1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
#' Efficient rbind of data frames, even if the column names don't match
#'
#' Efficient rbind of data frames, even if the column names don't match
#'
#'
#' @param \dots Data frames to combine
#' @param list List containing data frames to combine
#' @param fill Value to use when 'filling' missing columns. Defaults to
#' \code{NA}.
#' @param sep Character string used to separate column names when pasting them
#' together.
#' @param verbose Logical flag indicating whether to display processing
#' messages. Defaults to \code{FALSE}.
#' @return The returned data frame will contain: \item{columns}{all columns
#' present in any provided data frame} \item{rows}{a set of rows from each
#' provided data frame, with values in columns not present in the given data
#' frame filled with missing (\code{NA}) values.} The data type of columns will
#' be preserved, as long as all data frames with a given column name agree on
#' the data type of that column. If the data frames disagree, the column will
#' be converted into a character strings. The user will need to coerce such
#' character columns into an appropriate type.
#' @author Gregory R. Warnes \email{greg@@warnes.net}
#' @seealso \code{\link{rbind}}, \code{\link{cbind}}
#' @keywords manip
#' @examples
#'
#'
#' df1 <- data.frame(A = 1:10, B = LETTERS[1:10], C = rnorm(10))
#' df2 <- data.frame(A = 11:20, D = rnorm(10), E = letters[1:10])
#'
#' # rbind would fail
#' \dontrun{
#' rbind(df1, df2)
#' # Error in match.names(clabs, names(xi)) : names do not match previous
#' # names:
#' # D, E
#' }
#' # but smartbind combines them, appropriately creating NA entries
#' smartbind(df1, df2)
#'
#' # specify fill=0 to put 0 into the missing row entries
#' smartbind(df1, df2, fill = 0)
#' \dontshow{
#' n <- 10 # number of data frames to create
#' s <- 10 # number of rows in each data frame
#'
#' # create a bunch of column names
#' names <- LETTERS[2:5]
#'
#' # create a list 'Z' containing 'n' data frames, each with 3 columns
#' # and 's' rows. The first column is always named 'A', but the other
#' # two have a names randomly selected from 'names'
#'
#' Z <- list()
#' for (i in 1:n)
#' {
#' X <- data.frame(
#' A = sample(letters, s, replace = TRUE),
#' B = letters[1:s],
#' C = rnorm(s)
#' )
#' colnames(X) <- c("A", sample(names, 2, replace = FALSE))
#' Z[[i]] <- X
#' }
#'
#' # Error in match.names(clabs, names(xi)) : names do not match
#' # previous names: E
#'
#' # But smartbind will 'do the right thing'
#' df <- do.call("smartbind", Z)
#' df
#'
#' # Equivalent call:
#' df <- smartbind(list = Z)
#' }
#'
#' @importFrom utils modifyList
#' @export
smartbind <- function(..., list, fill = NA, sep = ":", verbose = FALSE) {
data <- base::list(...)
if (!missing(list)) {
data <- modifyList(list, data)
}
data <- data[!sapply(data, function(l) is.null(l) | (ncol(l) == 0) | (nrow(l) == 0))]
defaultNames <- seq.int(length(data))
if (is.null(names(data))) {
names(data) <- defaultNames
}
emptyNames <- names(data) == ""
if (any(emptyNames)) {
names(data)[emptyNames] <- defaultNames[emptyNames]
}
data <- lapply(
data,
function(x) {
if (is.matrix(x) || is.data.frame(x)) {
x
} else {
data.frame(as.list(x), check.names = FALSE)
}
}
)
# retval <- new.env()
retval <- base::list()
rowLens <- unlist(lapply(data, nrow))
nrows <- sum(rowLens)
rowNameList <- unlist(lapply(
names(data),
function(x) {
if (rowLens[x] <= 1) {
x
} else {
paste(x, seq(1, rowLens[x]), sep = sep)
}
}
))
colClassList <- vector(mode = "list", length = length(data))
factorColumnList <- vector(mode = "list", length = length(data))
factorLevelList <- vector(mode = "list", length = length(data))
start <- 1
blockIndex <- 1
for (block in data)
{
colClassList[[blockIndex]] <- base::list()
factorColumnList[[blockIndex]] <- character(length = 0)
factorLevelList[[blockIndex]] <- base::list()
if (verbose) print(head(block))
end <- start + nrow(block) - 1
for (col in colnames(block))
{
classVec <- class(block[, col])
## store class and factor level information for later use
colClassList[[blockIndex]][[col]] <- classVec
if ("factor" %in% classVec) {
factorColumnList[[blockIndex]] <-
c(factorColumnList[[blockIndex]], col)
factorLevelList[[blockIndex]][[col]] <-
levels(block[, col])
}
if (verbose) {
cat("Start:", start,
" End:", end,
" Column:", col,
"\n",
sep = ""
)
}
if ("factor" %in% classVec) {
newclass <- "character"
}
else {
newclass <- classVec[1]
}
## Coerce everything that isn't a native type to character
if (!(newclass %in% c(
"logical", "integer", "numeric",
"complex", "character", "raw"
))) {
newclass <- "character"
warning(
"Converting non-atomic type column '", col,
"' to type character."
)
}
if (!(col %in% names(retval))) {
retval[[col]] <- as.vector(rep(fill, nrows), mode = newclass)
}
## Handle case when current and previous native types differ
oldclass <- class(retval[[col]])
if (oldclass != newclass) {
# handle conversions in case of conflicts
# numeric vs integer --> numeric
# complex vs numeric or integer --> complex
# anything else: --> character
if (oldclass %in% c("integer", "numeric") && newclass %in% c("integer", "numeric")) {
class(retval[[col]]) <- mode <- "numeric"
} else if (oldclass == "complex" && newclass %in% c("integer", "numeric")) {
class(retval[[col]]) <- mode <- "complex"
} else if (oldclass %in% c("integer", "numeric") && newclass == "complex") {
class(retval[[col]]) <- mode <- "complex"
} else {
class(retval[[col]]) <- mode <- "character"
warning(
"Column class mismatch for '", col, "'. ",
"Converting column to class 'character'."
)
}
}
else {
mode <- oldclass
}
if (mode == "character") {
vals <- as.character(block[, col])
} else {
vals <- block[, col]
}
retval[[col]][start:end] <- as.vector(vals, mode = mode)
}
start <- end + 1
blockIndex <- blockIndex + 1
}
all.equal.or.null <- function(x, y) {
if (is.null(x) || is.null(y)) {
return(TRUE)
} else {
return(all.equal(x, y))
}
}
## Handle factors, merging levels
for (col in unique(unlist(factorColumnList)))
{
## Ensure column classes match across blocks
colClasses <- lapply(colClassList, function(x) x[[col]])
firstNotNull <- which(!sapply(colClasses, is.null))[1]
allSameOrNull <- all(sapply(
colClasses[-firstNotNull],
function(x) isTRUE(all.equal.or.null(colClasses[[firstNotNull]], x))
))
if (allSameOrNull) {
# grab the first *non-NULL* class information
colClass <- colClasses[[firstNotNull]]
}
else {
warning(
"Column class mismatch for '", col, "'. ",
"Converting column to class 'character'."
)
next()
}
## check if factor levels are all the same
colLevels <- lapply(factorLevelList, function(x) x[[col]])
firstNotNull <- which(!sapply(colLevels, is.null))[1]
allSameOrNull <- all(sapply(
colLevels[-firstNotNull],
function(x) isTRUE(all.equal.or.null(colLevels[[firstNotNull]], x))
))
if (allSameOrNull) {
if ("ordered" %in% colClass) {
retval[[col]] <- ordered(retval[[col]], levels = colLevels[[firstNotNull]])
} else {
retval[[col]] <- factor(retval[[col]], levels = colLevels[[firstNotNull]])
}
}
else {
## Check if longest set of levels is a superset of all others,
## and use that one
longestIndex <- which.max(sapply(colLevels, length))
longestLevels <- colLevels[[longestIndex]]
allSubset <- all(sapply(
colLevels[-longestIndex],
function(l) all(l %in% longestLevels)
))
if (allSubset) {
if ("ordered" %in% colClass) {
retval[[col]] <- ordered(retval[[col]], levels = longestLevels)
} else {
retval[[col]] <- factor(retval[[col]], levels = longestLevels)
}
}
else {
# form superset by appending to longest level set
levelSuperSet <- unique(c(longestLevels, unlist(colLevels)))
retval[[col]] <- factor(retval[[col]], levels = levelSuperSet)
if (length(colClass) > 1) # not just plain factor
{
warning(
"column '", col, "' of class ",
paste("'", colClass, "'",
collapse = ":",
sep = "'"
),
" converted to class 'factor'. Check level ordering."
)
}
}
}
}
attr(retval, "row.names") <- rowNameList
class(retval) <- "data.frame"
return(retval)
}
|