1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testDoglegOptimizer.cpp
* @brief Unit tests for DoglegOptimizer
* @author Richard Roberts
* @author Frank dellaert
*/
#include <CppUnitLite/TestHarness.h>
#include <tests/smallExample.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/DoglegOptimizer.h>
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/base/numericalDerivative.h>
#include <functional>
#include <boost/iterator/counting_iterator.hpp>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
/* ************************************************************************* */
TEST(DoglegOptimizer, ComputeBlend) {
// Create an arbitrary Bayes Net
GaussianBayesNet gbn;
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished()));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished()));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished()));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished()));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished()));
// Compute steepest descent point
VectorValues xu = gbn.optimizeGradientSearch();
// Compute Newton's method point
VectorValues xn = gbn.optimize();
// The Newton's method point should be more "adventurous", i.e. larger, than the steepest descent point
EXPECT(xu.vector().norm() < xn.vector().norm());
// Compute blend
double Delta = 1.5;
VectorValues xb = DoglegOptimizerImpl::ComputeBlend(Delta, xu, xn);
DOUBLES_EQUAL(Delta, xb.vector().norm(), 1e-10);
}
/* ************************************************************************* */
TEST(DoglegOptimizer, ComputeDoglegPoint) {
// Create an arbitrary Bayes Net
GaussianBayesNet gbn;
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished()));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished()));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished()));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished()));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished()));
// Compute dogleg point for different deltas
double Delta1 = 0.5; // Less than steepest descent
VectorValues actual1 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta1, gbn.optimizeGradientSearch(), gbn.optimize());
DOUBLES_EQUAL(Delta1, actual1.vector().norm(), 1e-5);
double Delta2 = 1.5; // Between steepest descent and Newton's method
VectorValues expected2 = DoglegOptimizerImpl::ComputeBlend(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
VectorValues actual2 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
DOUBLES_EQUAL(Delta2, actual2.vector().norm(), 1e-5);
EXPECT(assert_equal(expected2, actual2));
double Delta3 = 5.0; // Larger than Newton's method point
VectorValues expected3 = gbn.optimize();
VectorValues actual3 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta3, gbn.optimizeGradientSearch(), gbn.optimize());
EXPECT(assert_equal(expected3, actual3));
}
/* ************************************************************************* */
TEST(DoglegOptimizer, Iterate) {
// really non-linear factor graph
NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
// config far from minimum
Point2 x0(3,0);
Values config;
config.insert(X(1), x0);
double Delta = 1.0;
for(size_t it=0; it<10; ++it) {
auto linearized = fg.linearize(config);
// Iterate assumes that linear error = nonlinear error at the linearization point, and this should be true
double nonlinearError = fg.error(config);
double linearError = linearized->error(config.zeroVectors());
DOUBLES_EQUAL(nonlinearError, linearError, 1e-5);
auto gbn = linearized->eliminateSequential();
VectorValues dx_u = gbn->optimizeGradientSearch();
VectorValues dx_n = gbn->optimize();
DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(
Delta, DoglegOptimizerImpl::SEARCH_EACH_ITERATION, dx_u, dx_n, *gbn, fg,
config, fg.error(config));
Delta = result.delta;
EXPECT(result.f_error < fg.error(config)); // Check that error decreases
Values newConfig(config.retract(result.dx_d));
config = newConfig;
DOUBLES_EQUAL(fg.error(config), result.f_error, 1e-5); // Check that error is correctly filled in
}
}
/* ************************************************************************* */
TEST(DoglegOptimizer, Constraint) {
// Create a pose-graph graph with a constraint on the first pose
NonlinearFactorGraph graph;
const Pose2 origin(0, 0, 0), pose2(2, 0, 0);
graph.emplace_shared<NonlinearEquality<Pose2> >(1, origin);
auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, pose2, model);
// Create feasible initial estimate
Values initial;
initial.insert(1, origin); // feasible !
initial.insert(2, Pose2(2.3, 0.1, -0.2));
// Optimize the initial values using DoglegOptimizer
DoglegParams params;
params.setVerbosityDL("VERBOSITY");
DoglegOptimizer optimizer(graph, initial, params);
Values result = optimizer.optimize();
// Check result
EXPECT(assert_equal(pose2, result.at<Pose2>(2)));
// Create infeasible initial estimate
Values infeasible;
infeasible.insert(1, Pose2(0.1, 0, 0)); // infeasible !
infeasible.insert(2, Pose2(2.3, 0.1, -0.2));
// Try optimizing with infeasible initial estimate
DoglegOptimizer optimizer2(graph, infeasible, params);
#ifdef GTSAM_USE_TBB
CHECK_EXCEPTION(optimizer2.optimize(), std::exception);
#else
CHECK_EXCEPTION(optimizer2.optimize(), std::invalid_argument);
#endif
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */
|