File: testExtendedKalmanFilter.cpp

package info (click to toggle)
gtsam 4.2.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 46,108 kB
  • sloc: cpp: 127,191; python: 14,312; xml: 8,442; makefile: 252; sh: 119; ansic: 101
file content (426 lines) | stat: -rw-r--r-- 13,535 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/* ----------------------------------------------------------------------------

 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 * Atlanta, Georgia 30332-0415
 * All Rights Reserved
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)

 * See LICENSE for the license information

 * -------------------------------------------------------------------------- */

/**
 * @file testExtendedKalmanFilter
 * @author Stephen Williams
 */

#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/ExtendedKalmanFilter-inl.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Point2.h>

#include <CppUnitLite/TestHarness.h>

using namespace gtsam;

// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;

/* ************************************************************************* */
TEST( ExtendedKalmanFilter, linear ) {

  // Create the TestKeys for our example
  Symbol x0('x',0), x1('x',1), x2('x',2), x3('x',3);

  // Create the Kalman Filter initialization point
  Point2 x_initial(0.0, 0.0);
  SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));

  // Create an ExtendedKalmanFilter object
  ExtendedKalmanFilter<Point2> ekf(x0, x_initial, P_initial);

  // Create the controls and measurement properties for our example
  double dt = 1.0;
  Vector u = Vector2(1.0, 0.0);
  Point2 difference(u*dt);
  SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1), true);
  Point2 z1(1.0, 0.0);
  Point2 z2(2.0, 0.0);
  Point2 z3(3.0, 0.0);
  SharedDiagonal R = noiseModel::Diagonal::Sigmas(Vector2(0.25, 0.25), true);

  // Create the set of expected output TestValues
  Point2 expected1(1.0, 0.0);
  Point2 expected2(2.0, 0.0);
  Point2 expected3(3.0, 0.0);

  // Run iteration 1
  // Create motion factor
  BetweenFactor<Point2> factor1(x0, x1, difference, Q);
  Point2 predict1 = ekf.predict(factor1);
  EXPECT(assert_equal(expected1,predict1));

  // Create the measurement factor
  PriorFactor<Point2> factor2(x1, z1, R);
  Point2 update1 = ekf.update(factor2);
  EXPECT(assert_equal(expected1,update1));

  // Run iteration 2
  BetweenFactor<Point2> factor3(x1, x2, difference, Q);
  Point2 predict2 = ekf.predict(factor3);
  EXPECT(assert_equal(expected2,predict2));

  PriorFactor<Point2> factor4(x2, z2, R);
  Point2 update2 = ekf.update(factor4);
  EXPECT(assert_equal(expected2,update2));

  // Run iteration 3
  BetweenFactor<Point2> factor5(x2, x3, difference, Q);
  Point2 predict3 = ekf.predict(factor5);
  EXPECT(assert_equal(expected3,predict3));

  PriorFactor<Point2> factor6(x3, z3, R);
  Point2 update3 = ekf.update(factor6);
  EXPECT(assert_equal(expected3,update3));

  return;
}


// Create Motion Model Factor
class NonlinearMotionModel : public NoiseModelFactorN<Point2,Point2> {

  typedef NoiseModelFactorN<Point2, Point2> Base;
  typedef NonlinearMotionModel This;

protected:
  Matrix Q_;
  Matrix Q_invsqrt_;

public:
  NonlinearMotionModel(){}

  NonlinearMotionModel(const Symbol& TestKey1, const Symbol& TestKey2) :
    Base(noiseModel::Diagonal::Sigmas(Vector2(1.0, 1.0)), TestKey1, TestKey2), Q_(2,2) {

    // Initialize motion model parameters:
    // w is vector of motion noise sigmas. The final covariance is calculated as G*w*w'*G'
    // In this model, Q is fixed, so it may be calculated in the constructor
    Matrix G(2,2);
    Matrix w(2,2);

    G << 1.0, 0.0, 0.0, 1.0;
    w << 1.0, 0.0, 0.0, 1.0;

    w = G*w;
    Q_ = w*w.transpose();
    Q_invsqrt_ = inverse_square_root(Q_);
  }

  ~NonlinearMotionModel() override {}

  // Calculate the next state prediction using the nonlinear function f()
  Point2 f(const Point2& x_t0) const {

    // Calculate f(x)
    double x = x_t0.x() * x_t0.x();
    double y = x_t0.x() * x_t0.y();
    Point2 x_t1(x,y);

    // In this example, the noiseModel remains constant
    return x_t1;
  }

  // Calculate the Jacobian of the nonlinear function f()
  Matrix F(const Point2& x_t0) const {
    // Calculate Jacobian of f()
    Matrix F = Matrix(2,2);
    F(0,0) = 2*x_t0.x();
    F(0,1) = 0.0;
    F(1,0) = x_t0.y();
    F(1,1) = x_t0.x();

    return F;
  }

  // Calculate the inverse square root of the motion model covariance, Q
  Matrix QInvSqrt(const Point2& x_t0) const {
    // This motion model has a constant covariance
    return Q_invsqrt_;
  }

  /* print */
  void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
    std::cout << s << ": NonlinearMotionModel\n";
    std::cout << "  TestKey1: " << keyFormatter(key<1>()) << std::endl;
    std::cout << "  TestKey2: " << keyFormatter(key<2>()) << std::endl;
  }

  /** Check if two factors are equal. Note type is IndexFactor and needs cast. */
  bool equals(const NonlinearFactor& f, double tol = 1e-9) const override {
    const This *e = dynamic_cast<const This*> (&f);
    return (e != nullptr) && (key<1>() == e->key<1>()) && (key<2>() == e->key<2>());
  }

  /**
   * calculate the error of the factor
   * Override for systems with unusual noise models
   */
  double error(const Values& c) const override {
    Vector w = whitenedError(c);
    return 0.5 * w.dot(w);
  }

  /** get the dimension of the factor (number of rows on linearization) */
  size_t dim() const override {
    return 2;
  }

  /** Vector of errors, whitened ! */
  Vector whitenedError(const Values& c) const {
    return QInvSqrt(c.at<Point2>(key<1>()))*unwhitenedError(c);
  }

  /**
   * Linearize a non-linearFactor2 to get a GaussianFactor
   * Ax-b \approx h(x1+dx1,x2+dx2)-z = h(x1,x2) + A2*dx1 + A2*dx2 - z
   * Hence b = z - h(x1,x2) = - error_vector(x)
   */
  boost::shared_ptr<GaussianFactor> linearize(const Values& c) const override {
    using X1 = ValueType<1>;
    using X2 = ValueType<2>;
    const X1& x1 = c.at<X1>(key<1>());
    const X2& x2 = c.at<X2>(key<2>());
    Matrix A1, A2;
    Vector b = -evaluateError(x1, x2, A1, A2);
    SharedDiagonal constrained =
        boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
    if (constrained.get() != nullptr) {
      return JacobianFactor::shared_ptr(new JacobianFactor(key<1>(), A1, key<2>(),
          A2, b, constrained));
    }
    // "Whiten" the system before converting to a Gaussian Factor
    Matrix Qinvsqrt = QInvSqrt(x1);
    A1 = Qinvsqrt*A1;
    A2 = Qinvsqrt*A2;
    b = Qinvsqrt*b;
    return GaussianFactor::shared_ptr(new JacobianFactor(key<1>(), A1, key<2>(),
        A2, b, noiseModel::Unit::Create(b.size())));
  }

  /** vector of errors */
  Vector evaluateError(const Point2& p1, const Point2& p2,
      boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
          boost::none) const override {

    // error = p2 - f(p1)
    // H1 = d error / d p1 = -d f/ d p1 = -F
    // H2 = d error / d p2 = I
    Point2 prediction = f(p1);

    if(H1)
      *H1 = -F(p1);

    if(H2)
      *H2 = Matrix::Identity(dim(),dim());

    // Return the error between the prediction and the supplied value of p2
    return (p2 - prediction);
  }

};

// Create Measurement Model Factor
class NonlinearMeasurementModel : public NoiseModelFactorN<Point2> {

  typedef NoiseModelFactorN<Point2> Base;
  typedef NonlinearMeasurementModel This;

protected:
  Vector z_; /** The measurement */
  Matrix R_; /** The measurement error covariance */
  Matrix R_invsqrt_; /** The inv sqrt of the measurement error covariance */

public:
  NonlinearMeasurementModel(){}

  NonlinearMeasurementModel(const Symbol& TestKey, Vector z) :
    Base(noiseModel::Unit::Create(z.size()), TestKey), z_(z), R_(1,1) {

    // Initialize nonlinear measurement model parameters:
    // z(t) = H*x(t) + v
    // where v ~ N(0, noiseModel_)
    R_ << 1.0;
    R_invsqrt_ = inverse_square_root(R_);
  }

  ~NonlinearMeasurementModel() override {}

  // Calculate the predicted measurement using the nonlinear function h()
  // Byproduct: updates Jacobian H, and noiseModel (R)
  Vector h(const Point2& x_t1) const {

    // Calculate prediction
    Vector z_hat(1);
    z_hat(0) = 2*x_t1.x()*x_t1.x() - x_t1.x()*x_t1.y() - 2.5*x_t1.x() + 7*x_t1.y();

    return z_hat;
  }

  Matrix H(const Point2& x_t1) const {
    // Update Jacobian
    Matrix H(1,2);
    H(0,0) =  4*x_t1.x() - x_t1.y() - 2.5;
    H(0,1) = -1*x_t1.x() + 7;

    return H;
  }

  // Calculate the inverse square root of the motion model covariance, Q
  Matrix RInvSqrt(const Point2& x_t0) const {
    // This motion model has a constant covariance
    return R_invsqrt_;
  }

  /* print */
  void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
    std::cout << s << ": NonlinearMeasurementModel\n";
    std::cout << "  TestKey: " << keyFormatter(key()) << std::endl;
  }

  /** Check if two factors are equal. Note type is IndexFactor and needs cast. */
  bool equals(const NonlinearFactor& f, double tol = 1e-9) const override {
    const This *e = dynamic_cast<const This*> (&f);
    return (e != nullptr) && Base::equals(f);
  }

  /**
   * calculate the error of the factor
   * Override for systems with unusual noise models
   */
  double error(const Values& c) const override {
    Vector w = whitenedError(c);
    return 0.5 * w.dot(w);
  }

  /** get the dimension of the factor (number of rows on linearization) */
  size_t dim() const override {
    return 1;
  }

  /** Vector of errors, whitened ! */
  Vector whitenedError(const Values& c) const {
    return RInvSqrt(c.at<Point2>(key()))*unwhitenedError(c);
  }

  /**
   * Linearize a nonlinearFactor1 measurement factor into a GaussianFactor
   * Ax-b \approx h(x1+dx1)-z = h(x1) + A1*dx1 - z
   * Hence b = z - h(x1) = - error_vector(x)
   */
  boost::shared_ptr<GaussianFactor> linearize(const Values& c) const override {
    using X = ValueType<1>;
    const X& x1 = c.at<X>(key());
    Matrix A1;
    Vector b = -evaluateError(x1, A1);
    SharedDiagonal constrained =
        boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
    if (constrained.get() != nullptr) {
      return JacobianFactor::shared_ptr(new JacobianFactor(key(), A1, b, constrained));
    }
    // "Whiten" the system before converting to a Gaussian Factor
    Matrix Rinvsqrt = RInvSqrt(x1);
    A1 = Rinvsqrt*A1;
    b = Rinvsqrt*b;
    return GaussianFactor::shared_ptr(new JacobianFactor(key(), A1, b, noiseModel::Unit::Create(b.size())));
  }

  /** vector of errors */
  Vector evaluateError(const Point2& p, boost::optional<Matrix&> H1 = boost::none) const override {
    // error = z - h(p)
    // H = d error / d p = -d h/ d p = -H
    Vector z_hat = h(p);

    if(H1){
      *H1 = -H(p);
    }

    // Return the error between the prediction and the supplied value of p2
    return z_ - z_hat;
  }

};


/* ************************************************************************* */
TEST( ExtendedKalmanFilter, nonlinear ) {

  // Create the set of expected output TestValues (generated using Matlab Kalman Filter)
  Point2 expected_predict[10];
  Point2 expected_update[10];
  expected_predict[0] = Point2(0.81,0.99);
  expected_update[0] =  Point2(0.824926197027,0.29509808);
  expected_predict[1] = Point2(0.680503230541,0.24343413);
  expected_update[1] =  Point2(0.773360464065,0.43518355);
  expected_predict[2] = Point2(0.598086407378,0.33655375);
  expected_update[2] =  Point2(0.908781566884,0.60766713);
  expected_predict[3] = Point2(0.825883936308,0.55223668);
  expected_update[3] =  Point2(1.23221370495,0.74372849);
  expected_predict[4] = Point2(1.51835061468,0.91643243);
  expected_update[4] =  Point2(1.32823362774,0.855855);
  expected_predict[5] = Point2(1.76420456986,1.1367754);
  expected_update[5] =  Point2(1.36378040243,1.0623832);
  expected_predict[6] = Point2(1.85989698605,1.4488574);
  expected_update[6] =  Point2(1.24068063304,1.3431964);
  expected_predict[7] = Point2(1.53928843321,1.6664778);
  expected_update[7] =  Point2(1.04229257957,1.4856408);
  expected_predict[8] = Point2(1.08637382142,1.5484724);
  expected_update[8] =  Point2(1.13201933157,1.5795507);
  expected_predict[9] = Point2(1.28146776705,1.7880819);
  expected_update[9] =  Point2(1.22159588179,1.7434982);

  // Measurements
  double z[10];
  z[0] =  1.0;
  z[1] =  2.0;
  z[2] =  3.0;
  z[3] =  4.0;
  z[4] =  5.0;
  z[5] =  6.0;
  z[6] =  7.0;
  z[7] =  8.0;
  z[8] =  9.0;
  z[9] = 10.0;

  // Create the Kalman Filter initialization point
  Point2 x_initial(0.90, 1.10);
  SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));

  // Create an ExtendedKalmanFilter object
  ExtendedKalmanFilter<Point2> ekf(X(0), x_initial, P_initial);

  // Enter Predict-Update Loop
  Point2 x_predict(0,0), x_update(0,0);
  for(unsigned int i = 0; i < 10; ++i){
    // Create motion factor
    NonlinearMotionModel motionFactor(X(i), X(i+1));
    x_predict = ekf.predict(motionFactor);

    // Create a measurement factor
    NonlinearMeasurementModel measurementFactor(X(i+1), (Vector(1) << z[i]).finished());
    x_update = ekf.update(measurementFactor);

    EXPECT(assert_equal(expected_predict[i],x_predict, 1e-6));
    EXPECT(assert_equal(expected_update[i], x_update,  1e-6));
  }

  return;
}


/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */