1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SolverComparer.cpp
* @brief Incremental and batch solving, timing, and accuracy comparisons
* @author Richard Roberts
* @date August, 2013
*
* Here is an example. Below, to run in batch mode, we first generate an initialization in incremental mode.
*
* Solve in incremental and write to file w_inc:
* ./SolverComparer --incremental -d w10000 -o w_inc
*
* You can then perturb that initialization to get batch something to optimize.
* Read in w_inc, perturb it with noise of stddev 0.6, and write to w_pert:
* ./SolverComparer --perturb 0.6 -i w_inc -o w_pert
*
* Then optimize with batch, read in w_pert, solve in batch, and write to w_batch:
* ./SolverComparer --batch -d w10000 -i w_pert -o w_batch
*
* And finally compare solutions in w_inc and w_batch to check that batch converged to the global minimum
* ./SolverComparer --compare w_inc w_batch
*
*/
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/sam/BearingRangeFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/linear/GaussianJunctionTree.h>
#include <gtsam/linear/GaussianEliminationTree.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/timing.h>
#include <gtsam/base/treeTraversal-inst.h>
#include <gtsam/config.h> // for GTSAM_USE_TBB
#include <boost/archive/binary_iarchive.hpp>
#include <boost/archive/binary_oarchive.hpp>
#include <boost/program_options.hpp>
#include <boost/range/algorithm/set_algorithm.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/serialization/export.hpp>
#include <fstream>
#include <iostream>
#include <random>
#ifdef GTSAM_USE_TBB
#include <tbb/task_arena.h> // tbb::task_arena
#include <tbb/task_group.h> // tbb::task_group
#endif
using namespace std;
using namespace gtsam;
using namespace gtsam::symbol_shorthand;
namespace po = boost::program_options;
namespace br = boost::range;
typedef Pose2 Pose;
typedef NoiseModelFactorN<Pose> NM1;
typedef NoiseModelFactorN<Pose,Pose> NM2;
typedef BearingRangeFactor<Pose,Point2> BR;
double chi2_red(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& config) {
// Compute degrees of freedom (observations - variables)
// In ocaml, +1 was added to the observations to account for the prior, but
// the factor graph already includes a factor for the prior/equality constraint.
// double dof = graph.size() - config.size();
int graph_dim = 0;
for(const boost::shared_ptr<gtsam::NonlinearFactor>& nlf: graph) {
graph_dim += (int)nlf->dim();
}
double dof = double(graph_dim) - double(config.dim()); // kaess: changed to dim
return 2. * graph.error(config) / dof; // kaess: added factor 2, graph.error returns half of actual error
}
// Global variables (these are only set once at program startup and never modified after)
string outputFile;
string inputFile;
string datasetName;
int firstStep;
int lastStep;
int nThreads;
int relinSkip;
bool incremental;
bool dogleg;
bool batch;
bool compare;
bool perturb;
bool stats;
double perturbationNoise;
string compareFile1, compareFile2;
Values initial;
NonlinearFactorGraph datasetMeasurements;
// Run functions for each mode
void runIncremental();
void runBatch();
void runCompare();
void runPerturb();
void runStats();
/* ************************************************************************* */
int main(int argc, char *argv[]) {
po::options_description desc("Available options");
desc.add_options()
("help", "Print help message")
("write-solution,o", po::value<string>(&outputFile)->default_value(""), "Write graph and solution to the specified file")
("read-solution,i", po::value<string>(&inputFile)->default_value(""), "Read graph and solution from the specified file")
("dataset,d", po::value<string>(&datasetName)->default_value(""), "Read a dataset file (if and only if --incremental is used)")
("first-step,f", po::value<int>(&firstStep)->default_value(0), "First step to process from the dataset file")
("last-step,l", po::value<int>(&lastStep)->default_value(-1), "Last step to process, or -1 to process until the end of the dataset")
("threads", po::value<int>(&nThreads)->default_value(-1), "Number of threads, or -1 to use all processors")
("relinSkip", po::value<int>(&relinSkip)->default_value(10), "Fluid relinearization check every arg steps")
("incremental", "Run in incremental mode using ISAM2 (default)")
("dogleg", "When in incremental mode, solve with Dogleg instead of Gauss-Newton in iSAM2")
("batch", "Run in batch mode, requires an initialization from --read-solution")
("compare", po::value<vector<string> >()->multitoken(), "Compare two solution files")
("perturb", po::value<double>(&perturbationNoise), "Perturb a solution file with the specified noise")
("stats", "Gather factorization statistics about the dataset, writes text-file histograms")
;
po::variables_map vm;
po::store(po::command_line_parser(argc, argv).options(desc).run(), vm);
po::notify(vm);
batch = (vm.count("batch") > 0);
compare = (vm.count("compare") > 0);
perturb = (vm.count("perturb") > 0);
stats = (vm.count("stats") > 0);
const int modesSpecified = int(batch) + int(compare) + int(perturb) + int(stats);
incremental = (vm.count("incremental") > 0 || modesSpecified == 0);
dogleg = (vm.count("dogleg") > 0);
if(compare) {
const vector<string>& compareFiles = vm["compare"].as<vector<string> >();
if(compareFiles.size() != 2) {
cout << "Must specify two files with --compare";
exit(1);
}
compareFile1 = compareFiles[0];
compareFile2 = compareFiles[1];
}
if(modesSpecified > 1) {
cout << "Only one of --incremental, --batch, --compare, --perturb, and --stats may be specified\n" << desc << endl;
exit(1);
}
if((incremental || batch) && datasetName.empty()) {
cout << "In incremental and batch modes, a dataset must be specified\n" << desc << endl;
exit(1);
}
if(!(incremental || batch || stats) && !datasetName.empty()) {
cout << "A dataset may only be specified in incremental or batch modes\n" << desc << endl;
exit(1);
}
if(batch && inputFile.empty()) {
cout << "In batch model, an input file must be specified\n" << desc << endl;
exit(1);
}
if(perturb && (inputFile.empty() || outputFile.empty())) {
cout << "In perturb mode, specify input and output files\n" << desc << endl;
exit(1);
}
if(stats && (datasetName.empty() || inputFile.empty())) {
cout << "In stats mode, specify dataset and input file\n" << desc << endl;
exit(1);
}
// Read input file
if(!inputFile.empty())
{
cout << "Reading input file " << inputFile << endl;
std::ifstream readerStream(inputFile.c_str(), ios::binary);
boost::archive::binary_iarchive reader(readerStream);
reader >> initial;
}
// Read dataset
if(!datasetName.empty())
{
cout << "Loading dataset " << datasetName << endl;
try {
string datasetFile = findExampleDataFile(datasetName);
std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> data =
load2D(datasetFile);
datasetMeasurements = *data.first;
} catch(std::exception& e) {
cout << e.what() << endl;
exit(1);
}
}
#ifdef GTSAM_USE_TBB
tbb::task_arena arena;
tbb::task_group tg;
if(nThreads > 0) {
cout << "Using " << nThreads << " threads" << endl;
arena.initialize(nThreads);
} else
cout << "Using threads for all processors" << endl;
#else
if(nThreads > 0) {
std::cout << "GTSAM is not compiled with TBB, so threading is disabled and the --threads option cannot be used." << endl;
exit(1);
}
#endif
#ifdef GTSAM_USE_TBB
arena.execute([&]{
tg.run_and_wait([&]{
#endif
// Run mode
if(incremental)
runIncremental();
else if(batch)
runBatch();
else if(compare)
runCompare();
else if(perturb)
runPerturb();
else if(stats)
runStats();
#ifdef GTSAM_USE_TBB
});
});
#endif
return 0;
}
/* ************************************************************************* */
void runIncremental()
{
ISAM2Params params;
if(dogleg)
params.optimizationParams = ISAM2DoglegParams();
params.relinearizeSkip = relinSkip;
params.enablePartialRelinearizationCheck = true;
ISAM2 isam2(params);
// Look for the first measurement to use
cout << "Looking for first measurement from step " << firstStep << endl;
size_t nextMeasurement = 0;
bool havePreviousPose = false;
Key firstPose = 0;
while(nextMeasurement < datasetMeasurements.size())
{
if(BetweenFactor<Pose>::shared_ptr factor =
boost::dynamic_pointer_cast<BetweenFactor<Pose> >(datasetMeasurements[nextMeasurement]))
{
Key key1 = factor->key<1>(), key2 = factor->key<2>();
if(((int)key1 >= firstStep && key1 < key2) || ((int)key2 >= firstStep && key2 < key1)) {
// We found an odometry starting at firstStep
firstPose = std::min(key1, key2);
break;
}
if(((int)key2 >= firstStep && key1 < key2) || ((int)key1 >= firstStep && key2 < key1)) {
// We found an odometry joining firstStep with a previous pose
havePreviousPose = true;
firstPose = std::max(key1, key2);
break;
}
}
++ nextMeasurement;
}
if(nextMeasurement == datasetMeasurements.size()) {
cout << "The supplied first step is past the end of the dataset" << endl;
exit(1);
}
// If we didn't find an odometry linking to a previous pose, create a first pose and a prior
if(!havePreviousPose) {
cout << "Looks like " << firstPose << " is the first time step, so adding a prior on it" << endl;
NonlinearFactorGraph newFactors;
Values newVariables;
newFactors.addPrior(firstPose, Pose(), noiseModel::Unit::Create(3));
newVariables.insert(firstPose, Pose());
isam2.update(newFactors, newVariables);
}
cout << "Playing forward time steps..." << endl;
for (size_t step = firstPose;
nextMeasurement < datasetMeasurements.size() && (lastStep == -1 || (int)step <= lastStep);
++step)
{
Values newVariables;
NonlinearFactorGraph newFactors;
// Collect measurements and new variables for the current step
gttic_(Collect_measurements);
while(nextMeasurement < datasetMeasurements.size()) {
NonlinearFactor::shared_ptr measurementf = datasetMeasurements[nextMeasurement];
if(BetweenFactor<Pose>::shared_ptr factor =
boost::dynamic_pointer_cast<BetweenFactor<Pose> >(measurementf))
{
// Stop collecting measurements that are for future steps
if(factor->key<1>() > step || factor->key<2>() > step)
break;
// Require that one of the nodes is the current one
if(factor->key<1>() != step && factor->key<2>() != step)
throw runtime_error("Problem in data file, out-of-sequence measurements");
// Add a new factor
newFactors.push_back(factor);
const auto& measured = factor->measured();
// Initialize the new variable
if(factor->key<1>() > factor->key<2>()) {
if(!newVariables.exists(factor->key<1>())) { // Only need to check newVariables since loop closures come after odometry
if(step == 1)
newVariables.insert(factor->key<1>(), measured.inverse());
else {
Pose prevPose = isam2.calculateEstimate<Pose>(factor->key<2>());
newVariables.insert(factor->key<1>(), prevPose * measured.inverse());
}
}
} else {
if(!newVariables.exists(factor->key<2>())) { // Only need to check newVariables since loop closures come after odometry
if(step == 1)
newVariables.insert(factor->key<2>(), measured);
else {
Pose prevPose = isam2.calculateEstimate<Pose>(factor->key<1>());
newVariables.insert(factor->key<2>(), prevPose * measured);
}
}
}
}
else if(BearingRangeFactor<Pose, Point2>::shared_ptr factor =
boost::dynamic_pointer_cast<BearingRangeFactor<Pose, Point2> >(measurementf))
{
Key poseKey = factor->keys()[0], lmKey = factor->keys()[1];
// Stop collecting measurements that are for future steps
if(poseKey > step)
throw runtime_error("Problem in data file, out-of-sequence measurements");
// Add new factor
newFactors.push_back(factor);
// Initialize new landmark
if(!isam2.getLinearizationPoint().exists(lmKey))
{
Pose pose;
if(isam2.getLinearizationPoint().exists(poseKey))
pose = isam2.calculateEstimate<Pose>(poseKey);
else
pose = newVariables.at<Pose>(poseKey);
const auto& measured = factor->measured();
Rot2 measuredBearing = measured.bearing();
double measuredRange = measured.range();
newVariables.insert(lmKey,
pose.transformFrom(measuredBearing.rotate(Point2(measuredRange, 0.0))));
}
}
else
{
throw std::runtime_error("Unknown factor type read from data file");
}
++ nextMeasurement;
}
gttoc_(Collect_measurements);
// Update iSAM2
try {
gttic_(Update_ISAM2);
isam2.update(newFactors, newVariables);
gttoc_(Update_ISAM2);
} catch(std::exception& e) {
cout << e.what() << endl;
exit(1);
}
if((step - firstPose) % 1000 == 0) {
try {
gttic_(chi2);
Values estimate(isam2.calculateEstimate());
double chi2 = chi2_red(isam2.getFactorsUnsafe(), estimate);
cout << "chi2 = " << chi2 << endl;
gttoc_(chi2);
} catch(std::exception& e) {
cout << e.what() << endl;
exit(1);
}
}
tictoc_finishedIteration_();
if((step - firstPose) % 1000 == 0) {
cout << "Step " << step << endl;
tictoc_print_();
}
}
if(!outputFile.empty())
{
try {
cout << "Writing output file " << outputFile << endl;
std::ofstream writerStream(outputFile.c_str(), ios::binary);
boost::archive::binary_oarchive writer(writerStream);
Values estimates = isam2.calculateEstimate();
writer << estimates;
} catch(std::exception& e) {
cout << e.what() << endl;
exit(1);
}
}
tictoc_print_();
// Compute marginals
//try {
// Marginals marginals(graph, values);
// int i=0;
// for (Key key1: boost::adaptors::reverse(values.keys())) {
// int j=0;
// for (Key key12: boost::adaptors::reverse(values.keys())) {
// if(i != j) {
// gttic_(jointMarginalInformation);
// KeyVector keys(2);
// keys[0] = key1;
// keys[1] = key2;
// JointMarginal info = marginals.jointMarginalInformation(keys);
// gttoc_(jointMarginalInformation);
// tictoc_finishedIteration_();
// }
// ++j;
// if(j >= 50)
// break;
// }
// ++i;
// if(i >= 50)
// break;
// }
// tictoc_print_();
// for(Key key: values.keys()) {
// gttic_(marginalInformation);
// Matrix info = marginals.marginalInformation(key);
// gttoc_(marginalInformation);
// tictoc_finishedIteration_();
// ++i;
// }
//} catch(std::exception& e) {
// cout << e.what() << endl;
//}
//tictoc_print_();
}
/* ************************************************************************* */
void runBatch()
{
cout << "Creating batch optimizer..." << endl;
NonlinearFactorGraph measurements = datasetMeasurements;
measurements.addPrior(0, Pose(), noiseModel::Unit::Create(3));
gttic_(Create_optimizer);
GaussNewtonParams params;
params.linearSolverType = NonlinearOptimizerParams::MULTIFRONTAL_CHOLESKY;
GaussNewtonOptimizer optimizer(measurements, initial, params);
gttoc_(Create_optimizer);
double lastError;
do {
lastError = optimizer.error();
gttic_(Iterate_optimizer);
optimizer.iterate();
gttoc_(Iterate_optimizer);
cout << "Error: " << lastError << " -> " << optimizer.error() /*<< ", lambda: " << optimizer.lambda()*/ << endl;
gttic_(chi2);
double chi2 = chi2_red(measurements, optimizer.values());
cout << "chi2 = " << chi2 << endl;
gttoc_(chi2);
} while(!checkConvergence(optimizer.params().relativeErrorTol,
optimizer.params().absoluteErrorTol, optimizer.params().errorTol,
lastError, optimizer.error(), optimizer.params().verbosity));
tictoc_finishedIteration_();
tictoc_print_();
if(!outputFile.empty())
{
try {
cout << "Writing output file " << outputFile << endl;
std::ofstream writerStream(outputFile.c_str(), ios::binary);
boost::archive::binary_oarchive writer(writerStream);
writer << optimizer.values();
} catch(std::exception& e) {
cout << e.what() << endl;
exit(1);
}
}
}
/* ************************************************************************* */
void runCompare()
{
Values soln1, soln2;
cout << "Reading solution file " << compareFile1 << endl;
{
std::ifstream readerStream(compareFile1.c_str(), ios::binary);
boost::archive::binary_iarchive reader(readerStream);
reader >> soln1;
}
cout << "Reading solution file " << compareFile2 << endl;
{
std::ifstream readerStream(compareFile2.c_str(), ios::binary);
boost::archive::binary_iarchive reader(readerStream);
reader >> soln2;
}
// Check solution for equality
cout << "Comparing solutions..." << endl;
KeyVector missingKeys;
br::set_symmetric_difference(soln1.keys(), soln2.keys(), std::back_inserter(missingKeys));
if(!missingKeys.empty()) {
cout << " Keys unique to one solution file: ";
for(size_t i = 0; i < missingKeys.size(); ++i) {
cout << DefaultKeyFormatter(missingKeys[i]);
if(i != missingKeys.size() - 1)
cout << ", ";
}
cout << endl;
}
KeyVector commonKeys;
br::set_intersection(soln1.keys(), soln2.keys(), std::back_inserter(commonKeys));
double maxDiff = 0.0;
for(Key j: commonKeys)
maxDiff = std::max(maxDiff, soln1.at(j).localCoordinates_(soln2.at(j)).norm());
cout << " Maximum solution difference (norm of logmap): " << maxDiff << endl;
}
/* ************************************************************************* */
void runPerturb()
{
// Set up random number generator
std::mt19937 rng;
std::normal_distribution<double> normal(0.0, perturbationNoise);
// Perturb values
VectorValues noise;
for(const auto& key_dim: initial.dims())
{
Vector noisev(key_dim.second);
for(Vector::Index i = 0; i < noisev.size(); ++i)
noisev(i) = normal(rng);
noise.insert(key_dim.first, noisev);
}
Values perturbed = initial.retract(noise);
// Write results
try {
cout << "Writing output file " << outputFile << endl;
std::ofstream writerStream(outputFile.c_str(), ios::binary);
boost::archive::binary_oarchive writer(writerStream);
writer << perturbed;
} catch(std::exception& e) {
cout << e.what() << endl;
exit(1);
}
}
/* ************************************************************************* */
void runStats()
{
cout << "Gathering statistics..." << endl;
GaussianFactorGraph linear = *datasetMeasurements.linearize(initial);
GaussianJunctionTree jt(GaussianEliminationTree(linear, Ordering::Colamd(linear)));
treeTraversal::ForestStatistics statistics = treeTraversal::GatherStatistics(jt);
ofstream file;
cout << "Writing SolverComparer_Stats_problemSizeHistogram.txt..." << endl;
file.open("SolverComparer_Stats_problemSizeHistogram.txt");
treeTraversal::ForestStatistics::Write(file, statistics.problemSizeHistogram);
file.close();
cout << "Writing SolverComparer_Stats_numberOfChildrenHistogram.txt..." << endl;
file.open("SolverComparer_Stats_numberOfChildrenHistogram.txt");
treeTraversal::ForestStatistics::Write(file, statistics.numberOfChildrenHistogram);
file.close();
cout << "Writing SolverComparer_Stats_problemSizeOfSecondLargestChildHistogram.txt..." << endl;
file.open("SolverComparer_Stats_problemSizeOfSecondLargestChildHistogram.txt");
treeTraversal::ForestStatistics::Write(file, statistics.problemSizeOfSecondLargestChildHistogram);
file.close();
}
|