1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file RangeISAMExample_plaza2.cpp
* @brief A 2D Range SLAM example
* @date June 20, 2013
* @author Frank Dellaert
*/
// Both relative poses and recovered trajectory poses will be stored as Pose2.
#include <gtsam/geometry/Pose2.h>
using gtsam::Pose2;
// gtsam::Vectors are dynamic Eigen vectors, Vector3 is statically sized.
#include <gtsam/base/Vector.h>
using gtsam::Vector;
using gtsam::Vector3;
// Unknown landmarks are of type Point2 (which is just a 2D Eigen vector).
#include <gtsam/geometry/Point2.h>
using gtsam::Point2;
// Each variable in the system (poses and landmarks) must be identified with a
// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
// (X1, X2, L1). Here we will use Symbols.
#include <gtsam/inference/Symbol.h>
using gtsam::Symbol;
// We want to use iSAM2 to solve the range-SLAM problem incrementally.
#include <gtsam/nonlinear/ISAM2.h>
// iSAM2 requires as input a set set of new factors to be added stored in a
// factor graph, and initial guesses for any new variables in the added factors.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
// We will use a non-linear solver to batch-initialize from the first 150 frames
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
// Measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics SLAM problems:
#include <gtsam/sam/RangeFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/dataset.h>
// Timing, with functions below, provides nice facilities to benchmark.
#include <gtsam/base/timing.h>
using gtsam::tictoc_print_;
// Standard headers, added last, so we know headers above work on their own.
#include <fstream>
#include <iostream>
#include <random>
#include <set>
#include <string>
#include <utility>
#include <vector>
namespace NM = gtsam::noiseModel;
// Data is second UWB ranging dataset, B2 or "plaza 2", from
// "Navigating with Ranging Radios: Five Data Sets with Ground Truth"
// by Joseph Djugash, Bradley Hamner, and Stephan Roth
// https://www.ri.cmu.edu/pub_files/2009/9/Final_5datasetsRangingRadios.pdf
// load the odometry
// DR: Odometry Input (delta distance traveled and delta heading change)
// Time (sec) Delta Distance Traveled (m) Delta Heading (rad)
using TimedOdometry = std::pair<double, Pose2>;
std::list<TimedOdometry> readOdometry() {
std::list<TimedOdometry> odometryList;
std::string data_file = gtsam::findExampleDataFile("Plaza2_DR.txt");
std::ifstream is(data_file.c_str());
while (is) {
double t, distance_traveled, delta_heading;
is >> t >> distance_traveled >> delta_heading;
odometryList.emplace_back(t, Pose2(distance_traveled, 0, delta_heading));
}
is.clear(); /* clears the end-of-file and error flags */
return odometryList;
}
// load the ranges from TD
// Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
using RangeTriple = boost::tuple<double, size_t, double>;
std::vector<RangeTriple> readTriples() {
std::vector<RangeTriple> triples;
std::string data_file = gtsam::findExampleDataFile("Plaza2_TD.txt");
std::ifstream is(data_file.c_str());
while (is) {
double t, range, sender, receiver;
is >> t >> sender >> receiver >> range;
triples.emplace_back(t, receiver, range);
}
is.clear(); /* clears the end-of-file and error flags */
return triples;
}
// main
int main(int argc, char** argv) {
// load Plaza2 data
std::list<TimedOdometry> odometry = readOdometry();
size_t M = odometry.size();
std::cout << "Read " << M << " odometry entries." << std::endl;
std::vector<RangeTriple> triples = readTriples();
size_t K = triples.size();
std::cout << "Read " << K << " range triples." << std::endl;
// parameters
size_t minK =
150; // minimum number of range measurements to process initially
size_t incK = 25; // minimum number of range measurements to process after
bool robust = true;
// Set Noise parameters
Vector priorSigmas = Vector3(1, 1, M_PI);
Vector odoSigmas = Vector3(0.05, 0.01, 0.1);
double sigmaR = 100; // range standard deviation
const NM::Base::shared_ptr // all same type
priorNoise = NM::Diagonal::Sigmas(priorSigmas), // prior
looseNoise = NM::Isotropic::Sigma(2, 1000), // loose LM prior
odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry
gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust
tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15),
gaussian), // robust
rangeNoise = robust ? tukey : gaussian;
// Initialize iSAM
gtsam::ISAM2 isam;
// Add prior on first pose
Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120, M_PI - 2.021089);
gtsam::NonlinearFactorGraph newFactors;
newFactors.addPrior(0, pose0, priorNoise);
gtsam::Values initial;
initial.insert(0, pose0);
// We will initialize landmarks randomly, and keep track of which landmarks we
// already added with a set.
std::mt19937_64 rng;
std::normal_distribution<double> normal(0.0, 100.0);
std::set<Symbol> initializedLandmarks;
// set some loop variables
size_t i = 1; // step counter
size_t k = 0; // range measurement counter
bool initialized = false;
Pose2 lastPose = pose0;
size_t countK = 0;
// Loop over odometry
gttic_(iSAM);
for (const TimedOdometry& timedOdometry : odometry) {
//--------------------------------- odometry loop --------------------------
double t;
Pose2 odometry;
boost::tie(t, odometry) = timedOdometry;
// add odometry factor
newFactors.emplace_shared<gtsam::BetweenFactor<Pose2>>(i - 1, i, odometry,
odoNoise);
// predict pose and add as initial estimate
Pose2 predictedPose = lastPose.compose(odometry);
lastPose = predictedPose;
initial.insert(i, predictedPose);
// Check if there are range factors to be added
while (k < K && t >= boost::get<0>(triples[k])) {
size_t j = boost::get<1>(triples[k]);
Symbol landmark_key('L', j);
double range = boost::get<2>(triples[k]);
newFactors.emplace_shared<gtsam::RangeFactor<Pose2, Point2>>(
i, landmark_key, range, rangeNoise);
if (initializedLandmarks.count(landmark_key) == 0) {
std::cout << "adding landmark " << j << std::endl;
double x = normal(rng), y = normal(rng);
initial.insert(landmark_key, Point2(x, y));
initializedLandmarks.insert(landmark_key);
// We also add a very loose prior on the landmark in case there is only
// one sighting, which cannot fully determine the landmark.
newFactors.emplace_shared<gtsam::PriorFactor<Point2>>(
landmark_key, Point2(0, 0), looseNoise);
}
k = k + 1;
countK = countK + 1;
}
// Check whether to update iSAM 2
if ((k > minK) && (countK > incK)) {
if (!initialized) { // Do a full optimize for first minK ranges
std::cout << "Initializing at time " << k << std::endl;
gttic_(batchInitialization);
gtsam::LevenbergMarquardtOptimizer batchOptimizer(newFactors, initial);
initial = batchOptimizer.optimize();
gttoc_(batchInitialization);
initialized = true;
}
gttic_(update);
isam.update(newFactors, initial);
gttoc_(update);
gttic_(calculateEstimate);
gtsam::Values result = isam.calculateEstimate();
gttoc_(calculateEstimate);
lastPose = result.at<Pose2>(i);
newFactors = gtsam::NonlinearFactorGraph();
initial = gtsam::Values();
countK = 0;
}
i += 1;
//--------------------------------- odometry loop --------------------------
} // end for
gttoc_(iSAM);
// Print timings
tictoc_print_();
// Print optimized landmarks:
gtsam::Values finalResult = isam.calculateEstimate();
for (auto&& landmark_key : initializedLandmarks) {
Point2 p = finalResult.at<Point2>(landmark_key);
std::cout << landmark_key << ":" << p.transpose() << "\n";
}
exit(0);
}
|