File: testGradientDescentOptimizer.cpp

package info (click to toggle)
gtsam 4.2.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 46,108 kB
  • sloc: cpp: 127,191; python: 14,312; xml: 8,442; makefile: 252; sh: 119; ansic: 101
file content (97 lines) | stat: -rw-r--r-- 3,227 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/**
 * @file   NonlinearConjugateGradientOptimizer.cpp
 * @brief  Test simple CG optimizer
 * @author Yong-Dian Jian
 * @date   June 11, 2012
 */

/**
 * @file   testGradientDescentOptimizer.cpp
 * @brief  Small test of NonlinearConjugateGradientOptimizer
 * @author Yong-Dian Jian
 * @date   Jun 11, 2012
 */

#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearConjugateGradientOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/geometry/Pose2.h>

#include <CppUnitLite/TestHarness.h>

#include <boost/make_shared.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/tuple/tuple.hpp>

using namespace std;
using namespace gtsam;

// Generate a small PoseSLAM problem
boost::tuple<NonlinearFactorGraph, Values> generateProblem() {

  // 1. Create graph container and add factors to it
  NonlinearFactorGraph graph;

  // 2a. Add Gaussian prior
  Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
  SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(
      Vector3(0.3, 0.3, 0.1));
  graph.addPrior(1, priorMean, priorNoise);

  // 2b. Add odometry factors
  SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas(
      Vector3(0.2, 0.2, 0.1));
  graph += BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise);
  graph += BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
  graph += BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
  graph += BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise);

  // 2c. Add pose constraint
  SharedDiagonal constraintUncertainty = noiseModel::Diagonal::Sigmas(
      Vector3(0.2, 0.2, 0.1));
  graph += BetweenFactor<Pose2>(5, 2, Pose2(2.0, 0.0, M_PI_2),
      constraintUncertainty);

  // 3. Create the data structure to hold the initialEstimate estimate to the solution
  Values initialEstimate;
  Pose2 x1(0.5, 0.0, 0.2);
  initialEstimate.insert(1, x1);
  Pose2 x2(2.3, 0.1, -0.2);
  initialEstimate.insert(2, x2);
  Pose2 x3(4.1, 0.1, M_PI_2);
  initialEstimate.insert(3, x3);
  Pose2 x4(4.0, 2.0, M_PI);
  initialEstimate.insert(4, x4);
  Pose2 x5(2.1, 2.1, -M_PI_2);
  initialEstimate.insert(5, x5);

  return boost::tie(graph, initialEstimate);
}

/* ************************************************************************* */
TEST(NonlinearConjugateGradientOptimizer, Optimize) {

  NonlinearFactorGraph graph;
  Values initialEstimate;

  boost::tie(graph, initialEstimate) = generateProblem();
//  cout << "initial error = " << graph.error(initialEstimate) << endl;

  NonlinearOptimizerParams param;
  param.maxIterations = 500; /* requires a larger number of iterations to converge */
  param.verbosity = NonlinearOptimizerParams::SILENT;

  NonlinearConjugateGradientOptimizer optimizer(graph, initialEstimate, param);
  Values result = optimizer.optimize();
//  cout << "cg final error = " << graph.error(result) << endl;

  EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
}

/* ************************************************************************* */
int main() {
  TestResult tr;
  return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */