1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file elaboratePoint2KalmanFilter.cpp
*
* simple linear Kalman filter on a moving 2D point, but done using factor graphs
* This example manually creates all of the needed data structures
*
* @date Aug 19, 2011
* @author Frank Dellaert
* @author Stephen Williams
*/
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
//#include <gtsam/nonlinear/Ordering.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/geometry/Point2.h>
using namespace std;
using namespace gtsam;
int main() {
// [code below basically does SRIF with Cholesky]
// Create a factor graph to perform the inference
GaussianFactorGraph::shared_ptr linearFactorGraph(new GaussianFactorGraph);
// Create the desired ordering
Ordering::shared_ptr ordering(new Ordering);
// Create a structure to hold the linearization points
Values linearizationPoints;
// Ground truth example
// Start at origin, move to the right (x-axis): 0,0 0,1 0,2
// Motion model is just moving to the right (x'-x)^2
// Measurements are GPS like, (x-z)^2, where z is a 2D measurement
// i.e., we should get 0,0 0,1 0,2 if there is no noise
// Create new state variable
Symbol x0('x',0);
ordering->insert(x0, 0);
// Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0)
// This is equivalent to x_0 and P_0
Point2 x_initial(0,0);
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
PriorFactor<Point2> factor1(x0, x_initial, P_initial);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x0, x_initial);
linearFactorGraph->push_back(factor1.linearize(linearizationPoints, *ordering));
// Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
// In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
// For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
// Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w
// where F is the state transition model/matrix, B is the control input model,
// and w is zero-mean, Gaussian white noise with covariance Q
// Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some
// physical property, such as velocity or acceleration, and G is derived from physics
//
// For the purposes of this example, let us assume we are using a constant-position model and
// the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1]
// and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1];
//
// In the case of factor graphs, the factor related to the motion model would be defined as
// f2 = (f(x_{t}) - x_{t+1}) * Q^-1 * (f(x_{t}) - x_{t+1})^T
// Conveniently, there is a factor type, called a BetweenFactor, that can generate this factor
// given the expected difference, f(x_{t}) - x_{t+1}, and Q.
// so, difference = x_{t+1} - x_{t} = F*x_{t} + B*u_{t} - I*x_{t}
// = (F - I)*x_{t} + B*u_{t}
// = B*u_{t} (for our example)
Symbol x1('x',1);
ordering->insert(x1, 1);
Point2 difference(1,0);
SharedDiagonal Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
BetweenFactor<Point2> factor2(x0, x1, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x1, x_initial);
linearFactorGraph->push_back(factor2.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f1-(x0)-f2-(x1)
// where factor f1 is just the prior from time t0, P(x0)
// and factor f2 is from the motion model
// Eliminate this in order x0, x1, to get Bayes net P(x0|x1)P(x1)
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
//
// Because of the way GTSAM works internally, we have used nonlinear class even though this example
// system is linear. We first convert the nonlinear factor graph into a linear one, using the specified
// ordering. Linear factors are simply numbered, and are not accessible via named key like the nonlinear
// variables. Also, the nonlinear factors are linearized around an initial estimate. For a true linear
// system, the initial estimate is not important.
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver0(*linearFactorGraph);
GaussianBayesNet::shared_ptr linearBayesNet = solver0.eliminate();
// Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = optimize(*linearBayesNet);
Point2 x1_predict = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_predict.print("X1 Predict");
// Update the new linearization point to the new estimate
linearizationPoints.update(x1, x1_predict);
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// Some care must be done here, as the linearization point in future steps will be different
// than what was used when the factor was created.
// f = || F*dx1' - (F*x0 - x1) ||^2, originally linearized at x1 = x0
// After this step, the factor needs to be linearized around x1 = x1_predict
// This changes the factor to f = || F*dx1'' - b'' ||^2
// = || F*(dx1' - (dx1' - dx1'')) - b'' ||^2
// = || F*dx1' - F*(dx1' - dx1'') - b'' ||^2
// = || F*dx1' - (b'' + F(dx1' - dx1'')) ||^2
// -> b' = b'' + F(dx1' - dx1'')
// -> b'' = b' - F(dx1' - dx1'')
// = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2
// = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2
const GaussianConditional::shared_ptr& cg0 = linearBayesNet->back();
assert(cg0->nrFrontals() == 1);
assert(cg0->nrParents() == 0);
linearFactorGraph->add(0, cg0->R(), cg0->d() - cg0->R()*result[ordering->at(x1)], noiseModel::Diagonal::Sigmas(cg0->get_sigmas(), true));
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
// Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
// This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) ~ f3(x1)*f4(x1;z1)
// where f3 is the prior from the previous step, and
// where f4 is a measurement factor
//
// So, now we need to create the measurement factor, f4
// For the Kalman Filter, this is the measurement function, h(x_{t}) = z_{t}
// Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
// where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
//
// For the purposes of this example, let us assume we have something like a GPS that returns
// the current position of the robot. For this simple example, we can use a PriorFactor to model the
// observation as it depends on only a single state variable, x1. To model real sensor observations
// generally requires the creation of a new factor type. For example, factors for range sensors, bearing
// sensors, and camera projections have already been added to GTSAM.
//
// In the case of factor graphs, the factor related to the measurements would be defined as
// f4 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
Point2 z1(1.0, 0.0);
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor4(x1, z1, R1);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor4.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f3-(x1)-f4
// where factor f3 is the prior from previous time ( P(x1) )
// and factor f4 is from the measurement, z1 ( P(x1|z1) )
// Eliminate this in order x1, to get Bayes net P(x1)
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver1(*linearFactorGraph);
linearBayesNet = solver1.eliminate();
// Extract the current estimate of x1 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x1_update = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_update.print("X1 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x1, x1_update);
// Wash, rinse, repeat for another time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
// the first key in the next iteration
const GaussianConditional::shared_ptr& cg1 = linearBayesNet->back();
assert(cg1->nrFrontals() == 1);
assert(cg1->nrParents() == 0);
JacobianFactor tmpPrior1 = JacobianFactor(*cg1);
linearFactorGraph->add(0, tmpPrior1.getA(tmpPrior1.begin()), tmpPrior1.getb() - tmpPrior1.getA(tmpPrior1.begin()) * result[ordering->at(x1)], tmpPrior1.get_model());
// Create a key for the new state
Symbol x2('x',2);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
ordering->insert(x2, 1);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) <, 0.1, 0.1));
BetweenFactor<Point2> factor6(x1, x2, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x2, x1_update);
linearFactorGraph->push_back(factor6.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver2(*linearFactorGraph);
linearBayesNet = solver2.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_predict = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_predict.print("X2 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg2 = linearBayesNet->back();
assert(cg2->nrFrontals() == 1);
assert(cg2->nrParents() == 0);
JacobianFactor tmpPrior2 = JacobianFactor(*cg2);
linearFactorGraph->add(0, tmpPrior2.getA(tmpPrior2.begin()), tmpPrior2.getb() - tmpPrior2.getA(tmpPrior2.begin()) * result[ordering->at(x2)], tmpPrior2.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
// And update using z2 ...
Point2 z2(2.0, 0.0);
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor8(x2, z2, R2);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor8.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f7-(x2)-f8
// where factor f7 is the prior from previous time ( P(x2) )
// and factor f8 is from the measurement, z2 ( P(x2|z2) )
// Eliminate this in order x2, to get Bayes net P(x2)
// As this is a filter, all we need is the posterior P(x2), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver3(*linearFactorGraph);
linearBayesNet = solver3.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_update = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_update.print("X2 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_update);
// Wash, rinse, repeat for a third time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg3 = linearBayesNet->back();
assert(cg3->nrFrontals() == 1);
assert(cg3->nrParents() == 0);
JacobianFactor tmpPrior3 = JacobianFactor(*cg3);
linearFactorGraph->add(0, tmpPrior3.getA(tmpPrior3.begin()), tmpPrior3.getb() - tmpPrior3.getA(tmpPrior3.begin()) * result[ordering->at(x2)], tmpPrior3.get_model());
// Create a key for the new state
Symbol x3('x',3);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
ordering->insert(x3, 1);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
BetweenFactor<Point2> factor10(x2, x3, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x3, x2_update);
linearFactorGraph->push_back(factor10.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver4(*linearFactorGraph);
linearBayesNet = solver4.eliminate();
// Extract the current estimate of x3 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_predict = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_predict.print("X3 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg4 = linearBayesNet->back();
assert(cg4->nrFrontals() == 1);
assert(cg4->nrParents() == 0);
JacobianFactor tmpPrior4 = JacobianFactor(*cg4);
linearFactorGraph->add(0, tmpPrior4.getA(tmpPrior4.begin()), tmpPrior4.getb() - tmpPrior4.getA(tmpPrior4.begin()) * result[ordering->at(x3)], tmpPrior4.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x3, 0);
// And update using z3 ...
Point2 z3(3.0, 0.0);
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor12(x3, z3, R3);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor12.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f11-(x3)-f12
// where factor f11 is the prior from previous time ( P(x3) )
// and factor f12 is from the measurement, z3 ( P(x3|z3) )
// Eliminate this in order x3, to get Bayes net P(x3)
// As this is a filter, all we need is the posterior P(x3), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver5(*linearFactorGraph);
linearBayesNet = solver5.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_update = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_update.print("X3 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_update);
return 0;
}
|