File: testLie.cpp

package info (click to toggle)
gtsam 4.2.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 46,108 kB
  • sloc: cpp: 127,191; python: 14,312; xml: 8,442; makefile: 252; sh: 119; ansic: 101
file content (178 lines) | stat: -rw-r--r-- 5,980 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/* ----------------------------------------------------------------------------

 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 * Atlanta, Georgia 30332-0415
 * All Rights Reserved
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)

 * See LICENSE for the license information

 * -------------------------------1------------------------------------------- */

/**
 * @file testLie.cpp
 * @date May, 2015
 * @author Frank Dellaert
 * @brief unit tests for Lie group type machinery
 */

#include <gtsam/base/ProductLieGroup.h>

#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/base/testLie.h>

#include <CppUnitLite/TestHarness.h>

using namespace std;
using namespace gtsam;

static const double tol = 1e-9;

//******************************************************************************
typedef ProductLieGroup<Point2, Pose2> Product;

// Define any direct product group to be a model of the multiplicative Group concept
namespace gtsam {
template<> struct traits<Product> : internal::LieGroupTraits<Product> {
  static void Print(const Product& m, const string& s = "") {
    cout << s << "(" << m.first << "," << m.second.translation() << "/"
        << m.second.theta() << ")" << endl;
  }
  static bool Equals(const Product& m1, const Product& m2, double tol = 1e-8) {
    return traits<Point2>::Equals(m1.first, m2.first, tol) && m1.second.equals(m2.second, tol);
  }
};
}

//******************************************************************************
TEST(Lie, ProductLieGroup) {
  BOOST_CONCEPT_ASSERT((IsGroup<Product>));
  BOOST_CONCEPT_ASSERT((IsManifold<Product>));
  BOOST_CONCEPT_ASSERT((IsLieGroup<Product>));
  Product pair1;
  Vector5 d;
  d << 1, 2, 0.1, 0.2, 0.3;
  Product expected(Point2(1, 2), Pose2::Expmap(Vector3(0.1, 0.2, 0.3)));
  Product pair2 = pair1.expmap(d);
  EXPECT(assert_equal(expected, pair2, 1e-9));
  EXPECT(assert_equal(d, pair1.logmap(pair2), 1e-9));
}

/* ************************************************************************* */
Product compose_proxy(const Product& A, const Product& B) {
  return A.compose(B);
}
TEST( testProduct, compose ) {
  Product state1(Point2(1, 2), Pose2(3, 4, 5)), state2 = state1;

  Matrix actH1, actH2;
  state1.compose(state2, actH1, actH2);
  Matrix numericH1 = numericalDerivative21(compose_proxy, state1, state2);
  Matrix numericH2 = numericalDerivative22(compose_proxy, state1, state2);
  EXPECT(assert_equal(numericH1, actH1, tol));
  EXPECT(assert_equal(numericH2, actH2, tol));
}

/* ************************************************************************* */
Product between_proxy(const Product& A, const Product& B) {
  return A.between(B);
}
TEST( testProduct, between ) {
  Product state1(Point2(1, 2), Pose2(3, 4, 5)), state2 = state1;

  Matrix actH1, actH2;
  state1.between(state2, actH1, actH2);
  Matrix numericH1 = numericalDerivative21(between_proxy, state1, state2);
  Matrix numericH2 = numericalDerivative22(between_proxy, state1, state2);
  EXPECT(assert_equal(numericH1, actH1, tol));
  EXPECT(assert_equal(numericH2, actH2, tol));
}

/* ************************************************************************* */
Product inverse_proxy(const Product& A) {
  return A.inverse();
}
TEST( testProduct, inverse ) {
  Product state1(Point2(1, 2), Pose2(3, 4, 5));

  Matrix actH1;
  state1.inverse(actH1);
  Matrix numericH1 = numericalDerivative11(inverse_proxy, state1);
  EXPECT(assert_equal(numericH1, actH1, tol));
}

/* ************************************************************************* */
Product expmap_proxy(const Vector5& vec) {
  return Product::Expmap(vec);
}
TEST( testProduct, Expmap ) {
  Vector5 vec;
  vec << 1, 2, 0.1, 0.2, 0.3;

  Matrix actH;
  Product::Expmap(vec, actH);
  Matrix numericH = numericalDerivative11(expmap_proxy, vec);
  EXPECT(assert_equal(numericH, actH, tol));
}

/* ************************************************************************* */
Vector5 logmap_proxy(const Product& p) {
  return Product::Logmap(p);
}
TEST( testProduct, Logmap ) {
  Product state(Point2(1, 2), Pose2(3, 4, 5));

  Matrix actH;
  Product::Logmap(state, actH);
  Matrix numericH = numericalDerivative11(logmap_proxy, state);
  EXPECT(assert_equal(numericH, actH, tol));
}

/* ************************************************************************* */
Product interpolate_proxy(const Product& x, const Product& y, double t) {
  return interpolate<Product>(x, y, t);
}

TEST(Lie, Interpolate) {
  Product x(Point2(1, 2), Pose2(3, 4, 5));
  Product y(Point2(6, 7), Pose2(8, 9, 0));

  double t;
  Matrix actH1, numericH1, actH2, numericH2;

  t = 0.0;
  interpolate<Product>(x, y, t, actH1, actH2);
  numericH1 = numericalDerivative31<Product, Product, Product, double>(
      interpolate_proxy, x, y, t);
  EXPECT(assert_equal(numericH1, actH1, tol));
  numericH2 = numericalDerivative32<Product, Product, Product, double>(
      interpolate_proxy, x, y, t);
  EXPECT(assert_equal(numericH2, actH2, tol));

  t = 0.5;
  interpolate<Product>(x, y, t, actH1, actH2);
  numericH1 = numericalDerivative31<Product, Product, Product, double>(
      interpolate_proxy, x, y, t);
  EXPECT(assert_equal(numericH1, actH1, tol));
  numericH2 = numericalDerivative32<Product, Product, Product, double>(
      interpolate_proxy, x, y, t);
  EXPECT(assert_equal(numericH2, actH2, tol));

  t = 1.0;
  interpolate<Product>(x, y, t, actH1, actH2);
  numericH1 = numericalDerivative31<Product, Product, Product, double>(
      interpolate_proxy, x, y, t);
  EXPECT(assert_equal(numericH1, actH1, tol));
  numericH2 = numericalDerivative32<Product, Product, Product, double>(
      interpolate_proxy, x, y, t);
  EXPECT(assert_equal(numericH2, actH2, tol));
}

//******************************************************************************
int main() {
  TestResult tr;
  return TestRegistry::runAllTests(tr);
}
//******************************************************************************