1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file IMUKittiExampleGPS
* @brief Example of application of ISAM2 for GPS-aided navigation on the KITTI
* VISION BENCHMARK SUITE
* @author Ported by Thomas Jespersen (thomasj@tkjelectronics.dk), TKJ
* Electronics
*/
// GTSAM related includes.
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/ISAM2Params.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <cstring>
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
struct KittiCalibration {
double body_ptx;
double body_pty;
double body_ptz;
double body_prx;
double body_pry;
double body_prz;
double accelerometer_sigma;
double gyroscope_sigma;
double integration_sigma;
double accelerometer_bias_sigma;
double gyroscope_bias_sigma;
double average_delta_t;
};
struct ImuMeasurement {
double time;
double dt;
Vector3 accelerometer;
Vector3 gyroscope; // omega
};
struct GpsMeasurement {
double time;
Vector3 position; // x,y,z
};
const string output_filename = "IMUKittiExampleGPSResults.csv";
void loadKittiData(KittiCalibration& kitti_calibration,
vector<ImuMeasurement>& imu_measurements,
vector<GpsMeasurement>& gps_measurements) {
string line;
// Read IMU metadata and compute relative sensor pose transforms
// BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma
// GyroscopeSigma IntegrationSigma AccelerometerBiasSigma GyroscopeBiasSigma
// AverageDeltaT
string imu_metadata_file =
findExampleDataFile("KittiEquivBiasedImu_metadata.txt");
ifstream imu_metadata(imu_metadata_file.c_str());
printf("-- Reading sensor metadata\n");
getline(imu_metadata, line, '\n'); // ignore the first line
// Load Kitti calibration
getline(imu_metadata, line, '\n');
sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
&kitti_calibration.body_ptx, &kitti_calibration.body_pty,
&kitti_calibration.body_ptz, &kitti_calibration.body_prx,
&kitti_calibration.body_pry, &kitti_calibration.body_prz,
&kitti_calibration.accelerometer_sigma,
&kitti_calibration.gyroscope_sigma,
&kitti_calibration.integration_sigma,
&kitti_calibration.accelerometer_bias_sigma,
&kitti_calibration.gyroscope_bias_sigma,
&kitti_calibration.average_delta_t);
printf("IMU metadata: %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n",
kitti_calibration.body_ptx, kitti_calibration.body_pty,
kitti_calibration.body_ptz, kitti_calibration.body_prx,
kitti_calibration.body_pry, kitti_calibration.body_prz,
kitti_calibration.accelerometer_sigma,
kitti_calibration.gyroscope_sigma, kitti_calibration.integration_sigma,
kitti_calibration.accelerometer_bias_sigma,
kitti_calibration.gyroscope_bias_sigma,
kitti_calibration.average_delta_t);
// Read IMU data
// Time dt accelX accelY accelZ omegaX omegaY omegaZ
string imu_data_file = findExampleDataFile("KittiEquivBiasedImu.txt");
printf("-- Reading IMU measurements from file\n");
{
ifstream imu_data(imu_data_file.c_str());
getline(imu_data, line, '\n'); // ignore the first line
double time = 0, dt = 0, acc_x = 0, acc_y = 0, acc_z = 0, gyro_x = 0,
gyro_y = 0, gyro_z = 0;
while (!imu_data.eof()) {
getline(imu_data, line, '\n');
sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf", &time, &dt,
&acc_x, &acc_y, &acc_z, &gyro_x, &gyro_y, &gyro_z);
ImuMeasurement measurement;
measurement.time = time;
measurement.dt = dt;
measurement.accelerometer = Vector3(acc_x, acc_y, acc_z);
measurement.gyroscope = Vector3(gyro_x, gyro_y, gyro_z);
imu_measurements.push_back(measurement);
}
}
// Read GPS data
// Time,X,Y,Z
string gps_data_file = findExampleDataFile("KittiGps_converted.txt");
printf("-- Reading GPS measurements from file\n");
{
ifstream gps_data(gps_data_file.c_str());
getline(gps_data, line, '\n'); // ignore the first line
double time = 0, gps_x = 0, gps_y = 0, gps_z = 0;
while (!gps_data.eof()) {
getline(gps_data, line, '\n');
sscanf(line.c_str(), "%lf,%lf,%lf,%lf", &time, &gps_x, &gps_y, &gps_z);
GpsMeasurement measurement;
measurement.time = time;
measurement.position = Vector3(gps_x, gps_y, gps_z);
gps_measurements.push_back(measurement);
}
}
}
int main(int argc, char* argv[]) {
KittiCalibration kitti_calibration;
vector<ImuMeasurement> imu_measurements;
vector<GpsMeasurement> gps_measurements;
loadKittiData(kitti_calibration, imu_measurements, gps_measurements);
Vector6 BodyP =
(Vector6() << kitti_calibration.body_ptx, kitti_calibration.body_pty,
kitti_calibration.body_ptz, kitti_calibration.body_prx,
kitti_calibration.body_pry, kitti_calibration.body_prz)
.finished();
auto body_T_imu = Pose3::Expmap(BodyP);
if (!body_T_imu.equals(Pose3(), 1e-5)) {
printf(
"Currently only support IMUinBody is identity, i.e. IMU and body frame "
"are the same");
exit(-1);
}
// Configure different variables
// double t_offset = gps_measurements[0].time;
size_t first_gps_pose = 1;
size_t gps_skip = 10; // Skip this many GPS measurements each time
double g = 9.8;
auto w_coriolis = Vector3::Zero(); // zero vector
// Configure noise models
auto noise_model_gps = noiseModel::Diagonal::Precisions(
(Vector6() << Vector3::Constant(0), Vector3::Constant(1.0 / 0.07))
.finished());
// Set initial conditions for the estimated trajectory
// initial pose is the reference frame (navigation frame)
auto current_pose_global =
Pose3(Rot3(), gps_measurements[first_gps_pose].position);
// the vehicle is stationary at the beginning at position 0,0,0
Vector3 current_velocity_global = Vector3::Zero();
auto current_bias = imuBias::ConstantBias(); // init with zero bias
auto sigma_init_x = noiseModel::Diagonal::Precisions(
(Vector6() << Vector3::Constant(0), Vector3::Constant(1.0)).finished());
auto sigma_init_v = noiseModel::Diagonal::Sigmas(Vector3::Constant(1000.0));
auto sigma_init_b = noiseModel::Diagonal::Sigmas(
(Vector6() << Vector3::Constant(0.100), Vector3::Constant(5.00e-05))
.finished());
// Set IMU preintegration parameters
Matrix33 measured_acc_cov =
I_3x3 * pow(kitti_calibration.accelerometer_sigma, 2);
Matrix33 measured_omega_cov =
I_3x3 * pow(kitti_calibration.gyroscope_sigma, 2);
// error committed in integrating position from velocities
Matrix33 integration_error_cov =
I_3x3 * pow(kitti_calibration.integration_sigma, 2);
auto imu_params = PreintegratedImuMeasurements::Params::MakeSharedU(g);
imu_params->accelerometerCovariance =
measured_acc_cov; // acc white noise in continuous
imu_params->integrationCovariance =
integration_error_cov; // integration uncertainty continuous
imu_params->gyroscopeCovariance =
measured_omega_cov; // gyro white noise in continuous
imu_params->omegaCoriolis = w_coriolis;
std::shared_ptr<PreintegratedImuMeasurements> current_summarized_measurement =
nullptr;
// Set ISAM2 parameters and create ISAM2 solver object
ISAM2Params isam_params;
isam_params.factorization = ISAM2Params::CHOLESKY;
isam_params.relinearizeSkip = 10;
ISAM2 isam(isam_params);
// Create the factor graph and values object that will store new factors and
// values to add to the incremental graph
NonlinearFactorGraph new_factors;
Values new_values; // values storing the initial estimates of new nodes in
// the factor graph
/// Main loop:
/// (1) we read the measurements
/// (2) we create the corresponding factors in the graph
/// (3) we solve the graph to obtain and optimal estimate of robot trajectory
printf(
"-- Starting main loop: inference is performed at each time step, but we "
"plot trajectory every 10 steps\n");
size_t j = 0;
size_t included_imu_measurement_count = 0;
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
// At each non=IMU measurement we initialize a new node in the graph
auto current_pose_key = X(i);
auto current_vel_key = V(i);
auto current_bias_key = B(i);
double t = gps_measurements[i].time;
if (i == first_gps_pose) {
// Create initial estimate and prior on initial pose, velocity, and biases
new_values.insert(current_pose_key, current_pose_global);
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
new_factors.emplace_shared<PriorFactor<Pose3>>(
current_pose_key, current_pose_global, sigma_init_x);
new_factors.emplace_shared<PriorFactor<Vector3>>(
current_vel_key, current_velocity_global, sigma_init_v);
new_factors.emplace_shared<PriorFactor<imuBias::ConstantBias>>(
current_bias_key, current_bias, sigma_init_b);
} else {
double t_previous = gps_measurements[i - 1].time;
// Summarize IMU data between the previous GPS measurement and now
current_summarized_measurement =
std::make_shared<PreintegratedImuMeasurements>(imu_params,
current_bias);
while (j < imu_measurements.size() && imu_measurements[j].time <= t) {
if (imu_measurements[j].time >= t_previous) {
current_summarized_measurement->integrateMeasurement(
imu_measurements[j].accelerometer, imu_measurements[j].gyroscope,
imu_measurements[j].dt);
included_imu_measurement_count++;
}
j++;
}
// Create IMU factor
auto previous_pose_key = X(i - 1);
auto previous_vel_key = V(i - 1);
auto previous_bias_key = B(i - 1);
new_factors.emplace_shared<ImuFactor>(
previous_pose_key, previous_vel_key, current_pose_key,
current_vel_key, previous_bias_key, *current_summarized_measurement);
// Bias evolution as given in the IMU metadata
auto sigma_between_b = noiseModel::Diagonal::Sigmas(
(Vector6() << Vector3::Constant(
sqrt(included_imu_measurement_count) *
kitti_calibration.accelerometer_bias_sigma),
Vector3::Constant(sqrt(included_imu_measurement_count) *
kitti_calibration.gyroscope_bias_sigma))
.finished());
new_factors.emplace_shared<BetweenFactor<imuBias::ConstantBias>>(
previous_bias_key, current_bias_key, imuBias::ConstantBias(),
sigma_between_b);
// Create GPS factor
auto gps_pose =
Pose3(current_pose_global.rotation(), gps_measurements[i].position);
if ((i % gps_skip) == 0) {
new_factors.emplace_shared<PriorFactor<Pose3>>(
current_pose_key, gps_pose, noise_model_gps);
new_values.insert(current_pose_key, gps_pose);
printf("############ POSE INCLUDED AT TIME %.6lf ############\n",
t);
cout << gps_pose.translation();
printf("\n\n");
} else {
new_values.insert(current_pose_key, current_pose_global);
}
// Add initial values for velocity and bias based on the previous
// estimates
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
// Update solver
// =======================================================================
// We accumulate 2*GPSskip GPS measurements before updating the solver at
// first so that the heading becomes observable.
if (i > (first_gps_pose + 2 * gps_skip)) {
printf("############ NEW FACTORS AT TIME %.6lf ############\n",
t);
new_factors.print();
isam.update(new_factors, new_values);
// Reset the newFactors and newValues list
new_factors.resize(0);
new_values.clear();
// Extract the result/current estimates
Values result = isam.calculateEstimate();
current_pose_global = result.at<Pose3>(current_pose_key);
current_velocity_global = result.at<Vector3>(current_vel_key);
current_bias = result.at<imuBias::ConstantBias>(current_bias_key);
printf("\n############ POSE AT TIME %lf ############\n", t);
current_pose_global.print();
printf("\n\n");
}
}
}
// Save results to file
printf("\nWriting results to file...\n");
FILE* fp_out = fopen(output_filename.c_str(), "w+");
fprintf(fp_out,
"#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n");
Values result = isam.calculateEstimate();
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
auto pose_key = X(i);
auto vel_key = V(i);
auto bias_key = B(i);
auto pose = result.at<Pose3>(pose_key);
auto velocity = result.at<Vector3>(vel_key);
auto bias = result.at<imuBias::ConstantBias>(bias_key);
auto pose_quat = pose.rotation().toQuaternion();
auto gps = gps_measurements[i].position;
cout << "State at #" << i << endl;
cout << "Pose:" << endl << pose << endl;
cout << "Velocity:" << endl << velocity << endl;
cout << "Bias:" << endl << bias << endl;
fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
gps_measurements[i].time, pose.x(), pose.y(), pose.z(),
pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(), gps(0),
gps(1), gps(2));
}
fclose(fp_out);
}
|