1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianFactorGraphB.cpp
* @brief Unit tests for Linear Factor Graph
* @author Christian Potthast
**/
#include <tests/smallExample.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/tuple/tuple.hpp>
#include <boost/range/adaptor/map.hpp>
namespace br { using namespace boost::range; using namespace boost::adaptors; }
#include <string.h>
#include <iostream>
using namespace std;
using namespace gtsam;
using namespace example;
double tol=1e-5;
using symbol_shorthand::X;
using symbol_shorthand::L;
static auto kUnit2 = noiseModel::Unit::Create(2);
/* ************************************************************************* */
TEST( GaussianFactorGraph, equals ) {
GaussianFactorGraph fg = createGaussianFactorGraph();
GaussianFactorGraph fg2 = createGaussianFactorGraph();
EXPECT(fg.equals(fg2));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, error ) {
GaussianFactorGraph fg = createGaussianFactorGraph();
VectorValues cfg = createZeroDelta();
// note the error is the same as in testNonlinearFactorGraph as a
// zero delta config in the linear graph is equivalent to noisy in
// non-linear, which is really linear under the hood
double actual = fg.error(cfg);
DOUBLES_EQUAL( 5.625, actual, 1e-9 );
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_x1) {
GaussianFactorGraph fg = createGaussianFactorGraph();
GaussianConditional::shared_ptr conditional;
auto result = fg.eliminatePartialSequential(Ordering{X(1)});
conditional = result.first->front();
// create expected Conditional Gaussian
Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I;
Vector d = Vector2(-0.133333, -0.0222222);
GaussianConditional expected(X(1), 15 * d, R11, L(1), S12, X(2), S13);
EXPECT(assert_equal(expected, *conditional, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_x2) {
Ordering ordering;
ordering += X(2), L(1), X(1);
GaussianFactorGraph fg = createGaussianFactorGraph();
auto actual = EliminateQR(fg, Ordering{X(2)}).first;
// create expected Conditional Gaussian
double sigma = 0.0894427;
Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.2 * I, S13 = -0.8 * I;
Vector d = Vector2(0.2, -0.14) / sigma;
GaussianConditional expected(X(2), d, R11, L(1), S12, X(1), S13, kUnit2);
EXPECT(assert_equal(expected, *actual, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_l1) {
Ordering ordering;
ordering += L(1), X(1), X(2);
GaussianFactorGraph fg = createGaussianFactorGraph();
auto actual = EliminateQR(fg, Ordering{L(1)}).first;
// create expected Conditional Gaussian
double sigma = sqrt(2.0) / 10.;
Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.5 * I, S13 = -0.5 * I;
Vector d = Vector2(-0.1, 0.25) / sigma;
GaussianConditional expected(L(1), d, R11, X(1), S12, X(2), S13, kUnit2);
EXPECT(assert_equal(expected, *actual, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_x1_fast) {
GaussianFactorGraph fg = createGaussianFactorGraph();
GaussianConditional::shared_ptr conditional;
JacobianFactor::shared_ptr remaining;
boost::tie(conditional, remaining) = EliminateQR(fg, Ordering{X(1)});
// create expected Conditional Gaussian
Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I;
Vector d = Vector2(-0.133333, -0.0222222);
GaussianConditional expected(X(1), 15 * d, R11, L(1), S12, X(2), S13, kUnit2);
// Create expected remaining new factor
JacobianFactor expectedFactor(
L(1), (Matrix(4, 2) << 6.87184, 0, 0, 6.87184, 0, 0, 0, 0).finished(),
X(2),
(Matrix(4, 2) << -5.25494, 0, 0, -5.25494, -7.27607, 0, 0, -7.27607)
.finished(),
(Vector(4) << -1.21268, 1.73817, -0.727607, 1.45521).finished(),
noiseModel::Unit::Create(4));
EXPECT(assert_equal(expected, *conditional, tol));
EXPECT(assert_equal(expectedFactor, *remaining, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_x2_fast) {
GaussianFactorGraph fg = createGaussianFactorGraph();
auto actual = EliminateQR(fg, Ordering{X(2)}).first;
// create expected Conditional Gaussian
double sigma = 0.0894427;
Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.2 * I, S13 = 0.8 * I;
Vector d = Vector2(-0.2, 0.14) / sigma;
GaussianConditional expected(X(2), d, R11, L(1), S12, X(1), S13, kUnit2);
EXPECT(assert_equal(expected, *actual, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, eliminateOne_l1_fast) {
GaussianFactorGraph fg = createGaussianFactorGraph();
auto actual = EliminateQR(fg, Ordering{L(1)}).first;
// create expected Conditional Gaussian
double sigma = sqrt(2.0) / 10.;
Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.5 * I, S13 = 0.5 * I;
Vector d = Vector2(0.1, -0.25) / sigma;
GaussianConditional expected(L(1), d, R11, X(1), S12, X(2), S13, kUnit2);
EXPECT(assert_equal(expected, *actual, tol));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, copying) {
// Create a graph
GaussianFactorGraph actual = createGaussianFactorGraph();
// Copy the graph !
GaussianFactorGraph copy = actual;
// now eliminate the copy
GaussianBayesNet actual1 = *copy.eliminateSequential();
// Create the same graph, but not by copying
GaussianFactorGraph expected = createGaussianFactorGraph();
// and check that original is still the same graph
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet) {
GaussianFactorGraph fg = createGaussianFactorGraph();
// render with a given ordering
GaussianBayesNet CBN = *fg.eliminateSequential();
// True GaussianFactorGraph
GaussianFactorGraph fg2(CBN);
GaussianBayesNet CBN2 = *fg2.eliminateSequential();
EXPECT(assert_equal(CBN, CBN2));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, optimize_Cholesky) {
// create a graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// optimize the graph
VectorValues actual = fg.optimize(EliminateCholesky);
// verify
VectorValues expected = createCorrectDelta();
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, optimize_QR )
{
// create a graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// optimize the graph
VectorValues actual = fg.optimize(EliminateQR);
// verify
VectorValues expected = createCorrectDelta();
EXPECT(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, combine) {
// create a test graph
GaussianFactorGraph fg1 = createGaussianFactorGraph();
// create another factor graph
GaussianFactorGraph fg2 = createGaussianFactorGraph();
// get sizes
size_t size1 = fg1.size();
size_t size2 = fg2.size();
// combine them
fg1.push_back(fg2);
EXPECT(size1 + size2 == fg1.size());
}
/* ************************************************************************* */
// print a vector of ints if needed for debugging
void print(vector<int> v) {
for (size_t k = 0; k < v.size(); k++) cout << v[k] << " ";
cout << endl;
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, createSmoother) {
GaussianFactorGraph fg1 = createSmoother(2);
LONGS_EQUAL(3, fg1.size());
GaussianFactorGraph fg2 = createSmoother(3);
LONGS_EQUAL(5, fg2.size());
}
/* ************************************************************************* */
double error(const VectorValues& x) {
GaussianFactorGraph fg = createGaussianFactorGraph();
return fg.error(x);
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, multiplication) {
GaussianFactorGraph A = createGaussianFactorGraph();
VectorValues x = createCorrectDelta();
Errors actual = A * x;
Errors expected;
expected.push_back(Vector2(-1.0, -1.0));
expected.push_back(Vector2(2.0, -1.0));
expected.push_back(Vector2(0.0, 1.0));
expected.push_back(Vector2(-1.0, 1.5));
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
// Extra test on elimination prompted by Michael's email to Frank 1/4/2010
TEST(GaussianFactorGraph, elimination) {
// Create Gaussian Factor Graph
GaussianFactorGraph fg;
Matrix Ap = I_1x1, An = I_1x1 * -1;
Vector b = (Vector(1) << 0.0).finished();
SharedDiagonal sigma = noiseModel::Isotropic::Sigma(1, 2.0);
fg.emplace_shared<JacobianFactor>(X(1), An, X(2), Ap, b, sigma);
fg.emplace_shared<JacobianFactor>(X(1), Ap, b, sigma);
fg.emplace_shared<JacobianFactor>(X(2), Ap, b, sigma);
// Eliminate
Ordering ordering;
ordering += X(1), X(2);
GaussianBayesNet bayesNet = *fg.eliminateSequential();
// Check matrix
Matrix R;
Vector d;
boost::tie(R, d) = bayesNet.matrix();
Matrix expected =
(Matrix(2, 2) << 0.707107, -0.353553, 0.0, 0.612372).finished();
Matrix expected2 =
(Matrix(2, 2) << 0.707107, -0.353553, 0.0, -0.612372).finished();
EXPECT(assert_equal(expected, R, 1e-6));
EXPECT(equal_with_abs_tol(expected, R, 1e-6) ||
equal_with_abs_tol(expected2, R, 1e-6));
}
/* ************************************************************************* */
// Tests ported from ConstrainedGaussianFactorGraph
/* ************************************************************************* */
TEST(GaussianFactorGraph, constrained_simple) {
// get a graph with a constraint in it
GaussianFactorGraph fg = createSimpleConstraintGraph();
EXPECT(hasConstraints(fg));
// eliminate and solve
VectorValues actual = fg.eliminateSequential()->optimize();
// verify
VectorValues expected = createSimpleConstraintValues();
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, constrained_single) {
// get a graph with a constraint in it
GaussianFactorGraph fg = createSingleConstraintGraph();
EXPECT(hasConstraints(fg));
// eliminate and solve
VectorValues actual = fg.eliminateSequential()->optimize();
// verify
VectorValues expected = createSingleConstraintValues();
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, constrained_multi1) {
// get a graph with a constraint in it
GaussianFactorGraph fg = createMultiConstraintGraph();
EXPECT(hasConstraints(fg));
// eliminate and solve
VectorValues actual = fg.eliminateSequential()->optimize();
// verify
VectorValues expected = createMultiConstraintValues();
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
static SharedDiagonal model = noiseModel::Isotropic::Sigma(2,1);
/* ************************************************************************* */
TEST(GaussianFactorGraph, replace)
{
Ordering ord; ord += X(1),X(2),X(3),X(4),X(5),X(6);
SharedDiagonal noise(noiseModel::Isotropic::Sigma(3, 1.0));
GaussianFactorGraph::sharedFactor f1(new JacobianFactor(
X(1), I_3x3, X(2), I_3x3, Z_3x1, noise));
GaussianFactorGraph::sharedFactor f2(new JacobianFactor(
X(2), I_3x3, X(3), I_3x3, Z_3x1, noise));
GaussianFactorGraph::sharedFactor f3(new JacobianFactor(
X(3), I_3x3, X(4), I_3x3, Z_3x1, noise));
GaussianFactorGraph::sharedFactor f4(new JacobianFactor(
X(5), I_3x3, X(6), I_3x3, Z_3x1, noise));
GaussianFactorGraph actual;
actual.push_back(f1);
actual.push_back(f2);
actual.push_back(f3);
actual.replace(0, f4);
GaussianFactorGraph expected;
expected.push_back(f4);
expected.push_back(f2);
expected.push_back(f3);
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(GaussianFactorGraph, hasConstraints)
{
FactorGraph<GaussianFactor> fgc1 = createMultiConstraintGraph();
EXPECT(hasConstraints(fgc1));
FactorGraph<GaussianFactor> fgc2 = createSimpleConstraintGraph() ;
EXPECT(hasConstraints(fgc2));
GaussianFactorGraph fg = createGaussianFactorGraph();
EXPECT(!hasConstraints(fg));
}
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/sam/RangeFactor.h>
/* ************************************************************************* */
TEST( GaussianFactorGraph, conditional_sigma_failure) {
// This system derives from a failure case in DDF in which a Bayes Tree
// has non-unit sigmas for conditionals in the Bayes Tree, which
// should never happen by construction
// Reason for the failure: using Vector_() is dangerous as having a non-float gets set to zero, resulting in constraints
gtsam::Key xC1 = 0, l32 = 1, l41 = 2;
// noisemodels at nonlinear level
gtsam::SharedNoiseModel priorModel = noiseModel::Diagonal::Sigmas((Vector(6) << 0.05, 0.05, 3.0, 0.2, 0.2, 0.2).finished());
gtsam::SharedNoiseModel measModel = kUnit2;
gtsam::SharedNoiseModel elevationModel = noiseModel::Isotropic::Sigma(1, 3.0);
double fov = 60; // degrees
int imgW = 640; // pixels
int imgH = 480; // pixels
gtsam::Cal3_S2::shared_ptr K(new gtsam::Cal3_S2(fov, imgW, imgH));
typedef GenericProjectionFactor<Pose3, Point3> ProjectionFactor;
double relElevation = 6;
Values initValues;
initValues.insert(xC1,
Pose3(Rot3(
-1., 0.0, 1.2246468e-16,
0.0, 1., 0.0,
-1.2246468e-16, 0.0, -1.),
Point3(0.511832102, 8.42819594, 5.76841725)));
initValues.insert(l32, Point3(0.364081507, 6.89766221, -0.231582751) );
initValues.insert(l41, Point3(1.61051523, 6.7373052, -0.231582751) );
NonlinearFactorGraph factors;
factors.addPrior(xC1,
Pose3(Rot3(
-1., 0.0, 1.2246468e-16,
0.0, 1., 0.0,
-1.2246468e-16, 0.0, -1),
Point3(0.511832102, 8.42819594, 5.76841725)), priorModel);
factors += ProjectionFactor(Point2(333.648615, 98.61535), measModel, xC1, l32, K);
factors += ProjectionFactor(Point2(218.508, 83.8022039), measModel, xC1, l41, K);
factors += RangeFactor<Pose3,Point3>(xC1, l32, relElevation, elevationModel);
factors += RangeFactor<Pose3,Point3>(xC1, l41, relElevation, elevationModel);
// Check that sigmas are correct (i.e., unit)
GaussianFactorGraph lfg = *factors.linearize(initValues);
GaussianBayesTree actBT = *lfg.eliminateMultifrontal();
// Check that all sigmas in an unconstrained bayes tree are set to one
for(const GaussianBayesTree::sharedClique& clique: actBT.nodes() | br::map_values) {
GaussianConditional::shared_ptr conditional = clique->conditional();
//size_t dim = conditional->rows();
//EXPECT(assert_equal(gtsam::Vector::Ones(dim), conditional->get_model()->sigmas(), tol));
EXPECT(!conditional->get_model());
}
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */
|