigc::trackable</classname>, because the effects are
unintuitive (see particularly points 4 and 5 below).
</para>

<orderedlist>

<listitem>
<para>
Use <classname>Glib::Dispatcher</classname> to invoke &gtkmm; functions
from worker threads (this is dealt with in more detail in the next
section).
</para>
</listitem>

<listitem>
<para>
A <classname>sigc::signal</classname> object should be regarded as
owned by the thread which created it. Only that thread should connect
a <classname>sigc::slot</classname> object to the signal object, and
only that thread should <methodname>emit()</methodname> or call
<methodname>operator()()</methodname> on the signal, or null any
connected <classname>sigc::slot</classname> object. It follows
(amongst other things) that any signal object provided by a &gtkmm;
widget should only be operated on in the main GUI thread and any
object deriving from <classname>sigc::trackable</classname> having its
non-static methods referenced by slots connected to the signal object
should only be destroyed in that thread.
</para>
</listitem>

<listitem>
<para>
Any <classname>sigc::connection</classname> object should be regarded
as owned by the thread in which the method returning the
<classname>sigc::connection</classname> object was called. Only that
thread should call <classname>sigc::connection</classname> methods on
the object.
</para>
</listitem>

<listitem>
<para>
A <classname>sigc::slot</classname> object created by a call to
<function>sigc::mem_fun()</function> which references a method of a
class deriving from <classname>sigc::trackable</classname> should
never be copied to another thread, nor destroyed by a different thread
than the one which created it. (One consequence of this is that
<methodname>Glib::Threads::Thread::create()</methodname> should not be
called with a slot argument created by a call to
<function>sigc::mem_fun()</function> which represents a method of such
a class. It is however safe to pass
<methodname>Glib::Threads::Thread::create()</methodname> a function
object representing such a method by using, say,
<function>boost::bind()</function> or, in C++11,
<function>std::bind()</function> or a C++11 lambda expression.)
</para>
</listitem>

<listitem>
<para>
If a particular class object derives from
<classname>sigc::trackable</classname>, only one thread should create
<classname>sigc::slot</classname> objects representing any of the
class's non-static methods by calling
<function>sigc::mem_fun()</function>. The first thread to create such
a slot should be regarded as owning the relevant object for the
purpose of creating further slots referencing <emphasis>any</emphasis>
of its non-static methods using that function, or nulling those slots
by disconnecting them or destroying the trackable object.
</para>
</listitem>

<listitem>
<para>
Although <application>glib</application> is itself thread-safe, any
<application>glibmm</application> wrappers which use
<application>libsigc++</application> will not be. So for example, only
the thread in which a main loop runs should call
<methodname>Glib::SignalIdle::connect()</methodname>,
<methodname>Glib::SignalIO::connect()</methodname>,
<methodname>Glib::SignalTimeout::connect()</methodname>,
<methodname>Glib::SignalTimeout::connect_seconds</methodname>
for that main loop, or manipulate any
<classname>sigc::connection</classname> object returned by them.
</para>
<para>
The connect*_once() variants,
<methodname>Glib::SignalIdle::connect_once()</methodname>,
<methodname>Glib::SignalTimeout::connect_once()</methodname>,
<methodname>Glib::SignalTimeout::connect_seconds_once()</methodname>,
are thread-safe for any case where the slot is not created by a call to
<function>sigc::mem_fun()</function> which represents a method of a class
deriving from <classname>sigc::trackable</classname>. This is similar to
<methodname>Glib::Threads::Thread::create()</methodname> as mentioned in point 4.
</para>
</listitem>

</orderedlist>

</sect2>

</sect1>

<sect1 id="sec-using-glib-dispatcher">
<title>Using Glib::Dispatcher</title>

<para>
The slots connected to <classname>sigc::signal</classname> objects
execute in the thread which calls <methodname>emit()</methodname> or
<methodname>operator()()</methodname> on the signal.
<classname>Glib::Dispatcher</classname> does not behave this way:
instead its connected slots execute in the thread in which the
<classname>Glib::Dispatcher</classname> object was constructed (which
must have a glib main loop). If a
<classname>Glib::Dispatcher</classname> object is constructed in the
main GUI thread (which will therefore be the receiver thread), any
worker thread can emit on it and have the connected slots safely
execute &gtkmm; functions.
</para>

<para>
Some thread safety rules on the use of
<classname>Glib::Dispatcher</classname> still apply. As mentioned, a
<classname>Glib::Dispatcher</classname> object must be constructed in
the receiver thread (the thread in whose main loop it will execute its
connected slots). By default this is the main program thread, although
there is a <classname>Glib::Dispatcher</classname> constructor which
can take the <classname>Glib::MainContext</classname> object of any
thread which has a main loop. Only the receiver thread should call
<methodname>connect()</methodname> on the
<classname>Glib::Dispatcher</classname> object, or manipulate any
related <classname>sigc::connection</classname> object, unless
additional synchronization is employed. However, any worker thread can
safely emit on the <classname>Glib::Dispatcher</classname> object
without any locking once the receiver thread has connected the slots,
provided that it is constructed before the worker thread is started
(if it is constructed after the thread has started, additional
synchronization will normally be required to ensure visibility).
</para>

<para>
Aside from the fact that connected slots always execute in the
receiver thread, <classname>Glib::Dispatcher</classname> objects are
similar to <classname>sigc::signal&lt;void&gt;</classname> objects.
They therefore cannot pass unbound arguments nor return a value. The
best way to pass unbound arguments is with a thread-safe
(asynchronous) queue. At the time of writing
<application>glibmm</application> does not have one, although most
people writing multi-threaded code will have one available to them
(they are relatively easy to write although there are subtleties in
combining thread safety with strong exception safety).
</para>

<para>
A <classname>Glib::Dispatcher</classname> object can be emitted on by
the receiver thread as well as by a worker thread, although this
should be done within reasonable bounds. On unix-like systems
<classname>Glib::Dispatcher</classname> objects share a single common
pipe, which could in theory at least fill up on a very heavily loaded
system running a program with a very large number of
<classname>Dispatcher</classname> objects in use. Were the pipe to
fill up before the receiver thread's main loop has had an opportunity
to read from it to empty it, and the receiver thread attempt to emit
and so write to it when it is in that condition, the receiver thread
would block on the write, so deadlocking. Where the receiver thread is
to emit, a normal <classname>sigc::signal&lt;void&gt;</classname>
object could of course be used instead.
</para>

</sect1>

<sect1 id="sec-multithread-example">
<title>Example</title>
<para>
This is an example program with two threads, one GUI thread, like in all
&gtkmm; programs, and one worker thread. The worker thread is created when you
press the <literal>Start work</literal> button. It is deleted when the work is
finished, when you press the <literal>Stop work</literal> button, or when you
press the <literal>Quit</literal> button.
</para>

<para>
A <classname>Glib::Dispatcher</classname> is used for sending notifications
from the worker thread to the GUI thread. The <classname>ExampleWorker</classname>
class contains data which is accessed by both threads. This data is protected
by a <classname>Glib::Threads::Mutex</classname>.
Only the GUI thread updates the GUI.
</para>

<figure id="figure-multithread">
  <title>Multi-Threaded Program</title>
  <screenshot>
    <graphic format="PNG" fileref="&url_figures_base;multithread.png"/>
  </screenshot>
</figure>

<para><ulink url="&url_examples_base;multithread">Source Code</ulink></para>

</sect1>

</chapter>

<chapter id="chapter-recommended-techniques">
<title>Recommended Techniques</title>

<para>This section is simply a gathering of wisdom, general style guidelines
and hints for creating &gtkmm; applications.
</para>

<para>Use GNU <application>autoconf</application> and
    <application>automake</application>! They are your friends :)
    <application>Automake</application> examines C files, determines how they
    depend on each other, and generates a <filename>Makefile</filename> so the
    files can be compiled in the correct order.
    <application>Autoconf</application> permits automatic configuration of
    software installation, handling a large number of system quirks to increase
    portability.
</para>

<para>Subclass Widgets to better organize your code. You should probably
    subclass your main <classname>Window</classname> at least. Then you can
    make your child Widgets and signal handlers members of that class.
</para>

<para>Create your own signals instead of passing pointers around. Objects can
    communicate with each other via signals and signal handlers. This is much
    simpler than objects holding pointers to each other and calling each
    other's methods. &gtkmm;'s classes uses special versions of
    <classname>sigc::signal</classname>, but you should use normal
    <classname>sigc::signal</classname>s, as described in the
    <application>libsigc++</application> documentation.</para>

<sect1 id="sec-application-lifetime">
    <title>Application Lifetime</title>
<para>Most applications will have only one <classname>Window</classname>, or
    only one main window. These applications can use the
    <methodname>Gtk::Application::run(Gtk::Window&amp;)</methodname> overload. It shows
    the window and returns when the window has been hidden. This might happen
    when the user closes the window, or when your code decides to
    <methodname>hide()</methodname> the window. You can prevent the user from
    closing the window (for instance, if there are unsaved changes) by
    overriding <methodname>Gtk::Window::on_delete_event()</methodname>.</para>
<para>Most of our examples use this technique.</para>
</sect1>

<sect1 id="sec-using-a-gtkmm-widget">
<title>Using a &gtkmm; widget</title>

<para>
    Our examples all tend to have the same structure. They follow these steps
    for using a <classname>Widget</classname>:
</para>

<para>

<orderedlist>
<listitem>
<para>
Declare a variable of the type of <classname>Widget</classname> you wish to
use, generally as member variable of a derived container class. You could also
declare a pointer to the widget type, and then create it with
<literal>new</literal> in your code. Even when using the widget via a pointer,
it's still probably best to make that pointer a member variable of a container
class so that you can access it later.
</para>
</listitem>

<listitem>
<para>
 Set the attributes of the widget. If the widget has no default constructor, then you will need to initialize the widget in the initalizer list of your container class's constructor.
</para>
</listitem>

<listitem>
<para>
Connect any signals you wish to use to the appropriate handlers.
</para>
</listitem>

<listitem>
<para>
Pack the widget into a container using the appropriate call,
e.g. <methodname>Gtk::Container::add()</methodname> or
<methodname>pack_start()</methodname>.
</para>
</listitem>

<listitem>
<para>
Call <methodname>show()</methodname> to display the widget.
</para>
</listitem>

</orderedlist>

</para>

<para>
<methodname>Gtk::Widget::show()</methodname> lets &gtkmm; know that we have
finished setting the attributes of the widget, and that it is ready to be
displayed. You can use <methodname>Gtk::Widget::hide()</methodname> to make it
disappear again. The order in which you show the widgets is not important, but
we do suggest that you show the top-level window last; this way, the whole
window will appear with its contents already drawn. Otherwise, the user will
first see a blank window, into which the widgets will be gradually drawn.
</para>

</sect1>
</chapter>

<chapter id="chapter-contributing">
<title>Contributing</title>

<para>
This document, like so much other great software out there, was
created for free by volunteers. If you are at all knowledgeable about
any aspect of &gtkmm; that does not already have documentation, please
consider contributing to this document.
</para>
<para>
Ideally, we would like you to <ulink url="http://www.gtkmm.org/bugs.shtml">provide a patch</ulink> to the
<filename>docs/tutorial/C/gtkmm-tutorial-in.xml</filename> file. This file is currently
in the <literal>gtkmm-documentation</literal> module in GNOME git.
</para>

<para>
If you do decide to contribute, please post your contribution to the
&gtkmm; mailing list at <ulink url="mailto:gtkmm-list@gnome.org">&#60;gtkmm-list@gnome.org&#62;</ulink>. Also, be aware that
the entirety of this document is free, and any addition you provide
must also be free. That is, people must be able to use any portion of
your examples in their programs, and copies of this document
(including your contribution) may be distributed freely.
</para>

</chapter>

<appendix id="chapter-refptr">
<title>The RefPtr smartpointer</title>
<para>
<classname>Glib::RefPtr</classname> is a smartpointer. Specifically, it is a
reference-counting smartpointer. You might be familiar with
<classname>std::auto_ptr&lt;&gt;</classname>, <classname>std::unique_ptr&lt;&gt;</classname>
and <classname>std::shared_ptr&lt;&gt;</classname>, which are also smartpointers.
<classname>Glib::RefPtr&lt;&gt;</classname> is similar to <classname>std::shared_ptr&lt;&gt;</classname>,
which is also reference-counting. <classname>Glib::RefPtr&lt;&gt;</classname> was introduced
long before there was a reference-counting smartpointer in the C++ Standard Library.
</para>

<para><ulink url="&url_refdocs_base_glib;RefPtr.html">Reference</ulink></para>

<para>A smartpointer acts much like a normal pointer. Here are a few examples.</para>

<sect1 id="sec-refptr-copying">
    <title>Copying</title>
<para>
You can copy <classname>RefPtr</classname>s, just like normal pointers. But
unlike normal pointers, you don't need to worry about deleting the underlying
instance.
</para>
<para>
<programlisting>
Glib::RefPtr&lt;Gdk::Pixbuf&gt; refPixbuf = Gdk::Pixbuf::create_from_file(filename);
Glib::RefPtr&lt;Gdk::Pixbuf&gt; refPixbuf2 = refPixbuf;
</programlisting>
</para>
<para>
Of course this means that you can store <classname>RefPtr</classname>s in
standard containers, such as <classname>std::vector</classname> or
<classname>std::list</classname>.</para>
<para>
<programlisting>
std::list&lt; Glib::RefPtr&lt;Gdk::Pixbuf&gt; &gt; listPixbufs;
Glib::RefPtr&lt;Gdk::Pixbuf&gt; refPixbuf = Gdk::Pixbuf::create_from_file(filename);
listPixbufs.push_back(refPixbuf);
</programlisting>
</para>
</sect1>

<sect1 id="sec-refptr-dereferencing"><title>Dereferencing</title>
<para>You can dereference a smartpointer with the -&gt; operator, to
call the methods of the underlying instance, just like a normal pointer.
</para>
<para>
<programlisting>
Glib::RefPtr&lt;Gdk::Pixbuf&gt; refPixbuf = Gdk::Pixbuf::create_from_file(filename);
int width = refPixbuf-&gt;get_width();
</programlisting>
</para>
<para>But unlike most smartpointers, you can't use the * operator to
access the underlying instance.
</para>
<para>
<programlisting>
Glib::RefPtr&lt;Gdk::Pixbuf&gt; refPixbuf = Gdk::Pixbuf::create_from_file(filename);
Gdk::Pixbuf&amp; underlying = *refPixbuf; //Syntax error - will not compile.
</programlisting>
</para>
</sect1>

<sect1 id="sec-refptr-casting"><title>Casting</title>
<para>
You can cast <classname>RefPtr</classname>s to base types, just like normal
pointers.
</para>
<para>
<programlisting>
Glib::RefPtr&lt;Gtk::TreeStore&gt; refStore = Gtk::TreeStore::create(columns);
Glib::RefPtr&lt;Gtk::TreeModel&gt; refModel = refStore;
</programlisting>
</para>
<para>This means that any method which takes a <type>const
Glib::RefPtr&lt;BaseType&gt;</type> argument can also take a
<type>const Glib::RefPtr&lt;DerivedType&gt;</type>. The cast is
implicit, just as it would be for a normal pointer.</para>
<para>You can also cast to a derived type, but the syntax is
a little different than with a normal pointer.
</para>
<para>
<programlisting>
Glib::RefPtr&lt;Gtk::TreeStore&gt; refStore =
Glib::RefPtr&lt;Gtk::TreeStore&gt;::cast_dynamic(refModel);
Glib::RefPtr&lt;Gtk::TreeStore&gt; refStore2 =
Glib::RefPtr&lt;Gtk::TreeStore&gt;::cast_static(refModel);
</programlisting>
</para>
</sect1>


<sect1 id="sec-refptr-checking-for-null"><title>Checking for null</title>
<para>
Just like normal pointers, you can check whether a
<classname>RefPtr</classname> points to anything.
</para>
<para>
<programlisting>
Glib::RefPtr&lt;Gtk::TreeModel&gt; refModel = m_TreeView.get_model();
if(refModel)
{
  int cols_count = refModel-&gt;get_n_columns();
  ...
}
</programlisting>
</para>
<para>
But unlike normal pointers, <classname>RefPtr</classname>s are automatically
initialized to null so you don't need to remember to do that yourself.
</para>
</sect1>


<sect1 id="sec-refptr-constness"><title>Constness</title>
<para>
The use of the <literal>const</literal> keyword in C++ is not always clear. You
might not realise that <type>const Something*</type> declares a pointer to a
<type>const Something</type>. The pointer can be changed, but not the
<type>Something</type> that it points to.
</para>
<para>
Therefore, the <classname>RefPtr</classname> equivalent of
<type>Something*</type> for a method parameter is <type>const
    Glib::RefPtr&lt;Something&gt;&amp;</type>, and the equivalent of
<type>const Something*</type> is <type>const Glib::RefPtr&lt;const
    Something&gt;&amp;</type>.
</para>
<para>
The <literal>const ... &amp;</literal> around both is just for efficiency, like
using <classname>const std::string&amp;</classname> instead of
<classname>std::string</classname> for a method parameter to avoid unnecessary
copying.
</para>
</sect1>

</appendix>


<appendix id="chapter-signals">
<title>Signals</title>

<sect1 id="sec-connecting-signal-handlers">
<title>Connecting signal handlers</title>
<para>
&gtkmm; widget classes have signal accessor methods, such as
<methodname>Gtk::Button::signal_clicked()</methodname>, which allow you to connect
your signal handler. Thanks to the flexibility of
<application>libsigc++</application>, the callback library used by &gtkmm;, the
signal handler can be almost any kind of function, but you will probably want
to use a class method. Among <application>GTK+</application> C coders, these
signal handlers are often named callbacks.
</para>

<para>
Here's an example of a signal handler being connected to a signal:
</para>

<para>
<programlisting>
#include &#60;gtkmm/button.h&#62;

void on_button_clicked()
{
    std::cout &#60;&#60; "Hello World" &#60;&#60; std::endl;
}

main()
{
    Gtk::Button button("Hello World");
    button.signal_clicked().connect(sigc::ptr_fun(&amp;on_button_clicked));
}
</programlisting>
</para>

<para>
There's rather a lot to think about in this (non-functional) code.
First let's identify the parties involved:
</para>

<itemizedlist>
<listitem>

<para>
The signal handler is <methodname>on_button_clicked()</methodname>.
</para>
</listitem>
<listitem>

<para>
We're hooking it up to the <classname>Gtk::Button</classname> object called
<varname>button</varname>.
</para>
</listitem>
<listitem>

<para>
When the Button emits its <literal>clicked</literal> signal,
<methodname>on_button_clicked()</methodname> will be called.
</para>
</listitem>

</itemizedlist>

<para>
Now let's look at the connection again:
</para>

<para>
<programlisting>
    ...
    button.signal_clicked().connect(sigc::ptr_fun(&amp;on_button_clicked));
    ...
</programlisting>
</para>

<para>
Note that we don't pass a pointer to <methodname>on_button_clicked()</methodname>
directly to the signal's <methodname>connect()</methodname> method. Instead, we
call <function>sigc::ptr_fun()</function>, and pass the result to
<methodname>connect()</methodname>.
</para>

<para>
<function>sigc::ptr_fun()</function>  generates a <classname>sigc::slot</classname>.
A slot is an object which
looks and feels like a function, but is actually an object. These are also
known as function objects, or functors.
<function>sigc::ptr_fun()</function> generates a slot for a standalone function or static method.
<function>sigc::mem_fun()</function> generates a slot for a member method of a particular instance.
</para>

<para>
Here's a slightly larger example of slots in action:
</para>

<para>
<programlisting>
void on_button_clicked();

class some_class
{
    void on_button_clicked();
};

some_class some_object;

main()
{
    Gtk::Button button;
    button.signal_clicked().connect( sigc::ptr_fun(&amp;on_button_clicked) );
    button.signal_clicked().connect( sigc::mem_fun(some_object, &amp;some_class::on_button_clicked) );
}
</programlisting>
</para>

<para>
The first call to <methodname>connect()</methodname> is just like the one we saw
last time; nothing new here.</para>
<para>The next is more interesting.
<function>sigc::mem_fun()</function> is called with two arguments. The first
argument is <parameter>some_object</parameter>, which is the object that our
new slot will be pointing at. The second argument is a pointer to one of its
methods. This particular version of <function>sigc::mem_fun()</function>
creates a slot which will, when "called", call the pointed-to method of the
specified object, in this case
<methodname>some_object.on_button_clicked()</methodname>.
</para>

<para>
Another thing to note about this example is that we made the call to
<methodname>connect()</methodname> twice for the same signal object. This is
perfectly fine - when the button is clicked, both signal handlers will be
called.
</para>

<para>
We just told you that the button's <literal>clicked</literal> signal is expecting
to call a method with no arguments. All signals have
requirements like this - you can't hook a function with two arguments
to a signal expecting none (unless you use an adapter, such as
<function>sigc::bind()</function>, of course). Therefore, it's important to
know what type of signal handler you'll be expected to connect to a given
signal.
</para>
</sect1>

<sect1 id="sec-writing-signal-handlers">
<title>Writing signal handlers</title>

<para>
To find out what type of signal handler you can connect to a signal, you can
look it up in the reference documentation or the header file. Here's an example of a signal declaration you
might see in the &gtkmm; headers:
</para>

<para>
<programlisting>
Glib::SignalProxy1&lt;bool, Gtk::DirectionType&gt; signal_focus()
</programlisting>
</para>

<para>
Other than the signal's name (<literal>focus</literal>), two things are
important to note here: the number following the word
<classname>SignalProxy</classname> at the beginning (1, in this case), and the
types in the list (<type>bool</type> and <type>Gtk::DirectionType</type>). The
number indicates how many arguments the signal handler should have; the first
type, <type>bool</type>, is the type that the signal handler should return; and
the next type, <type>Gtk::DirectionType</type>, is the type of this signal's
first, and only, argument. By looking at the reference documentation, you can
see the names of the arguments too.
</para>

<para>
The same principles apply for signals which have more arguments. Here's one
with three (taken from <filename>&lt;gtkmm/textbuffer.h&gt;</filename>):
</para>

<para>
<programlisting>
Glib::SignalProxy3&lt;void, const TextBuffer::iterator&amp;, const Glib::ustrin&amp;, int&gt; signal_insert();
</programlisting>
</para>

<para>
It follows the same form. The number 3 at the end of the type's name indicates
that our signal handler will need three arguments. The first type in the type
list is <type>void</type>, so that should be our signal handler's return type.
The following three types are the argument types, in order. Our signal
handler's prototype could look like this:
</para>

<para>
<programlisting>
void on_insert(const TextBuffer::iterator&amp; pos, const Glib::ustring&amp; text, int bytes)
</programlisting>
</para>
</sect1>

<sect1 id="sec-disconnecting-signal-handlers">
<title>Disconnecting signal handlers</title>

<para>
Let's take another look at a Signal's <literal>connect</literal> method:
</para>

<para>
<programlisting>
sigc::signal&lt;void,int&gt;::iterator signal&lt;void,int&gt;::connect( const sigc::slot&lt;void,int&gt;&amp; );
</programlisting>
</para>

<para>
Notice that the return value is of type
<classname>sigc::signal&lt;void,int&gt;::iterator</classname>. This can be
implicitly converted into a <classname>sigc::connection</classname> which in
turn can be used to control the connection. By keeping a connection object you
can disconnect its associated signal handler using the method
<methodname>sigc::connection::disconnect()</methodname>.
</para>

</sect1>
<sect1 id="sec-overriding-default-signal-handlers">
<title>Overriding default signal handlers</title>

<para>
So far we've told you to perform actions in
response to button-presses and the like by handling signals.
That's certainly a good way to do things, but it's not the only
way.
</para>

<para>
Instead of laboriously connecting signal handlers to signals,
you can simply make a new class which inherits from a widget - say, a
Button - and then override the default signal handler, such as Button::on_clicked(). This can be a
lot simpler than hooking up signal handlers for everything.
</para>

<para>
Subclassing isn't always the best way to accomplish
things. It is only useful when you want the widget to handle its own signal by itself. If you want some other class to handle the signal then you'll need to connect a separate handler. This is even more true if you want several objects to handle the same signal, or if you want one signal handler to respond to the same signal from different objects.
</para>

<para>
&gtkmm; classes are designed with overriding in mind; they contain
virtual member methods specifically intended to be overridden.
</para>

<para>
Let's look at an example of overriding:
</para>

<para>
<programlisting>
#include &#60;gtkmm/button.h&#62;

class OverriddenButton : public Gtk::Button
{
protected:
    virtual void on_clicked();
}

void OverriddenButton::on_clicked()
{
    std::cout &#60;&#60; "Hello World" &#60;&#60; std::endl;

    // call the base class's version of the method:
    Gtk::Button::on_clicked();
}
</programlisting>
</para>

<para>
Here  we define a new class called <classname>OverriddenButton</classname>,
which inherits from <classname>Gtk::Button</classname>. The only thing we
change is the <methodname>on_clicked()</methodname> method, which is called
whenever <classname>Gtk::Button</classname> emits the
<literal>clicked</literal> signal. This method prints "Hello World" to
<literal>stdout</literal>, and then calls the original, overridden method, to
let <classname>Gtk::Button</classname> do what it would have done had we not
overridden.
</para>

<para>
You don't always need to call the parent's method; there are times
when you might not want to. Note that we called the parent method
<emphasis>after</emphasis> writing "Hello World", but we could have called it before.
In this simple example, it hardly matters much, but there are times
when it will. With signals, it's not quite so easy to change details
like this, and you can do something here which you can't do at all
with connected signal handlers: you can call the parent method in the <emphasis>middle</emphasis> of
your custom code.
</para>

</sect1>

<sect1 id="sec-binding-extra-arguments">
<title>Binding extra arguments</title>
<para>
If you use one signal handler to catch the same signal from several widgets,
you might like that signal handler to receive some extra information. For
instance, you might want to know which button was clicked. You can do this with
<function>sigc::bind()</function>. Here's some code from the <link
    linkend="sec-helloworld2">helloworld2</link> example.
<programlisting>
m_button1.signal_clicked().connect( sigc::bind&lt;Glib::ustring&gt;( sigc::mem_fun(*this, &amp;HelloWorld::on_button_clicked), "button 1") );
</programlisting>
This says that we want the signal to send an extra
<classname>Glib::ustring</classname> argument to the signal handler, and that
the value of that argument should be "button 1". Of course we will need to add
that extra argument to the declaration of our signal handler:
<programlisting>
virtual void on_button_clicked(Glib::ustring data);
</programlisting>
Of course, a normal "clicked" signal handler would have no arguments.
</para>
<para>
<function>sigc::bind()</function> is not commonly used, but you might find it
helpful sometimes. If you are familiar with <application>GTK+</application>
programming then you have probably noticed that this is similar to the extra
<literal>gpointer data</literal> arguments which all GTK+ callbacks have. This
is generally overused in <application>GTK+</application> to pass information
that should be stored as member data in a derived widget, but widget derivation
is very difficult in C. We have far less need of this hack in &gtkmm;.
</para>
</sect1>

<sect1 id="sec-xeventsignals">
<title>X Event signals</title>
<para>
The <classname>Widget</classname> class has some special signals which
correspond to the underlying X-Windows events. These are suffixed by
<literal>_event</literal>; for instance,
<methodname>Widget::signal_button_press_event()</methodname>.
</para>
<para>
You might occasionally find it useful to handle X events when there's something
you can't accomplish with normal signals. <classname>Gtk::Button</classname>,
for example, does not send mouse-pointer coordinates with its
<literal>clicked</literal> signal, but you could handle
<literal>button_press_event</literal> if you needed this
information. X events are also often used to handle key-presses.
</para>

<para>
These signals behave slightly differently. The value returned from the signal handler indicates whether it has fully "handled"
the event. If the value is <literal>false</literal> then &gtkmm; will pass the event on to the next signal handler. If the value is <literal>true</literal> then no other signal handlers will need to be called.
</para>

<para>
Handling an X event doesn't affect the Widget's other signals. If you handle
<literal>button_press_event</literal> for
<classname>Gtk::Button</classname>, you'll still be able to get the
<literal>clicked</literal> signal. They are emitted at (nearly) the same time.
</para>

<para>Note also that not all widgets receive all X events by default. To receive additional
X events, you can use <methodname>Gtk::Widget::set_events()</methodname> before showing the
widget, or <methodname>Gtk::Widget::add_events()</methodname> after showing the widget. However,
some widgets must first be placed inside an <classname>EventBox</classname> widget. See
the <link linkend="chapter-widgets-without-xwindows">Widgets Without X-Windows</link> chapter.
</para>

<para>
Here's a simple example:
<programlisting>
bool on_button_press(GdkEventButton* event);
Gtk::Button button("label");
button.signal_button_press_event().connect( sigc::ptr_fun(&amp;on_button_press) );
</programlisting>
</para>
<para>
When the mouse is over the button and a mouse button is pressed,
<methodname>on_button_press()</methodname> will be called.
</para>

<para>
<type>GdkEventButton</type> is a structure containing the event's parameters,
such as the coordinates of the mouse pointer at the time the button was
pressed. There are several different types of <type>GdkEvent</type> structures
for the various events.
</para>

<sect2 id="signal-handler-sequence">
<title>Signal Handler sequence</title>
<para>By default, your signal handlers are called after any previously-connected
signal handlers. However, this can be a problem with the X Event signals. For instance,
the existing signal handlers, or the default signal handler, might return <literal>true</literal>
to stop other signal handlers from being called. To specify that your signal handler
should be called before the other signal handlers, so that it will always be called,
you can specify <literal>false</literal> for the optional <literal>after</literal>
parameter. For instance,
<programlisting>
button.signal_button_press_event().connect( sigc::ptr_fun(&amp;on_mywindow_button_press), false );
</programlisting>
</para>
<para>The event is delivered first to the widget the event occurred in. If all
signal handlers in that widget return <literal>false</literal> (indicating that
the event has not been handled), then the signal will be propagated to the parent
widget and emitted there. This continues all the way up to the top-level widget
if no one handles the event. 
</para>
</sect2>

</sect1>

<sect1 id="sec-exceptions-in-signal-handlers">
<title>Exceptions in signal handlers</title>
<para>
When a program is aborted because of an unhandled C++ exception, it's sometimes
possible to use a debugger to find the location where the exception was thrown.
This is more difficult than usual if the exception was thrown from a signal handler.
</para>
<para>
This section describes primarily what you can expect on a Linux system, when you
use <ulink url="http://www.gnu.org/software/gdb/">the gdb debugger</ulink>.
</para>
<para>
First, let's look at a simple example where an exception is thrown from a normal
function (no signal handler).
<programlisting>
// without_signal.cc
#include &lt;gtkmm.h&gt;

bool throwSomething()
{
  throw "Something";
  return true;
}

int main(int argc, char** argv)
{
  throwSomething();
  Glib::RefPtr&lt;Gtk::Application&gt; app =
    Gtk::Application::create(argc, argv, "org.gtkmm.without_signal");
  return app->run();
}
</programlisting>
</para>
<para>
Here is an excerpt from a <application>gdb</application> session. Only the most
interesting parts of the output are shown.
<programlisting>
&gt; gdb without_signal
(gdb) run
terminate called after throwing an instance of 'char const*'

Program received signal SIGABRT, Aborted.
(gdb) backtrace
#7  0x08048864 in throwSomething () at without_signal.cc:6
#8  0x0804887d in main (argc=1, argv=0xbfffecd4) at without_signal.cc:12
</programlisting>
You can see that the exception was thrown from <filename>without_signal.cc</filename>,
line 6 (<code>throw "Something";</code>).
</para>
<para>
Now let's see what happens when an exception is thrown from a signal handler.
Here's the source code.
<programlisting>
// with_signal.cc
#include &lt;gtkmm.h&gt;

bool throwSomething()
{
  throw "Something";
  return true;
}

int main(int argc, char** argv)
{
  Glib::signal_timeout().connect(sigc::ptr_fun(throwSomething), 500);
  Glib::RefPtr&lt;Gtk::Application&gt; app =
    Gtk::Application::create(argc, argv, "org.gtkmm.with_signal");
  app->hold();
  return app->run();
}
</programlisting>
</para>
<para>
And here's an excerpt from a <application>gdb</application> session.
<programlisting>
&gt; gdb with_signal
(gdb) run
(with_signal:2703): glibmm-ERROR **:
unhandled exception (type unknown) in signal handler

Program received signal SIGTRAP, Trace/breakpoint trap.
(gdb) backtrace
#2  0x0063c6ab in glibmm_unexpected_exception () at exceptionhandler.cc:77
#3  Glib::exception_handlers_invoke () at exceptionhandler.cc:150
#4  0x0063d370 in glibmm_source_callback (data=0x804d620) at main.cc:212
#13 0x002e1b31 in Gtk::Application::run (this=0x804f300) at application.cc:178
#14 0x08048ccc in main (argc=1, argv=0xbfffecd4) at with_signal.cc:16
</programlisting>
The exception is caught in <application>glibmm</application>, and the program
ends with a call to <function>g_error()</function>. Other exceptions may result
in different behaviour, but in any case the exception from a signal handler is
caught in <application>glibmm</application> or &gtkmm;, and
<application>gdb</application> can't see where it was thrown.
</para>
<para>
To see where the exception is thrown, you can use the <application>gdb</application>
command <userinput>catch throw</userinput>.
<programlisting>
&gt; gdb with_signal
(gdb) catch throw
Catchpoint 1 (throw)
(gdb) run
Catchpoint 1 (exception thrown), 0x00714ff0 in __cxa_throw ()
(gdb) backtrace
#0  0x00714ff0 in __cxa_throw () from /usr/lib/i386-linux-gnu/libstdc++.so.6
#1  0x08048bd4 in throwSomething () at with_signal.cc:6
(gdb) continue
Continuing.
(with_signal:2375): glibmm-ERROR **
unhandled exception (type unknown) in signal handler

Program received signal SIGTRAP, Trace/breakpoint trap.
</programlisting>
</para>
<para>
If there are many caught exceptions before the interesting uncaught one, this
method can be tedious. It can be automated with the following
<application>gdb</application> commands.
<programlisting>
(gdb) catch throw
(gdb) commands
(gdb)   backtrace
(gdb)   continue
(gdb)   end
(gdb) set pagination off
(gdb) run
</programlisting>
These commands will print a backtrace from each <code>throw</code> and continue.
The backtrace from the last (or possibly the last but one) <code>throw</code>
before the program stops, is the interesting one.
</para>
</sect1>

</appendix>


<appendix id="chapter-custom-signals">
<title>Creating your own signals</title>
<para>
Now that you've seen signals and signal handlers in &gtkmm;, you
might like to use the same technique to allow interaction between your
own classes. That's actually very simple by using the
<application>libsigc++</application> library directly.
</para>
<para>
This isn't purely a &gtkmm; or GUI issue. &gtkmm; uses
<application>libsigc++</application> to implement its proxy wrappers for the
<application>GTK+</application> signal system, but for new,
non-GTK+ signals, you can create pure C++ signals, using the
<classname>sigc::signal&lt;&gt;</classname> template.
</para>
<para>
For instance, to create a signal that sends 2 parameters, a <type>bool</type>
and an <type>int</type>, just declare a <classname>sigc::signal</classname>,
like so:
<programlisting>
sigc::signal&lt;void, bool, int&gt; signal_something;
</programlisting>
</para>
<para>
You could just declare that signal as a public member variable, but
some people find that distasteful and prefer to make it available via
an accessor method, like so:
<programlisting>
class Server
{
public:
  //signal accessor:
  typedef sigc::signal&lt;void, bool, int&gt; type_signal_something;
  type_signal_something signal_something();

protected:
  type_signal_something m_signal_something;
};

Server::type_signal_something Server::signal_something()
{
  return m_signal_something;
}
</programlisting>
</para>

<para>
You can then connect to the signal using the same syntax used when
connecting to &gtkmm; signals. For instance,
<programlisting>
server.signal_something().connect(
  sigc::mem_fun(client, &amp;Client::on_server_something) );
</programlisting>
</para>

<sect1 id="chapter-custom-signals-example"><title>Example</title>

<para>
This is a full working example that defines and uses custom signals.
</para>

<para><ulink url="&url_examples_base;signals/custom/">Source Code</ulink></para>

</sect1>

</appendix>




<appendix id="sec-signals-comparison">
<title>Comparison with other signalling systems</title>
<para>
<!-- TODO: Rewrite this paragraph and talk about Qt's moc. -->
(An aside: <application>GTK+</application> calls this scheme "signalling"; the
sharp-eyed reader with GUI toolkit experience will note that this same design
is often
seen under the name of "broadcaster-listener" (e.g., in Metrowerks'
PowerPlant framework for the Macintosh). It works in much the same
way: one sets up <literal>broadcasters</literal>, and then connects
<literal>listeners</literal> to them; the broadcaster keeps a list of the
objects listening to it, and when someone gives the broadcaster a
message, it calls all of its objects in its list with the message. In
&gtkmm;, signal objects play the role of broadcasters, and slots
play the role of listeners - sort of. More on this later.)
</para>
<para>
&gtkmm; signal handlers are strongly-typed, whereas
<application>GTK+</application> C code allows you to connect a callback with
the wrong number and type of arguments, leading to a segfault at runtime. And,
unlike <application>Qt</application>, &gtkmm; achieves this without modifying
the C++ language.</para>
<para>
Re. Overriding signal handlers: You can do this in the straight-C world of GTK+ too; that's what GTK's
object system is for. But in GTK+, you have to go through some
complicated procedures to get object-oriented features like
inheritance and overloading. In C++, it's simple, since those
features are supported in the language itself; you can let the
compiler do the dirty work.
</para>
<para>
This is one of the places where the beauty of C++ really comes out.
One wouldn't think of subclassing a GTK+ widget simply to override its
action method; it's just too much trouble. In GTK+, you almost always
use signals to get things done, unless you're writing a new widget.
But because overriding methods is so easy in C++, it's entirely
practical - and sensible - to subclass a button for that purpose.
</para>
</appendix>

<appendix id="sec-windows-installation">
        <title>&gtkmm; and Win32</title>
    <para>
      One of the major advantages of &gtkmm; is that it is crossplatform. &gtkmm; programs written on other platforms such as
      GNU/Linux can generally be transferred to Windows (and vice
      versa) with few modifications to the source.
    </para>
    <para>
      &gtkmm; currently works with the <ulink
        url="http://mingw.org/">MingW/GCC3.4 compiler</ulink> and Microsoft
      Visual C++ 2005 or later (including the freely available express
      editions) on the Windows platform. There is an
      <ulink url="ftp://ftp.gnome.org/pub/GNOME/binaries/win32/gtkmm">
      installer</ulink> available for gtkmm on Microsoft Windows. Refer to
      <ulink url="https://wiki.gnome.org/Projects/gtkmm/MSWindows/">
      https://wiki.gnome.org/Projects/gtkmm/MSWindows</ulink> for instructions how to
      use it.
    </para>
  <sect1 id="sec-building-on-win32">
        <title>Building &gtkmm; on Win32</title>
    <para>Please see <ulink url="https://wiki.gnome.org/Projects/gtkmm/MSWindows/BuildingGtkmm">
    https://wiki.gnome.org/Projects/gtkmm/MSWindows/BuildingGtkmm</ulink> for instructions on how to build gtkmm on Windows.
    </para>

    </sect1>
</appendix>

<appendix id="chapter-working-with-source">
  <title>Working with gtkmm's Source Code</title>
  <para>
    If you are interested in helping out with the development of &gtkmm;, or
    fixing a bug in &gtkmm;, you'll probably need to build the development
    version of &gtkmm;. However, you should not install a development version over
    your stable version. Instead, you should install it alongside your existing &gtkmm;
    installation, in a separate path.
  </para>
  <para>
    The easiest way to do this is using <ulink
      url="https://wiki.gnome.org/Projects/Jhbuild">jhbuild</ulink>.
    <application>jhbuild</application> is a program that makes building GNOME
    software much easier by calculating dependencies and building things in the
    correct order. This section will give a brief explanation of how to set up
    <application>jhbuild</application> to build and install &gtkmm; from the
    source repository (git). For up-to-date information
    on <application>jhbuild</application>, please refer to the <ulink
      url="http://developer.gnome.org/jhbuild/unstable/">jhbuild manual</ulink>.
    If you need assistance using <application>jhbuild</application>, you should
    ask for help on the <ulink
      url="http://mail.gnome.org/mailman/listinfo/gnome-love">gnome-love
      mailing list</ulink>.
  </para>
  <note>
    <para>
    Note that to build &gtkmm; from git, you'll often need to build many of its
    dependencies from git as well. <application>jhbuild</application> makes
    this easier than it would normally be, but it will take quite a while to
    build and install them all. You will probably encounter build problems,
    though these will usually be corrected quickly if you report them.
    </para>
  </note>
  <sect1 id="sec-setting-up-jhbuild">
    <title>Setting up jhbuild</title>
    <para>
      To set up <application>jhbuild</application>, follow the basic
      installation instructions from the <ulink
        url="http://developer.gnome.org/jhbuild/unstable/">jhbuild manual</ulink>.
      After you have installed <application>jhbuild</application>, you
      should copy the sample <application>jhbuild</application> configuration
      file into your home directory by executing the following command from the
      <application>jhbuild</application> directory:
      <screen>$ cp examples/sample.jhbuildrc ~/.jhbuildrc</screen>
    </para>
    <para>
      The &gtkmm; module is defined in the
      <filename>gnome-suites-core-deps-3.x.modules</filename> moduleset, so edit your
      <filename>.jhbuildrc</filename> file and set your moduleset setting to the
      latest version e.g. like so:
      <programlisting>moduleset = 'gnome-suites-core-deps-3.12'</programlisting>
    </para>
    <para>
      After setting the correct moduleset, you need to tell
      <application>jhbuild</application> which module or modules to build. To
      build &gtkmm; and all of its dependencies, set <varname>modules</varname>
      like so:
      <programlisting>modules = [ 'gtkmm' ]</programlisting>
    </para>
    <para>
      You can build several modules by setting the
      <varname>modules</varname> variable to a meta-package, e.g.
      <literal>meta-gnome-core</literal>, or listing more than one module name.
      The <varname>modules</varname> variable specifies which modules will be
      built when you don't explicitly specify anything on the command line. You
      can always build a different moduleset later by specifying it on the
      commandline (e.g. <command>jhbuild build gtkmm</command>).
    </para>
    <important>
      <title>Setting a prefix</title>
      <para>
        By default, <application>jhbuild</application>'s configuration is
        configured to install all software built with
        <application>jhbuild</application> under the
        <filename>/opt/gnome</filename> prefix. You can choose a different
        prefix, but it is recommended that you keep this prefix different from
        other software that you've installed (don't set it to
        <filename>/usr</filename>!) If you've followed the jhbuild instructions
        then this prefix belongs to your user, so you don't need to run jhbuild
        as <literal>root</literal>.
      </para>
    </important>
    <para>
      When you downloaded <application>jhbuild</application> from the git repository,
      you got a number of <filename>.modules</filename> files, specifying
      dependencies between modules. By default <application>jhbuild</application>
      does not use the downloaded versions of these files, but reads the
      latest versions in the git repository. This is usually what you want.
      If you don't want it, use the <varname>use_local_modulesets</varname>
      variable in <filename>.jhbuildrc</filename>.
    </para>
  </sect1>
  <sect1 id="sec-installing-jhbuild">
    <title>Installing and Using the git version of &gtkmm;</title>
    <para>
      Once you've configured <application>jhbuild</application> as described
      above, building &gtkmm; should be relatively straightforward. The first
      time you run <application>jhbuild</application>, you should run the
      following sequence of commands to ensure that
      <application>jhbuild</application> has the required tools and verify that
      it is set up correctly:
      <screen>$ jhbuild bootstrap
$ jhbuild sanitycheck</screen>
    </para>
    <sect2 id="jhbuild-installing-gtkmm">
      <title>Installing &gtkmm; with <application>jhbuild</application></title>
      <para>
        If everything worked correctly, you should be able to build &gtkmm; and
        all of its dependencies from git by executing <command>jhbuild
          build</command> (or, if you didn't specify &gtkmm; in the
        <varname>modules</varname> variable, with the command <command>jhbuild
          build gtkmm</command>).
      </para>
      <para>
        This command will build and install a series of modules and will probably
        take quite a long time the first time through. After the first time,
        however, it should go quite a bit faster since it only needs to rebuild
        files that changed since the last build. Alternatively, after you've
        built and installed &gtkmm; the first time, you can rebuild &gtkmm; by
        itself (without rebuilding all of its dependencies) with the command
        <command>jhbuild buildone gtkmm</command>.
      </para>
    </sect2>
    <sect2 id="jhbuild-using-gtkmm">
      <title>Using the git version of &gtkmm;</title>
      <para>
        After you've installed the git version of &gtkmm;, you're ready to start
        using and experimenting with it. In order to use the new version of
        &gtkmm; you've just installed, you need to set some environment
        variables so that your <filename>configure</filename> script knows where
        to find the new libraries. Fortunately,
        <application>jhbuild</application> offers an easy solution to this
        problem. Executing the command <command>jhbuild shell</command> will
        start a new shell with all of the correct environment variables set.
        Now if you re-configure and build your project just as you usually do,
        it should link against the newly installed libraries. To return to your
        previous environment, simply exit the <application>jhbuild</application>
        shell.
      </para>
      <para>
        Once you've built your software, you'll need to run your program within
        the jhbuild environment as well. To do this, you can again use the
        <command>jhbuild shell</command> command to start a new shell with the
        <application>jhbuild</application> environment set up. Alternatively,
        you can execute a one-off command in the
        <application>jhbuild</application> environment using the following
        command: <command>jhbuild run command-name</command>. In this case,
        the command will be run with the correct environment variables set, but
        will return to your previous environment after the program exits.
      </para>

    </sect2>
  </sect1>
</appendix>

<appendix id="chapter-wrapping-c-libraries">
<title>Wrapping C Libraries with gmmproc</title>
<para>&gtkmm; uses the <command>gmmproc</command> tool to generate most of its
    source code, using .defs files that define the APIs of
    <classname>GObject</classname>-based libraries. So it's quite easy to create
    additional gtkmm-style wrappers of other glib/GObject-based
    libraries.</para>
<para>This involves a variety of tools, some of them crufty, but at least
    they work, and has been used successfully by several
    projects.</para>

<sect1 id="sec-wrapping-build-structure">
<title>The build structure</title>
<para>Generation of the source code for a gtkmm-style wrapper API requires use
    of tools such as <command>gmmproc</command> and
    <filename>generate_wrap_init.pl</filename>. In theory you could write your
    own build files to use these appropriately, but a much better option is to
    make use of the build infrastructure provided by the mm-common module. To
    get started, it helps a lot to pick an existing binding module as an example
    to look at.</para>
<para>For instance, let's pretend that we are wrapping a C library called
    libsomething. It provides a <classname>GObject</classname>-based API with
    types named, for instance, <classname>SomeWidget</classname> and
    <classname>SomeStuff</classname>.</para>

<sect2 id="copying-skeleton-project">
<title>Copying the skeleton project</title>

<para>Typically our wrapper library would be called libsomethingmm. We can start by
  copying the <ulink url="http://git.gnome.org/browse/mm-common/tree/skeletonmm">skeleton
  source tree</ulink> from the mm-common module.
<programlisting>
  $ git clone git://git.gnome.org/mm-common
  $ cp -a mm-common/skeletonmm libsomethingmm
</programlisting>
</para>
<para>This provides a directory structure for the source .hg and .ccg files and the generated .h
  and .cc files, with <filename>filelist.am</filename> Automake include files that can specify the
  various files in use, in terms of generic Automake variables. The directory structure usually
  looks like this, after we have renamed the directories appropriately:
<itemizedlist>
    <listitem><para><filename>libsomethingmm</filename>: The top-level directory.</para>
     <itemizedlist>
         <listitem><para><filename>libsomething</filename>: Contains the main include file and the pkg-config .pc file.</para>
         <itemizedlist>
             <listitem><para><filename>src</filename>: Contains .hg and .ccg source files.</para></listitem>
             <listitem><para><filename>libsomethingmm</filename>: Contains generated and hand-written .h and .cc files.</para>
             <itemizedlist>
                 <listitem><para><filename>private</filename>: Contains generated <filename>*_p.h</filename> files.</para></listitem>
             </itemizedlist>
           </listitem>
         </itemizedlist>
       </listitem>
    </itemizedlist>
  </listitem>
</itemizedlist>
</para>

<para>As well as renaming the directories, we should rename some of the source
    files. For instance:
<programlisting>
$ for f in $(find libsomethingmm -depth -name '*skeleton*'); do \
    d="${f%/*}"; b="${f##*/}"; mv "$f" "$d/${b//skeleton/libsomething}"; \
  done
</programlisting>
A number of the skeleton files must still be filled in with project-specific content later.
</para>
<para>Note that files ending in <filename>.in</filename> will be used to generate
    files with the same name but without the <filename>.in</filename> suffix, by
    replacing some variables with actual values during the configure stage.</para>
</sect2>

<sect2 id="modifying-build-files">
<title>Modifying build files</title>

<para>Now we edit the files to adapt them to our needs. You might prefer to use a multiple-file
  search-replace utility for this, such as <command>regexxer</command>. Note that nearly all of the
  files provided with the skeleton source tree contain placeholder text. Thus, the substitutions
  should be performed globally, and not be limited to the Automake and Autoconf files.</para>
<para>All mentions of <varname>skeleton</varname> should be replaced by the correct name of the C
  library you are wrapping, such as "something" or "libsomething". In the same manner, all
  instances of <varname>SKELETON</varname> should be replaced by "SOMETHING" or "LIBSOMETHING", and
  all occurrences of <varname>Skeleton</varname> changed to "Something".</para>
<para>Likewise, replace all instances of <varname>Joe Hacker</varname> by the name of the intended
  copyright holder, which is probably you. Do the same for the <varname>joe@example.com</varname>
  email address.</para>

<sect3 id="modifying-configure.ac">
<title>configure.ac</title>
<para>In <filename>configure.ac</filename>,
<itemizedlist>
  <listitem><para>The <function>AC_CONFIG_SRCDIR()</function> line must mention a file
      in our source tree. We can edit this later if we don't yet know the
      names of any of the files that we will create.</para></listitem>
  <listitem><para>It is common for binding modules to track the version number
      of the library they are wrapping. So, for instance, if the C library is
      at version 1.23.4, then the initial version of the binding module would
      be 1.23.0. However, avoid starting with an even minor version number as
      that usually indicates a stable release.</para></listitem>
  <listitem><para>The <function>AC_CONFIG_HEADERS()</function> line is used to
      generate two or more configuration header files. The first header file
      in the list contains all configuration macros which are set during the
      configure run. The remaining headers in the list contain only a subset
      of configuration macros and their corresponding <filename>config.h.in</filename>
      file will not be autogenerated. The reason for this separation is that
      the namespaced configuration headers are installed with your library and
      define publically visible macros.</para></listitem>
  <listitem><para>The <function>AC_SUBST([SOMETHINGMM_MODULES], ['...'])</function>
      line may need to be modified to check for the correct dependencies.</para></listitem>
  <listitem><para>The <function>AC_CONFIG_FILES()</function> block must mention
      the correct directory names, as described above.</para></listitem>
</itemizedlist>
</para>
</sect3>

<sect3 id="modifying-makefile.am">
<title>Makefile.am files</title>
<para>Next we must adapt the various <filename>Makefile.am</filename> files:
  <itemizedlist>
    <listitem><para>In <filename>skeleton/src/Makefile.am</filename> we
            must mention the correct values for the generic variables that are used
            elsewhere in the build system:</para>
        <variablelist>
            <varlistentry>
                <term><varname>binding_name</varname></term>
                <listitem><para>The name of the library, such as
                        libsomethingmm.</para></listitem>
            </varlistentry>
            <varlistentry>
                <term><varname>wrap_init_flags</varname></term>
                <listitem><para>Additional command-line flags passed to the
                    <filename>generate_wrap_init.pl</filename> script, such
                    as the C++ namespace and the parent directory prefix of
                    include files.</para></listitem>
            </varlistentry>
        </variablelist>
    </listitem>
    <listitem><para>In <filename>skeleton/skeletonmm/Makefile.am</filename> we
            must mention the correct values for the generic variables that are used
            elsewhere in the build system:</para>
      <variablelist>
        <varlistentry>
          <term><varname>lib_LTLIBRARIES</varname></term>
          <listitem><para>This variable must mention the correct library
              name, and this library name must be used to form the
              <varname>_SOURCES</varname>, <varname>_LDFLAGS</varname>, and
              <varname>_LIBADD</varname> variable names. It is permissible to
              use variables substituted by <filename>configure</filename> like
              <varname>@SOMETHINGMM_API_VERSION@</varname> as part of the
              variable names.</para></listitem>
        </varlistentry>
        <varlistentry>
          <term><varname>AM_CPPFLAGS</varname></term>
          <listitem><para>The command line options passed to the C
              preprocessor.</para></listitem>
        </varlistentry>
        <varlistentry>
          <term><varname>AM_CXXFLAGS</varname></term>
          <listitem><para>The command line options passed to the C++
              compiler.</para></listitem>
        </varlistentry>
      </variablelist>
    </listitem>
  </itemizedlist>
</para>
</sect3>

<sect3 id="creating-hg-ccg">
<title>Creating .hg and .ccg files</title>
<para>We should now create our first <filename>.hg</filename> and <filename>.ccg</filename> files,
  to wrap one of the objects in the C library. One pair of example source files already exists:
  <filename>skeleton.ccg</filename> and <filename>skeleton.hg</filename>. Create copies of these
  files as necessary.</para>
<para>We must mention all of our <filename>.hg</filename> and
  <filename>.ccg</filename> files in the
  <filename>skeleton/src/filelist.am</filename> file, typically in the
  <varname>files_hg</varname> variable.</para>
<para>Any additional non-generated <filename>.h</filename> and
  <filename>.cc</filename> source files may be placed in
  <filename>skeleton/skeletonmm/</filename> and listed in
  <filename>skeleton/skeletonmm/filelist.am</filename>, typically in the
  <varname>files_extra_h</varname> and <varname>files_extra_cc</varname>
  variables.</para>
<para>In the <link linkend="sec-wrapping-hg-files">.hg and .ccg files</link>
  section you can learn about the syntax used in these files.</para>
</sect3>
</sect2>
</sect1>

<sect1 id="sec-wrapping-defs-files">
<title>Generating the .defs files.</title>
<para>The <filename>.defs</filename> files are text files, in a lisp format, that describe the API
  of a C library, including its
<itemizedlist>
  <listitem><para>objects (GObjects, widgets, interfaces, boxed-types and plain structs)</para></listitem>
  <listitem><para>functions</para></listitem>
  <listitem><para>enums</para></listitem>
  <listitem><para>signals</para></listitem>
  <listitem><para>properties</para></listitem>
  <listitem><para>vfuncs</para></listitem>
</itemizedlist>
</para>
<para>At the moment, we have separate tools for generating different parts of
  these <filename>.defs</filename>, so we split them up into separate files.
  For instance, in the <filename>gtk/src</filename> directory of the &gtkmm;
  sources, you will find these files:
    <variablelist>
        <varlistentry>
            <term><filename>gtk.defs</filename></term>
            <listitem><para>Includes the other files.</para></listitem>
        </varlistentry>
        <varlistentry>
            <term><filename>gtk_methods.defs</filename></term>
            <listitem><para>Objects and functions.</para></listitem>
        </varlistentry>
        <varlistentry>
            <term><filename>gtk_enums.defs</filename></term>
            <listitem><para>Enumerations.</para></listitem>
        </varlistentry>
        <varlistentry>
            <term><filename>gtk_signals.defs</filename></term>
            <listitem><para>Signals and properties.</para></listitem>
        </varlistentry>
        <varlistentry>
            <term><filename>gtk_vfuncs.defs</filename></term>
            <listitem><para>vfuncs (function pointer member fields in structs), written by hand.</para></listitem>
        </varlistentry>
    </variablelist>
</para>
<para>The <filename>skeletonmm/codegen/generate_defs_and_docs.sh</filename> script
generates all <filename>.defs</filename> files and the <filename>*_docs.xml</filename> file,
described in the <link linkend="sec-wrapping-documentation">Documentation</link> section.
</para>

<sect2 id="generating-defs-methods">
<title>Generating the methods .defs</title>
<para>This <filename>.defs</filename> file describes objects and their functions.
  It is generated by the <command>h2def.py</command> script which you can find in
  glibmm's <filename>tools/defs_gen</filename> directory. For instance,
<programlisting>
$ ./h2def.py /usr/include/gtk-3.0/gtk/*.h &gt; gtk_methods.defs
</programlisting>
</para>
</sect2>

<sect2 id="generating-defs-enums">
<title>Generating the enums .defs</title>
<para>This <filename>.defs</filename> file describes enum types and their possible
  values. It is generated by the <filename>enum.pl</filename> script which you can
  find in glibmm's <filename>tools</filename> directory. For instance,
<programlisting>
$ ./enum.pl /usr/include/gtk-3.0/gtk/*.h &gt; gtk_enums.defs
</programlisting>
</para>
</sect2>

<sect2 id="generating-defs-signals-properties">
<title>Generating the signals and properties .defs</title>
<para>This <filename>.defs</filename> file describes signals and properties. It is
  generated by the special <filename>generate_extra_defs</filename> utility that is in every
  wrapping project, such as <filename>gtkmm/tools/extra_defs_gen/</filename>.
  For instance
<programlisting>
$ cd tools/extra_defs_gen
$ ./generate_extra_defs &gt; gtk_signals.defs
</programlisting>
</para>
<para>You must edit the source code of your own <filename>generate_extra_defs</filename> tool
  in order to generate the <filename>.defs</filename> for the GObject C types that you wish to
  wrap. In the skeleton source tree, the source file is named
  <filename>codegen/extradefs/generate_extra_defs_skeleton.cc</filename>. If not done so
  already, the file should be renamed, with the basename of your new binding substituted
  for the <varname>skeleton</varname> placeholder. The <filename>codegen/Makefile.am</filename>
  file should also mention the new source filename.</para>
<para>Then edit the <filename>.cc</filename> file to specify the correct types.
  For instance, your <function>main()</function> function might look like this:
<programlisting>
#include &lt;libsomething.h&gt;

int main(int, char**)
{
  something_init();

  std::cout &lt;&lt; get_defs(SOME_TYPE_WIDGET)
            &lt;&lt; get_defs(SOME_TYPE_STUFF);
  return 0;
}
</programlisting>
</para>
</sect2>

<sect2 id="writing-defs-vfuncs">
<title>Writing the vfuncs .defs</title>
<para>
  This <filename>.defs</filename> file describes virtual functions (vfuncs).
  It must be written by hand. There is the skeleton file
  <filename>skeleton/src/skeleton_vfunc.defs</filename> to start from. You can also look
  at &gtkmm;'s <filename>gtk/src/gtk_vfuncs.defs</filename> file.
</para>
</sect2>

</sect1>

<sect1 id="sec-wrapping-hg-files">
    <title>The .hg and .ccg files</title>
    <para>The .hg and .ccg source files are very much like
        .h and .cc C++ source files, but they contain extra macros, such as
        <function>_CLASS_GOBJECT()</function> and
        <function>_WRAP_METHOD()</function>, from which
        <command>gmmproc</command> generates appropriate C++ source code,
        usually at the same position in the header. Any additional C++ source
        code will be copied verbatim into the corresponding
        .h or .cc file.</para>
    <para>A .hg file will typically include some headers
        and then declare a class, using some macros to add API or behaviour to
        this class. For instance, &gtkmm;'s <filename>button.hg</filename> looks
        roughly like this:

<programlisting>
#include &lt;gtkmm/bin.h&gt;
#include &lt;gtkmm/activatable.h&gt;
_DEFS(gtkmm,gtk)
_PINCLUDE(gtkmm/private/bin_p.h)

namespace Gtk
{

class Button
  : public Bin,
    public Activatable
{
  _CLASS_GTKOBJECT(Button,GtkButton,GTK_BUTTON,Gtk::Bin,GtkBin)
  _IMPLEMENTS_INTERFACE(Activatable)
public:

  _CTOR_DEFAULT
  explicit Button(const Glib::ustring&amp; label, bool mnemonic = false);

  _WRAP_METHOD(void set_label(const Glib::ustring&amp; label), gtk_button_set_label)

  ...

  _WRAP_SIGNAL(void clicked(), "clicked")

  ...

  _WRAP_PROPERTY("label", Glib::ustring)
};

} // namespace Gtk
</programlisting>
</para>
<para>The macros in this example do the following:
<variablelist>
    <varlistentry>
        <term><function>_DEFS()</function></term>
        <listitem><para>Specifies the destination directory for generated sources, and the name of the main .defs file that <command>gmmproc</command> should parse.</para></listitem>
    </varlistentry>
    <varlistentry>
        <term><function>_PINCLUDE()</function></term>
        <listitem><para>Tells <command>gmmproc</command> to include a header in the generated private/button_p.h file.</para></listitem>
    </varlistentry>
    <varlistentry>
        <term><function>_CLASS_GTKOBJECT()</function></term>
        <listitem><para>Tells <command>gmmproc</command> to add some typedefs, constructors, and standard methods to this class, as appropriate when wrapping a widget.</para></listitem>
    </varlistentry>
    <varlistentry>
        <term><function>_IMPLEMENTS_INTERFACE()</function></term>
        <listitem><para>Tells <command>gmmproc</command> to add initialization code for the interface.</para></listitem>
    </varlistentry>
    <varlistentry>
        <term><function>_CTOR_DEFAULT</function></term>
        <listitem><para>Add a default constructor.</para></listitem>
    </varlistentry>
    <varlistentry>
        <term><function>_WRAP_METHOD()</function>,
            <function>_WRAP_SIGNAL()</function>, and
            <function>_WRAP_PROPERTY()</function></term>
        <listitem><para>Add methods to wrap parts of the C API.</para></listitem>
    </varlistentry>
</variablelist>
</para>
<para>The .h and .cc files will be generated from the .hg and .ccg files by
    processing them with <command>gmmproc</command> like so, though this happens
    automatically when using the above build structure:
<programlisting>
$ cd gtk/src
$ /usr/lib/glibmm-2.4/proc/gmmproc -I ../../tools/m4 --defs . button . ./../gtkmm
</programlisting>
</para>
<para>Notice that we provided <command>gmmproc</command> with the path to the
    .m4 convert files, the path to the .defs file, the name of a .hg file, the
    source directory, and the destination directory.</para>
<para>You should avoid including the C header from your C++ header, to avoid
    polluting the global namespace, and to avoid exporting unnecessary public
    API. But you will need to include the necessary C headers from your
    .ccg file.</para>

<para>The macros are explained in more detail in the following sections.</para>

<sect2 id="gmmproc-m4-conversions">
<title>m4 Conversions</title>
<para>The macros that you use in the .hg and .ccg files often need to know how
to convert a C++ type to a C type, or vice-versa. gmmproc takes this information
from an .m4 file in your <literal>tools/m4/</literal> directory. This allows it
to call a C function in the implementation of your C++ method, passing the
appropriate parameters to that C functon. For instance, this
tells gmmproc how to convert a GtkTreeView pointer to a Gtk::TreeView pointer:
<programlisting>
_CONVERSION(`GtkTreeView*',`TreeView*',`Glib::wrap($3)')
</programlisting>
</para>

<para><literal>$3</literal> will be replaced by the parameter name when this
conversion is used by gmmproc.
</para>

<para>
Some extra macros make this easier and consistent. Look in gtkmm's .m4 files
for examples. For instance:
<programlisting>
_CONVERSION(`PrintSettings&amp;',`GtkPrintSettings*',__FR2P)
_CONVERSION(`const PrintSettings&amp;',`GtkPrintSettings*',__FCR2P)
_CONVERSION(`const Glib::RefPtr&lt;Printer&gt;&amp;',`GtkPrinter*',__CONVERT_REFPTR_TO_P($3))
</programlisting>
</para>
</sect2>

<sect2 id="gmmproc-m4-initializations">
<title>m4 Initializations</title>
<para>
  Often when wrapping methods, it is desirable to store the return of the C
  function in what is called an output parameter.  In this case, the C++ method
  returns <type>void</type> but an output parameter in which to store the value
  of the C function is included in the argument list of the C++ method.
  gmmproc allows such functionality, but appropriate initialization macros must
  be included to tell gmmproc how to initialize the C++ parameter from the
  return of the C function.
</para>
<para>
  For example, if there was a C function that returned a
  <type>GtkWidget*</type> and for some reason, instead of having the C++ method
  also return the widget, it was desirable to have the C++ method place the
  widget in a specified output parameter, an initialization macro such as the
  following would be necessary:
<programlisting>
_INITIALIZATION(`Gtk::Widget&amp;',`GtkWidget*',`$3 = Glib::wrap($4)')
</programlisting>
</para>

<para>
  <literal>$3</literal> will be replaced by the output parameter name of the
  C++ method and <literal>$4</literal> will be replaced by the return of the C
  function when this initialization is used by gmmproc.  For convenience,
  <literal>$1</literal> will also be replaced by the C++ type without the
  ampersand (&amp;) and <literal>$2</literal> will be replaced by the C type.
</para>
</sect2>


<sect2 id="gmmproc-class-macros">
<title>Class macros</title>
<para>The class macro declares the class itself and its relationship with the
    underlying C type. It generates some internal constructors, the member
    <varname>gobject_</varname>, typedefs, the <function>gobj()</function>
    accessors, type registration, and the <function>Glib::wrap()</function>
    method, among other things.</para>
<para>Other macros, such as <function>_WRAP_METHOD()</function> and
    <function>_WRAP_SIGNAL()</function> may only be used after a call to a
    <function>_CLASS_*</function> macro.</para>

<sect3 id="gmmproc-class-gobject">
<title>_CLASS_GOBJECT</title>
<para>This macro declares a wrapper for a type that is derived from
    <classname>GObject</classname>, but whose wrapper is not derived from
    <classname>Gtk::Object</classname>.</para>
<para><function>_CLASS_GOBJECT( C++ class, C class, C casting macro, C++ base class, C base class )</function></para>
<para>For instance, from <filename>accelgroup.hg</filename>:
<programlisting>
_CLASS_GOBJECT(AccelGroup, GtkAccelGroup, GTK_ACCEL_GROUP, Glib::Object, GObject)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-class-gtkobject">
<title>_CLASS_GTKOBJECT</title>
<para>This macro declares a wrapper for a type whose wrapper is derived from
    <classname>Gtk::Object</classname>, such as a widget or dialog.</para>
<para><function>_CLASS_GTKOBJECT( C++ class, C class, C casting macro, C++ base class, C base class )</function></para>
<para>For instance, from <filename>button.hg</filename>:
<programlisting>
_CLASS_GTKOBJECT(Button, GtkButton, GTK_BUTTON, Gtk::Bin, GtkBin)
</programlisting>
</para>
<para>You will typically use this macro when the class already derives from Gtk::Object. For instance, you will use it when wrapping a GTK+ Widget, because Gtk::Widget derives from Gtk::Object.</para>
<para>You might also derive non-widget classes from Gtk::Object so they can be used without <classname>Glib::RefPtr</classname>. For instance, they could then be instantiated with <function>Gtk::manage()</function> or on the stack as a member variable. This is convenient, but you should use this only when you are sure that true reference-counting is not needed. We consider it useful for widgets.</para>
</sect3>

<sect3 id="gmmproc-class-boxedtype">
<title>_CLASS_BOXEDTYPE</title>
<para>This macro declares a wrapper for a non-<classname>GObject</classname>
    struct, registered with
    <function>g_boxed_type_register_static()</function>.</para>
<para><function>_CLASS_BOXEDTYPE( C++ class, C class, new function, copy function, free function )</function></para>
<para>For instance, from <classname>Gdk::RGBA</classname>:
<programlisting>
_CLASS_BOXEDTYPE(RGBA, GdkRGBA, NONE, gdk_rgba_copy, gdk_rgba_free)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-class-boxedtype-static">
<title>_CLASS_BOXEDTYPE_STATIC</title>
<para>This macro declares a wrapper for a simple assignable struct such as
    <classname>GdkRectangle</classname>. It is similar to
    <function>_CLASS_BOXEDTYPE</function>, but the C struct is not allocated
    dynamically.</para>
<para><function>_CLASS_BOXEDTYPE_STATIC( C++ class, C class )</function></para>
<para>For instance, for <classname>Gdk::Rectangle</classname>:
<programlisting>
_CLASS_BOXEDTYPE_STATIC(Rectangle, GdkRectangle)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-class-opaque-copyable">
<title>_CLASS_OPAQUE_COPYABLE</title>
<para>This macro declares a wrapper for an opaque struct that has copy and free
    functions. The new, copy and free functions will be used to instantiate the
    default constructor, copy constructor and destructor.</para>
<para><function>_CLASS_OPAQUE_COPYABLE( C++ class, C class, new function, copy function, free function )</function></para>
<para>For instance, from <classname>Glib::Checksum</classname>:
<programlisting>
_CLASS_OPAQUE_COPYABLE(Checksum, GChecksum, NONE, g_checksum_copy, g_checksum_free)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-class-opaque-refcounted">
<title>_CLASS_OPAQUE_REFCOUNTED</title>
<para>This macro declares a wrapper for a reference-counted opaque struct. The
    C++ wrapper cannot be directly instantiated and can only be used with
    <classname>Glib::RefPtr</classname>.</para>
<para><function>_CLASS_OPAQUE_REFCOUNTED( C++ class, C class, new function, ref function, unref function )</function></para>
<para>For instance, for <classname>Pango::Coverage</classname>:
<programlisting>
_CLASS_OPAQUE_REFCOUNTED(Coverage, PangoCoverage, pango_coverage_new, pango_coverage_ref, pango_coverage_unref)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-class-generic">
<title>_CLASS_GENERIC</title>
<para>This macro can be used to wrap structs which don't fit into any
    specialized category.</para>
<para><function>_CLASS_GENERIC( C++ class, C class )</function></para>
<para>For instance, for <classname>Pango::AttrIter</classname>:
<programlisting>
_CLASS_GENERIC(AttrIter, PangoAttrIterator)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-class-interface">
<title>_CLASS_INTERFACE</title>
<para>This macro declares a wrapper for a type that is derived from
    <classname>GTypeInterface</classname>.
</para>
<para><function>_CLASS_INTERFACE( C++ class, C class, C casting macro, C interface struct, Base C++ class (optional), Base C class (optional) )</function></para>
<para>
For instance, from <filename>celleditable.hg</filename>:
<programlisting>
_CLASS_INTERFACE(CellEditable, GtkCellEditable, GTK_CELL_EDITABLE, GtkCellEditableIface)
</programlisting>
</para>
<para>Two extra parameters are optional, for the case that the interface derives from another interface,
which should be the case when the GInterface has another GInterface as a prerequisite.
For instance, from <filename>loadableicon.hg</filename>:
<programlisting>
_CLASS_INTERFACE(LoadableIcon, GLoadableIcon, G_LOADABLE_ICON, GLoadableIconIface, Icon, GIcon)
</programlisting>
</para>
</sect3>

</sect2>

<sect2 id="gmmproc-constructor-macros">
<title>Constructor macros</title>
<para>The <function>_CTOR_DEFAULT()</function> and
    <function>_WRAP_CTOR()</function> macros add constructors, wrapping the
    specified <function>*_new()</function> C functions. These macros assume that
    the C object has properties with the same names as the function parameters,
    as is usually the case, so that it can supply the parameters directly to a
    <function>g_object_new()</function> call. These constructors never actually
    call the <function>*_new()</function> C functions,
    because gtkmm must actually instantiate derived GTypes, and the
    <function>*_new()</function> C functions are meant only as convenience
    functions for C programmers.</para>
<para>When using <function>_CLASS_GOBJECT()</function>, the constructors should
    be protected (rather than public) and each constructor should have a
    corresponding <function>_WRAP_CREATE()</function> in the public section.
    This prevents the class from being instantiated without using a
    <classname>RefPtr</classname>. For instance:
<programlisting>
class TextMark : public Glib::Object
{
  _CLASS_GOBJECT(TextMark, GtkTextMark, GTK_TEXT_MARK, Glib::Object, GObject)

protected:
  _WRAP_CTOR(TextMark(const Glib::ustring&amp; name, bool left_gravity = true), gtk_text_mark_new)

public:
  _WRAP_CREATE(const Glib::ustring&amp; name, bool left_gravity = true)
</programlisting>
</para>

<sect3 id="gmmproc-ctor-default">
<title>_CTOR_DEFAULT</title>
<para>This macro creates a default constructor with no arguments.
</para>
</sect3>

<sect3 id="gmmproc-wrap-ctor">
<title>_WRAP_CTOR</title>
<para>This macro creates a constructor with arguments, equivalent to a
  <function>*_new()</function> C function. It won't actually call the
  <function>*_new()</function> function, but will simply create an equivalent
  constructor with the same argument types. It takes a C++ constructor
  signature, and a C function name.
</para>

<para>It also takes an optional extra argument:
  <variablelist>
    <varlistentry>
        <term>errthrow</term>
        <listitem>
          <para>This tells gmmproc that the C <function>*_new()</function> has
            a final GError** parameter which should be ignored.</para>
        </listitem>
    </varlistentry>
  </variablelist>
</para>
</sect3>

<sect3 id="gmmproc-ctor-manual">
<title>Hand-coding constructors</title>
<para>When a constructor must be partly hand written because, for instance, the
    <function>*_new()</function> C function's parameters do not correspond
    directly to object properties, or because the <function>*_new()</function> C
    function does more than call <function>g_object_new()</function>, the
    <function>_CONSTRUCT()</function> macro may be used in the
    .ccg file to save some work. The <function>_CONSTRUCT</function> macro takes
    a series of property names and values. For instance, from
    <filename>button.ccg</filename>:
<programlisting>
Button::Button(const Glib::ustring&amp; label, bool mnemonic)
:
  _CONSTRUCT("label", label.c_str(), "use_underline", gboolean(mnemonic))
{}
</programlisting>
</para>
</sect3>

</sect2>

<sect2 id="gmmproc-method-macros">
<title>Method macros</title>

<sect3 id="gmmproc-wrap-method">
<title>_WRAP_METHOD</title>
<para>This macro generates the C++ method to wrap a C function.</para>
<para><function>_WRAP_METHOD( C++ method signature, C function name)</function></para>
<para>For instance, from <filename>entry.hg</filename>:
<programlisting>
_WRAP_METHOD(void set_text(const Glib::ustring&amp; text), gtk_entry_set_text)
</programlisting>
</para>
<para>The C function (e.g. <function>gtk_entry_set_text</function>) is described
    more fully in the .defs file, and the <filename>convert*.m4</filename> files
    contain the necessary conversion from the C++ parameter type to the C
    parameter type. This macro also generates doxygen documentation comments
    based on the <filename>*_docs.xml</filename> and
    <filename>*_docs_override.xml</filename> files.</para>
<para>There are some optional extra arguments:
<variablelist>
    <varlistentry>
        <term>refreturn</term>
        <listitem>
            <para>Do an extra <function>reference()</function> on the return value,
                in case the C function does not provide a reference.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>errthrow</term>
        <listitem>
            <para>Use the last GError** parameter of the C function to
                throw an exception.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>deprecated</term>
        <listitem>
            <para>Puts the generated code in #ifdef blocks. Text about the
                deprecation can be specified as an optional
                parameter.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>constversion</term>
        <listitem>
            <para>Just call the non-const version of the same function,
                instead of generating almost duplicate code.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>ifdef</term>
        <listitem>
            <para>Puts the generated code in #ifdef blocks.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>slot_name</term>
        <listitem>
          <para>Specifies the name of the slot parameter of the method, if it
            has one.  This enables <command>gmmproc</command> to generate code
            to copy the slot and pass the copy on to the C function in its
            final <literal>gpointer user_data</literal> parameter.  The
            <literal>slot_callback</literal> option must also be used to
            specify the name of the glue callback function to also pass on to
            the C function.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>slot_callback</term>
        <listitem>
          <para>Used in conjunction with the <literal>slot_name</literal>
            option to specify the name of the glue callback function that
            handles extracting the slot and then calling it.  The address of
            this callback is also passed on to the C function that the method
            wraps.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>no_slot_copy</term>
        <listitem>
          <para>Tells <command>gmmproc</command> not to pass a copy of the slot
            to the C function, if the method has one.  Instead the slot itself
            is passed.  The slot parameter name and the glue callback function
            must have been specified with the <literal>slot_name</literal> and
            <literal>slot_callbback</literal> options respectively.</para>
        </listitem>
    </varlistentry>
</variablelist>
</para>
<para>Selecting which C++ types should be used is also important when wrapping
  C API.  Though it's usually obvious what C++ types should be used in the C++
  method, here are some hints:
<itemizedlist>
    <listitem><para>Objects used via <classname>RefPtr</classname>: Pass the
            <classname>RefPtr</classname> as a const reference. For instance,
            <code>const Glib::RefPtr&lt;Gtk::FileFilter&gt;&amp;
                filter</code>.</para></listitem>
    <listitem><para>Const Objects used via <classname>RefPtr</classname>: If the
            object should not be changed by the function, then make sure that
            the object is const, even if the <classname>RefPtr</classname> is
            already const. For instance, <code>const Glib::RefPtr&lt;const
            Gtk::FileFilter&gt;&amp; filter</code>.</para></listitem>
<listitem><para>Wrapping <classname>GList*</classname> and
        <classname>GSList*</classname> parameters: First, you need to discover
        what objects are contained in the list's data field for each item,
        usually by reading the documentation for the C function. The list can
        then be wrapped by a <classname>std::vector</classname> type.
        For instance, <code>std::vector&lt;
        Glib::RefPtr&lt;Gdk::Pixbuf&gt; &gt;</code>.
        You may need to define a Traits type to specify how the C
        and C++ types should be converted.</para></listitem>
<listitem><para>Wrapping <classname>GList*</classname> and
        <classname>GSList*</classname> return types: You must discover whether
        the caller should free the list and whether it should release the items
        in the list, again by reading the documentation of the C function. With
        this information you can choose the ownership (none, shallow or deep)
        for the m4 conversion rule, which you should probably put directly into
        the .hg file because the ownership depends on the
        function rather than the type. For instance:
<programlisting>#m4 _CONVERSION(`GSList*',`std::vector&lt;Widget*&gt;',`Glib::SListHandler&lt;Widget*&gt;::slist_to_vector($3, Glib::OWNERSHIP_SHALLOW)')</programlisting></para></listitem>
</itemizedlist>
</para>
</sect3>

<sect3 id="gmmproc-wrap-method-docs-only">
<title>_WRAP_METHOD_DOCS_ONLY</title>
<para>This macro is like <function>_WRAP_METHOD()</function>, but it generates
    only the documentation for a  C++ method that wraps a C function. Use this
    when you must hand-code the method, but you want to use the documentation
    that would be generated if the method was generated.</para>
<para><function>_WRAP_METHOD_DOCS_ONLY(C function name)</function></para>
<para>For instance, from <filename>container.hg</filename>:
<programlisting>
_WRAP_METHOD_DOCS_ONLY(gtk_container_remove)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-ignore">
<title>_IGNORE / _IGNORE_SIGNAL</title>
<para><command>gmmproc</command> will warn you on stdout about functions and signals that
    you have forgotten to wrap, helping to ensure that you are wrapping the
    complete API. But if you don't want to wrap some functions or signals, or if you chose
    to hand-code some methods then you can use the _IGNORE() or _IGNORE_SIGNAL() macro to make
    <command>gmmproc</command> stop complaining.</para>
<para><function>_IGNORE(C function name 1, C function name2, etc)</function></para>
<para><function>_IGNORE_SIGNAL(C signal name 1, C signal name2, etc)</function></para>
<para>For instance, from <filename>buttonbox.hg</filename>:
<programlisting>
_IGNORE(gtk_button_box_set_spacing, gtk_button_box_get_spacing)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-wrap-signal">
<title>_WRAP_SIGNAL</title>
<para>This macro generates the C++ libsigc++-style signal to wrap a C GObject
    signal. It actually generates a public accessor method, such as
    <function>signal_clicked()</function>, which returns a proxy object.
    <command>gmmproc</command> uses the .defs file to discover the C parameter
    types and the .m4 convert files to discover appropriate type
    conversions.</para>
<para><function>_WRAP_SIGNAL( C++ signal handler signature, C signal name)</function></para>
<para>For instance, from <filename>button.hg</filename>:
<programlisting>
_WRAP_SIGNAL(void clicked(),"clicked")
</programlisting>
</para>
<para>Signals usually have function pointers in the GTK struct, with a
    corresponding enum value and a <function>g_signal_new()</function> in the
    .c file.</para>
<para>There are some optional extra arguments:
<variablelist>
    <varlistentry>
        <term>no_default_handler</term>
        <listitem>
            <para>Do not generate an <function>on_something()</function> virtual
                method to allow easy overriding of the default signal handler.
                Use this when adding a signal with a default signal handler
                would break the ABI by increasing the size of the class's
                virtual function table.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>custom_default_handler</term>
        <listitem>
            <para>Generate a declaration of the <function>on_something()</function>
                virtual method in the <filename>.h</filename> file, but do not
                generate a definition in the <filename>.cc</filename> file.
                Use this when you must generate the definition by hand.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>custom_c_callback</term>
        <listitem>
            <para>Do not generate a C callback function for the signal.
                Use this when you must generate the callback function by hand.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>refreturn</term>
        <listitem>
            <para>Do an extra <function>reference()</function> on the return value
                of the <function>on_something()</function> virtual method, in
                case the C function does not provide a reference.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>ifdef</term>
        <listitem>
            <para>Puts the generated code in #ifdef blocks.</para>
        </listitem>
    </varlistentry>
</variablelist>
</para>
</sect3>

<sect3 id="gmmproc-wrap-property">
<title>_WRAP_PROPERTY</title>
<para>This macro generates the C++ method to wrap a C GObject property. You must
    specify the property name and the wanted C++ type for the property. <command>gmmproc</command>
    uses the .defs file to discover the C type and the .m4 convert files to
    discover appropriate type conversions.</para>
<para><function>_WRAP_PROPERTY(C property name, C++ type)</function></para>
<para>For instance, from <filename>button.hg</filename>:
<programlisting>
_WRAP_PROPERTY("label", Glib::ustring)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-wrap-vfunc">
<title>_WRAP_VFUNC</title>
<para>This macro generates the C++ method to wrap a virtual C function.</para>
<para><function>_WRAP_VFUNC( C++ method signature, C function name)</function></para>
<para>For instance, from <filename>widget.hg</filename>:
<programlisting>
_WRAP_VFUNC(SizeRequestMode get_request_mode() const, get_request_mode)
</programlisting>
</para>
<para>The C function (e.g. <function>get_request_mode</function>) is described
    more fully in the <filename>*_vfuncs.defs</filename> file, and the
    <filename>convert*.m4</filename> files contain the necessary conversion from
    the C++ parameter type to the C parameter type.</para>
<para>There are some optional extra arguments:
<variablelist>
    <varlistentry>
        <term>refreturn</term>
        <listitem>
            <para>Do an extra <function>reference()</function> on the return value
                of the <function>something_vfunc()</function> function,
                in case the virtual C function does not provide a reference.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>refreturn_ctype</term>
        <listitem>
            <para>Do an extra <function>reference()</function> on the return value
                of an overridden <function>something_vfunc()</function> function
                in the C callback function, in case the calling C function
                expects it to provide a reference.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>errthrow</term>
        <listitem>
            <para>Use the last GError** parameter of the C virtual function (if
              there is one) to throw an exception.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>custom_vfunc</term>
        <listitem>
            <para>Do not generate a definition of the vfunc in the
               <filename>.cc</filename> file. Use this when you must generate
               the vfunc by hand.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>custom_vfunc_callback</term>
        <listitem>
            <para>Do not generate a C callback function for the vfunc.
                Use this when you must generate the callback function by hand.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>ifdef</term>
        <listitem>
            <para>Puts the generated code in #ifdef blocks.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>slot_name</term>
        <listitem>
          <para>Specifies the name of the slot parameter of the method, if it
            has one.  This enables <command>gmmproc</command> to generate code
            to copy the slot and pass the copy on to the C function in its
            final <literal>gpointer user_data</literal> parameter.  The
            <literal>slot_callback</literal> option must also be used to
            specify the name of the glue callback function to also pass on to
            the C function.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>slot_callback</term>
        <listitem>
          <para>Used in conjunction with the <literal>slot_name</literal>
            option to specify the name of the glue callback function that
            handles extracting the slot and then calling it.  The address of
            this callback is also passed on to the C function that the method
            wraps.</para>
        </listitem>
    </varlistentry>
    <varlistentry>
        <term>no_slot_copy</term>
        <listitem>
          <para>Tells <command>gmmproc</command> not to pass a copy of the slot
            to the C function, if the method has one.  Instead the slot itself
            is passed.  The slot parameter name and the glue callback function
            must have been specified with the <literal>slot_name</literal> and
            <literal>slot_callbback</literal> options respectively.</para>
        </listitem>
    </varlistentry>
</variablelist>
</para>
<para>A rule to which there may be exceptions: If the virtual C function returns
    a pointer to an object derived from <classname>GObject</classname>, i.e. a
    reference-counted object, then the virtual C++ function shall return a
    <classname>Glib::RefPtr&lt;&gt;</classname> object. One of the extra
    arguments <parameter>refreturn</parameter> or
    <parameter>refreturn_ctype</parameter> is required.</para>
</sect3>

</sect2>

<sect2 id="gmmproc-other-macros">
<title>Other macros</title>
<sect3 id="gmmproc-implements-interface">
<title>_IMPLEMENTS_INTERFACE</title>
<para>This macro generates initialization code for the interface.</para>
<para><function>_IMPLEMENTS_INTERFACE(C++ interface name)</function></para>
<para>For instance, from <filename>button.hg</filename>:
<programlisting>
_IMPLEMENTS_INTERFACE(Activatable)
</programlisting>
</para>
<para>There is one optional extra argument:
<variablelist>
    <varlistentry>
        <term>ifdef</term>
        <listitem>
            <para>Puts the generated code in #ifdef blocks.</para>
        </listitem>
    </varlistentry>
</variablelist>
</para>
</sect3>

<sect3 id="gmmproc-wrap-enum">
<title>_WRAP_ENUM</title>
<para>This macro generates a C++ enum to wrap a C enum. You must specify the desired C++ name and
    the name of the underlying C enum.</para>
<para>For instance, from <filename>enums.hg</filename>:
<programlisting>
_WRAP_ENUM(WindowType, GtkWindowType)
</programlisting>
</para>
<para>If the enum is not a <classname>GType</classname>, you must pass a third parameter NO_GTYPE.
  This is the case when there is no <function>*_get_type()</function> function for the C enum, but
  be careful that you don't just need to include an extra header for that function. You should also
  file a bug against the C API, because all enums should be registered as GTypes.</para>
<para>For example, from <filename>icontheme.hg</filename>:
<programlisting>
_WRAP_ENUM(IconLookupFlags, GtkIconLookupFlags, NO_GTYPE)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-wrap-enum-docs-only">
<title>_WRAP_ENUM_DOCS_ONLY</title>
<para>This macro just generates a Doxygen documentationn block for the enum.
  This is useful for enums that can't be wrapped with
  <function>_WRAP_ENUM()</function> because they are complexly defined (maybe
  using C macros) but including the generated enum documentation is still
  desired.  It is used with the same syntax as
  <function>_WRAP_ENUM()</function> and also process the same options (though
  NO_GTYPE is just ignored because it makes no difference when just generating
  the enum's documentation).
</para>
</sect3>

<sect3 id="gmmproc-wrap-gerror">
<title>_WRAP_GERROR</title>
<para>This macro generates a C++ exception class, derived from Glib::Error, with
a Code enum and a code() method. You must specify the desired C++ name, the name
of the corresponding C enum, and the prefix for the C enum values.</para>
<para>This exception can then be thrown by methods which are generated from _WRAP_METHOD() with the errthrow option.</para>
<para>For instance, from <filename>pixbuf.hg</filename>:
<programlisting>
_WRAP_GERROR(PixbufError, GdkPixbufError, GDK_PIXBUF_ERROR)
</programlisting>
</para>
</sect3>

<sect3 id="gmmproc-member-set-get">
    <title>_MEMBER_GET / _MEMBER_SET</title>
  <para>
    Use these macros if you're wrapping a simple struct or boxed type that provides
    direct access to its data members, to create getters and setters for the data members.
  </para>
  <para><function>_MEMBER_GET(C++ name, C name, C++ type, C type)</function></para>
  <para><function>_MEMBER_SET(C++ name, C name, C++ type, C type)</function></para>
  <para>
    For example, in <filename>rectangle.hg</filename>:
    <programlisting>_MEMBER_GET(x, x, int, int)</programlisting>
  </para>
</sect3>
<sect3 id="gmmproc-member-get-set-ptr">
  <title>_MEMBER_GET_PTR / _MEMBER_SET_PTR</title>
  <para>
    Use these macros to automatically provide getters and setters for a data
    member that is a pointer type. For the getter function, it will
    create two methods, one const and one non-const.
  </para>
  <para><function>_MEMBER_GET_PTR(C++ name, C name, C++ type, C type)</function></para>
  <para><function>_MEMBER_SET_PTR(C++ name, C name, C++ type, C type)</function></para>
  <para>For example, for <classname>Pango::Analysis</classname> in <filename>item.hg</filename>:
<programlisting>
// _MEMBER_GET_PTR(engine_lang, lang_engine, EngineLang*, PangoEngineLang*)
// It's just a comment. It's difficult to find a real-world example.
</programlisting>
  </para>
</sect3>
<sect3 id="gmmproc-member-get-set-gobject">
  <title>_MEMBER_GET_GOBJECT / _MEMBER_SET_GOBJECT</title>
  <para>
    Use these macros to provide getters and setters for a data member that is a
    <classname>GObject</classname> type that must be referenced before being
    returned.
  </para>
  <para><function>_MEMBER_GET_GOBJECT(C++ name, C name, C++ type, C type)</function></para>
  <para><function>_MEMBER_SET_GOBJECT(C++ name, C name, C++ type, C type)</function></para>
  <para>For example, in Pangomm, <filename>layoutline.hg</filename>:
<programlisting>
_MEMBER_GET_GOBJECT(layout, layout, Pango::Layout, PangoLayout*)
</programlisting>
  </para>
</sect3>
</sect2>

<sect2 id="gmmproc-parameter-processing">
  <title>gmmproc Parameter Processing</title>
  <para><command>gmmproc</command> allows processing the parameters in a method
    signature for the macros that process method signatures (like
    <function>_WRAP_METHOD()</function>, <function>_WRAP_CTOR()</function> and
    <function>_WRAP_CREATE()</function>) in a variety of ways:
  </para>

  <sect3 id="gmmproc-parameter-reordering">
    <title>Parameter Reordering</title>
    <para>
      For all the macros that process method signatures, it is possible to
      specify a different order for the C++ parameters than the existing order
      in the C function, virtual function or signal.  For example, say that the
      following C function were being wrapped as a C++ method for the
      <classname>Gtk::Widget</classname> class:
      <programlisting>
        void gtk_widget_set_device_events(GtkWidget* widget, GdkDevice* device,
        GdkEventMask events);
      </programlisting>
      However, changing the order of the C++ method's two parameters is
      necessary.  Something like the following would wrap the function as a C++
      method with a different order for the two parameters:
      <programlisting>
        _WRAP_METHOD(void set_device_events(Gdk::EventMask events{events},
        const Glib::RefPtr&lt;const Gdk::Device&gt;&amp; device{device}),
        gtk_widget_set_device_events)
      </programlisting>
      The <literal>{c_param_name}</literal> following the method parameter
      names tells <command>gmmproc</command> to map the C++ parameter to the
      specified C parameter within the <literal>{}</literal>.  Since the C++
      parameter names correspond to the C ones, the above could be re-written
      as:
      <programlisting>
        _WRAP_METHOD(void set_device_events(Gdk::EventMask events{.}, const
        Glib::RefPtr&lt;const Gdk::Device&gt;&amp; device{.}),
        gtk_widget_set_device_events)
      </programlisting>
    </para>
    <warning>
      <para>
        Please note that when reordering parameters for a
        <function>_WRAP_SIGNAL()</function> method signature, the C parameter
        names would always be <literal>p0</literal>, <literal>p1</literal>,
        etc. because the <filename>generate_extra_defs</filename> utility uses those
        parameter names no matter what the C API's parameter names may be.
        It's how the utility is written presently.
      </para>
    </warning>
  </sect3>

  <sect3 id="gmmproc-optional-parameter-processing">
    <title>Optional Parameter Processing</title>
    <para>
      For all macros processing method signatures except
      <function>_WRAP_SIGNAL()</function> and
      <function>_WRAP_VFUNC()</function> it is also possible to make the
      parameters optional so that extra C++ methods are generated without the
      specified optional parameter.  For example, say that the following
      <function>*_new()</function> function were being wrapped as a constructor
      in the <classname>Gtk::ToolButton</classname> class:
      <programlisting>
        GtkToolItem* gtk_tool_button_new(GtkWidget* icon_widget, const gchar*
        label);
      </programlisting>
      Also, say that the C API allowed NULL for the function's
      <parameter>label</parameter> parameter so that that parameter is optional.
      It would be possible to have <command>gmmproc</command> generate the
      original constructor (with all the parameters) along with an additional
      constructor without that optional parameter by appending a
      <literal>{?}</literal> to the parameter name like so:
      <programlisting>
        _WRAP_CTOR(ToolButton(Widget&amp; icon_widget, const Glib::ustring&amp;
        label{?}), gtk_tool_button_new)
      </programlisting>
      In this case, two constructors would be generated: One with the optional
      parameter and one without it.
    </para>
  </sect3>

  <sect3 id="gmmproc-output-parameter-processing">
    <title>Output Parameter Processing</title>
    <para>
      With <function>_WRAP_METHOD()</function> it is also possible for the
      return of the wrapped C function (if it has one) to be placed in an
      output parameter of the C++ method instead of having the C++ method also
      return a value like the C function does.  To do that, simply include the
      output parameter in the C++ method parameter list appending a
      <literal>{OUT}</literal> to the output parameter name.  For example, if
      <function>gtk_widget_get_request_mode()</function> is declared as the
      following:
      <programlisting>
        GtkSizeRequestMode gtk_widget_get_request_mode(GtkWidget* widget);
      </programlisting>
      And having the C++ method set an output parameter is desired instead of
      returning a <type>SizeRequestMode</type>, something like the following
      could be used:
      <programlisting>
        _WRAP_METHOD(void get_request_mode(SizeRequestMode&amp; mode{OUT})
        const, gtk_widget_get_request_mode)
      </programlisting>
      The <literal>{OUT}</literal> appended to the name of the
      <parameter>mode</parameter> output parameter tells
      <command>gmmproc</command> to place the return of the C function in that
      output parameter.  In this case, however, a necessary initialization
      macro like the following would also have to be specified:
      <programlisting>
        _INITIALIZATION(`SizeRequestMode&amp;',`GtkSizeRequestMode',`$3 =
        (SizeRequestMode)($4)')
      </programlisting>
      Which could also be written as:
      <programlisting>
        _INITIALIZATION(`SizeRequestMode&amp;',`GtkSizeRequestMode',`$3 =
        ($1)($4)')
      </programlisting>
    </para>
    <para>
      <function>_WRAP_METHOD()</function> also supports setting C++ output
      parameters from C output parameters if the C function being wrapped has
      any.  Suppose, for example, that we want to wrap the following C function
      that returns a value in its C output parameter
      <parameter>rect</parameter>:
      <programlisting>
        gboolean gtk_icon_view_get_cell_rect(GtkIconView* icon_view,
        GtkTreePath* path, GtkCellRenderer* cell, GdkRectangle* rect);
      </programlisting>
      To have <command>gmmproc</command> place the value returned in the C++
      <parameter>rect</parameter> output parameter, something like the
      following <function>_WRAP_METHOD()</function> directive could be used:
      <programlisting>
        _WRAP_METHOD(bool get_cell_rect(const TreeModel::Path&amp; path, const
        CellRenderer&amp; cell, Gdk::Rectangle&amp; rect{>>}) const,
        gtk_icon_view_get_cell_rect)
      </programlisting>
      The <literal>{>>}</literal> following the <parameter>rect</parameter>
      parameter name indicates that the C++ output parameter should be set from
      the value returned in the C parameter from the C function.
      <command>gmmproc</command> will generate a declaration of a temporary
      variable in which to store the value of the C output parameter and a
      statement that sets the C++ output parameter from the temporary variable.
      In this case it may be necessary to have an
      <function>_INITIALIZATION()</function> describing how to set a
      <classname>Gdk::Rectangle&amp;</classname> from a
      <classname>GdkRectangle*</classname> such as the following:
      <programlisting>
        _INITIALIZATION(`Gdk::Rectangle&amp;',`GdkRectangle', `$3 =
        Glib::wrap(&amp;($4))')
      </programlisting>
    </para>
  </sect3>

</sect2>

<sect2 id="gmmproc-basic-types">
  <title>Basic Types</title>
  <para>Some of the basic types that are used in C APIs have better alternatives
    in C++. For example, there's no need for a <type>gboolean</type> type since
    C++ has <type>bool</type>. The following list shows some commonly-used
    types in C APIs and what you might convert them to in a C++ wrapper library.
  </para>
  <segmentedlist><title>Basic Type equivalents</title>
    <?dbhtml list-presentation="table"?>
    <segtitle>C type</segtitle>
    <segtitle>C++ type</segtitle>
    <seglistitem><seg><type>gboolean</type></seg><seg><type>bool</type></seg></seglistitem>
    <seglistitem><seg><type>gint</type></seg><seg><type>int</type></seg></seglistitem>
    <seglistitem><seg><type>guint</type></seg><seg><type>guint</type></seg></seglistitem>
    <seglistitem><seg><type>gdouble</type></seg><seg><type>double</type></seg></seglistitem>
    <seglistitem><seg><type>gunichar</type></seg><seg><type>gunichar</type></seg></seglistitem>
    <seglistitem><seg><type>gchar*</type></seg><seg><classname>Glib::ustring</classname> (or <classname>std::string</classname> for filenames)</seg></seglistitem>
  </segmentedlist>
</sect2>
</sect1>


<sect1 id="sec-wrapping-hand-coded-files">
<title>Hand-coded source files</title>
<para>You might want to include additional source files that will not be
  generated by <command>gmmproc</command> from <filename>.hg</filename> and
  <filename>.ccg</filename> files. You can simply place these in your
  <filename>libsomething/libsomethingmm</filename> directory and mention them
  in the <filename>Makefile.am</filename> in the
  <varname>files_extra_h</varname> and <varname>files_extra_cc</varname>
  variables.</para>
</sect1>

<sect1 id="sec-wrapping-initialization">
<title>Initialization</title>
<para>Your library must be initialized before it can be used, to register the
    new types that it makes available. Also, the C library that you are wrapping
    might have its own initialization function that you should call. You can do
    this in an <function>init()</function> function that you can place in
    hand-coded <filename>init.h</filename> and <filename>init.cc</filename>
    files. This function should initialize your dependencies (such as the C
    function, and &gtkmm;) and call your generated
    <function>wrap_init()</function> function. For instance:
<programlisting>
void init()
{
  Gtk::Main::init_gtkmm_internals(); //Sets up the g type system and the Glib::wrap() table.
  wrap_init(); //Tells the Glib::wrap() table about the libsomethingmm classes.
}
</programlisting>
</para>
<para>The implementation of the <function>wrap_init()</function> method in
    <filename>wrap_init.cc</filename> is generated by
    <filename>generate_wrap_init.pl</filename>, but the declaration in
    <filename>wrap_init.h</filename> is hand-coded, so you will need to adjust
    <filename>wrap_init.h</filename> so that the <function>wrap_init()</function>
    function appears in the correct C++ namespace.</para>
</sect1>

<sect1 id="sec-wrapping-problems">
<title>Problems in the C API.</title>
<para>You are likely to encounter some problems in the library that you are wrapping, particularly if it is a new project. Here are some common problems, with solutions.</para>
<sect2 id="wrapping-predeclare-structs">
<title>Unable to predeclare structs</title>
<para>By convention, structs are declared in glib/GTK+-style headers like so:
<programlisting>
typedef struct _ExampleWidget ExampleWidget;

struct _ExampleWidget
{
  ...
};
</programlisting>
</para>
<para>The extra typedef allows the struct to be used in a header without including
  its full definition, simply by predeclaring it, by repeating that typedef.
  This means that you don't have to include the C library's header in your C++ header,
  thus keeping it out of your public API. <command>gmmproc</command> assumes that
  this technique was used, so you will see compiler errors if that is not the case.</para>
<para>
This compiler error might look like this:
<programlisting>
example-widget.h:56: error: using typedef-name 'ExampleWidget' after 'struct'
../../libexample/libexamplemm/example-widget.h:34: error: 'ExampleWidget' has a previous declaration here
make[4]: *** [example-widget.lo] Error 1
</programlisting>
or this:
<programlisting>
example-widget.h:60: error: '_ExampleWidget ExampleWidget' redeclared as different kind of symbol
../../libexample/libexamplemm/example-widget.h:34: error: previous declaration of 'typedef struct _ExampleWidget ExampleWidget'
</programlisting>
</para>
<para>This is easy to correct in the C library, so do send a patch to the relevant maintainer.</para>
</sect2>

<sect2 id="wrapping-no-properties">
<title>Lack of properties</title>
<para>By convention, glib/GTK+-style objects have <function>*_new()</function>
    functions, such as <function>example_widget_new()</function> that do nothing
    more than call <function>g_object_new()</function> and return the result.
    The input parameters are supplied to <function>g_object_new()</function>
    along with the names of the properties for which they are values. For
    instance,
<programlisting>
GtkWidget* example_widget_new(int something, const char* thing)
{
        return g_object_new (EXAMPLE_TYPE_WIDGET, "something", something, "thing", thing, NULL);
}
</programlisting>
</para>
<para>This allows language bindings to implement their own equivalents (such as
    C++ constructors), without using the <function>*_new()</function> function.
    This is often necessary so that they can actually instantiate a derived
    GType, to add their own hooks for signal handlers and vfuncs.</para>
<para>At the least, the <function>_new()</function> function should not use any
    private API (functions that are only in a .c file). Even when there are no
    functions, we can sometimes reimplement 2 or 3 lines of code in a
    <function>_new()</function> function as long as those lines of code use API
    that is available to us.</para>
<para>Another workaround is to add a <function>*_construct()</function> function
    that the C++ constructor can call after instantiating its own type. For
    instance,
<programlisting>
GtkWidget* example_widget_new(int something, const char* thing)
{
        ExampleWidget* widget;
        widget = g_object_new (EXAMPLE_TYPE_WIDGET, NULL);
        example_widget_construct(widget, "something", something, "thing", thing);
}

void example_widget_construct(ExampleWidget* widget, int something, const char* thing)
{
        //Do stuff that uses private API:
        widget->priv->thing = thing;
        do_something(something);
}
</programlisting>
</para>
<para>Adding properties, and ensuring that they interact properly with each
    other, is relatively difficult to correct in the C library, but it is
    possible, so do file a bug and try to send a patch to the relevant
    maintainer.</para>
</sect2>
</sect1>

<sect1 id="sec-wrapping-documentation">
<title>Documentation</title>
<para>In general, gtkmm-style projects use Doxygen, which reads specially formatted C++ comments and generates HTML documentation. You may write these doxygen comments directly in the header files.</para>

<sect2 id="wrapping-reusing-c-documentation">
<title>Reusing C documentation</title>
<para>You might wish to reuse documentation that exists for the C library that
  you are wrapping. GTK-style C libraries typically use gtk-doc and therefore
  have source code comments formatted for gtk-doc and some extra documentation
  in .sgml and .xml files. The docextract_to_xml.py script, from glibmm's
  <filename>tools/defs_gen</filename> directory, can read these files and
  generate an .xml file that <command>gmmproc</command> can use to generate
  doxygen comments. <command>gmmproc</command> will even try to transform the
  documentation to make it more appropriate for a C++ API.</para>
<para>
For instance,
<programlisting>./docextract_to_xml.py -s ~/checkout/gnome/gtk+/gtk/ > gtk_docs.xml
</programlisting>
</para>
<para>Because this automatic transformation is not always appropriate, you might
    want to provide hand-written text for a particular method. You can do this
    by copying the XML node for the function from your
    <filename>something_docs.xml</filename> file to the
    <filename>something_docs_override.xml</filename> file and changing the
    contents.</para>
</sect2>

<sect2 id="wrapping-documentation-build-structure">
<title>Documentation build structure</title>
<para>If you copied the skeleton source tree in mm-common and substituted the
  placeholder text, then you will already have suitable <filename>Makefile.am</filename>
  and <filename>Doxyfile.in</filename> files. With the mm-common build setup, the list
  of Doxygen input files is not defined in the Doxygen configuration file, but passed
  along from <command>make</command> to the standard input of <command>doxygen</command>.
  The input file list is defined by the <varname>doc_input</varname> variable in the
  <filename>Makefile.am</filename> file.
</para>
</sect2>

</sect1>

</appendix>

</book>

<!-- some vim settings
    vim:ts=2 sw=2 et
-->