1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testMarginals.cpp
* @brief
* @author Richard Roberts
* @date May 14, 2012
*/
#include <CppUnitLite/TestHarness.h>
// for all nonlinear keys
#include <gtsam/inference/Symbol.h>
// for points and poses
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Pose2.h>
// for modeling measurement uncertainty - all models included here
#include <gtsam/linear/NoiseModel.h>
// add in headers for specific factors
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/sam/BearingRangeFactor.h>
#include <gtsam/nonlinear/Marginals.h>
using namespace std;
using namespace gtsam;
TEST(Marginals, planarSLAMmarginals) {
// Taken from PlanarSLAMSelfContained_advanced
// create keys for variables
Symbol x1('x',1), x2('x',2), x3('x',3);
Symbol l1('l',1), l2('l',2);
// create graph container and add factors to it
NonlinearFactorGraph graph;
/* add prior */
// gaussian for prior
SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
graph.addPrior(x1, priorMean, priorNoise); // add the factor to the graph
/* add odometry */
// general noisemodel for odometry
SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
// create between factors to represent odometry
graph += BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise);
graph += BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise);
/* add measurements */
// general noisemodel for measurements
SharedDiagonal measurementNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.2));
// create the measurement values - indices are (pose id, landmark id)
Rot2 bearing11 = Rot2::fromDegrees(45),
bearing21 = Rot2::fromDegrees(90),
bearing32 = Rot2::fromDegrees(90);
double range11 = sqrt(4.0+4.0),
range21 = 2.0,
range32 = 2.0;
// create bearing/range factors
graph += BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise);
graph += BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise);
graph += BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise);
// linearization point for marginals
Values soln;
soln.insert(x1, Pose2(0.0, 0.0, 0.0));
soln.insert(x2, Pose2(2.0, 0.0, 0.0));
soln.insert(x3, Pose2(4.0, 0.0, 0.0));
soln.insert(l1, Point2(2.0, 2.0));
soln.insert(l2, Point2(4.0, 2.0));
VectorValues soln_lin;
soln_lin.insert(x1, Vector3(0.0, 0.0, 0.0));
soln_lin.insert(x2, Vector3(2.0, 0.0, 0.0));
soln_lin.insert(x3, Vector3(4.0, 0.0, 0.0));
soln_lin.insert(l1, Vector2(2.0, 2.0));
soln_lin.insert(l2, Vector2(4.0, 2.0));
Matrix expectedx1(3,3);
expectedx1 <<
0.09, -7.1942452e-18, -1.27897692e-17,
-7.1942452e-18, 0.09, 1.27897692e-17,
-1.27897692e-17, 1.27897692e-17, 0.01;
Matrix expectedx2(3,3);
expectedx2 <<
0.120967742, -0.00129032258, 0.00451612903,
-0.00129032258, 0.158387097, 0.0206451613,
0.00451612903, 0.0206451613, 0.0177419355;
Matrix expectedx3(3,3);
expectedx3 <<
0.160967742, 0.00774193548, 0.00451612903,
0.00774193548, 0.351935484, 0.0561290323,
0.00451612903, 0.0561290323, 0.0277419355;
Matrix expectedl1(2,2);
expectedl1 <<
0.168709677, -0.0477419355,
-0.0477419355, 0.163548387;
Matrix expectedl2(2,2);
expectedl2 <<
0.293870968, -0.104516129,
-0.104516129, 0.391935484;
auto testMarginals = [&] (Marginals marginals) {
EXPECT(assert_equal(expectedx1, marginals.marginalCovariance(x1), 1e-8));
EXPECT(assert_equal(expectedx2, marginals.marginalCovariance(x2), 1e-8));
EXPECT(assert_equal(expectedx3, marginals.marginalCovariance(x3), 1e-8));
EXPECT(assert_equal(expectedl1, marginals.marginalCovariance(l1), 1e-8));
EXPECT(assert_equal(expectedl2, marginals.marginalCovariance(l2), 1e-8));
};
auto testJointMarginals = [&] (Marginals marginals) {
// Check joint marginals for 3 variables
Matrix expected_l2x1x3(8,8);
expected_l2x1x3 <<
0.293871159514111, -0.104516127560770, 0.090000180000270, -0.000000000000000, -0.020000000000000, 0.151935669757191, -0.104516127560770, -0.050967744878460,
-0.104516127560770, 0.391935664055174, 0.000000000000000, 0.090000180000270, 0.040000000000000, 0.007741936219615, 0.351935664055174, 0.056129031890193,
0.090000180000270, 0.000000000000000, 0.090000180000270, -0.000000000000000, 0.000000000000000, 0.090000180000270, 0.000000000000000, 0.000000000000000,
-0.000000000000000, 0.090000180000270, -0.000000000000000, 0.090000180000270, 0.000000000000000, -0.000000000000000, 0.090000180000270, 0.000000000000000,
-0.020000000000000, 0.040000000000000, 0.000000000000000, 0.000000000000000, 0.010000000000000, 0.000000000000000, 0.040000000000000, 0.010000000000000,
0.151935669757191, 0.007741936219615, 0.090000180000270, -0.000000000000000, 0.000000000000000, 0.160967924878730, 0.007741936219615, 0.004516127560770,
-0.104516127560770, 0.351935664055174, 0.000000000000000, 0.090000180000270, 0.040000000000000, 0.007741936219615, 0.351935664055174, 0.056129031890193,
-0.050967744878460, 0.056129031890193, 0.000000000000000, 0.000000000000000, 0.010000000000000, 0.004516127560770, 0.056129031890193, 0.027741936219615;
KeyVector variables {x1, l2, x3};
JointMarginal joint_l2x1x3 = marginals.jointMarginalCovariance(variables);
EXPECT(assert_equal(Matrix(expected_l2x1x3.block(0,0,2,2)), Matrix(joint_l2x1x3(l2,l2)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1x3.block(2,0,3,2)), Matrix(joint_l2x1x3(x1,l2)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1x3.block(5,0,3,2)), Matrix(joint_l2x1x3(x3,l2)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1x3.block(0,2,2,3)), Matrix(joint_l2x1x3(l2,x1)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1x3.block(2,2,3,3)), Matrix(joint_l2x1x3(x1,x1)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1x3.block(5,2,3,3)), Matrix(joint_l2x1x3(x3,x1)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1x3.block(0,5,2,3)), Matrix(joint_l2x1x3(l2,x3)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1x3.block(2,5,3,3)), Matrix(joint_l2x1x3(x1,x3)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1x3.block(5,5,3,3)), Matrix(joint_l2x1x3(x3,x3)), 1e-6));
// Check joint marginals for 2 variables (different code path than >2 variable case above)
Matrix expected_l2x1(5,5);
expected_l2x1 <<
0.293871159514111, -0.104516127560770, 0.090000180000270, -0.000000000000000, -0.020000000000000,
-0.104516127560770, 0.391935664055174, 0.000000000000000, 0.090000180000270, 0.040000000000000,
0.090000180000270, 0.000000000000000, 0.090000180000270, -0.000000000000000, 0.000000000000000,
-0.000000000000000, 0.090000180000270, -0.000000000000000, 0.090000180000270, 0.000000000000000,
-0.020000000000000, 0.040000000000000, 0.000000000000000, 0.000000000000000, 0.010000000000000;
variables.resize(2);
variables[0] = l2;
variables[1] = x1;
JointMarginal joint_l2x1 = marginals.jointMarginalCovariance(variables);
EXPECT(assert_equal(Matrix(expected_l2x1.block(0,0,2,2)), Matrix(joint_l2x1(l2,l2)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1.block(2,0,3,2)), Matrix(joint_l2x1(x1,l2)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1.block(0,2,2,3)), Matrix(joint_l2x1(l2,x1)), 1e-6));
EXPECT(assert_equal(Matrix(expected_l2x1.block(2,2,3,3)), Matrix(joint_l2x1(x1,x1)), 1e-6));
// Check joint marginal for 1 variable (different code path than >1 variable cases above)
variables.resize(1);
variables[0] = x1;
JointMarginal joint_x1 = marginals.jointMarginalCovariance(variables);
EXPECT(assert_equal(expectedx1, Matrix(joint_l2x1(x1,x1)), 1e-6));
};
Marginals marginals;
marginals = Marginals(graph, soln, Marginals::CHOLESKY);
testMarginals(marginals);
marginals = Marginals(graph, soln, Marginals::QR);
testMarginals(marginals);
testJointMarginals(marginals);
GaussianFactorGraph gfg = *graph.linearize(soln);
marginals = Marginals(gfg, soln_lin, Marginals::CHOLESKY);
testMarginals(marginals);
marginals = Marginals(gfg, soln_lin, Marginals::QR);
testMarginals(marginals);
testJointMarginals(marginals);
}
/* ************************************************************************* */
TEST(Marginals, order) {
NonlinearFactorGraph fg;
fg.addPrior(0, Pose2(), noiseModel::Unit::Create(3));
fg += BetweenFactor<Pose2>(0, 1, Pose2(1,0,0), noiseModel::Unit::Create(3));
fg += BetweenFactor<Pose2>(1, 2, Pose2(1,0,0), noiseModel::Unit::Create(3));
fg += BetweenFactor<Pose2>(2, 3, Pose2(1,0,0), noiseModel::Unit::Create(3));
Values vals;
vals.insert(0, Pose2());
vals.insert(1, Pose2(1,0,0));
vals.insert(2, Pose2(2,0,0));
vals.insert(3, Pose2(3,0,0));
vals.insert(100, Point2(0,1));
vals.insert(101, Point2(1,1));
fg += BearingRangeFactor<Pose2,Point2>(0, 100,
vals.at<Pose2>(0).bearing(vals.at<Point2>(100)),
vals.at<Pose2>(0).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
fg += BearingRangeFactor<Pose2,Point2>(0, 101,
vals.at<Pose2>(0).bearing(vals.at<Point2>(101)),
vals.at<Pose2>(0).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));
fg += BearingRangeFactor<Pose2,Point2>(1, 100,
vals.at<Pose2>(1).bearing(vals.at<Point2>(100)),
vals.at<Pose2>(1).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
fg += BearingRangeFactor<Pose2,Point2>(1, 101,
vals.at<Pose2>(1).bearing(vals.at<Point2>(101)),
vals.at<Pose2>(1).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));
fg += BearingRangeFactor<Pose2,Point2>(2, 100,
vals.at<Pose2>(2).bearing(vals.at<Point2>(100)),
vals.at<Pose2>(2).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
fg += BearingRangeFactor<Pose2,Point2>(2, 101,
vals.at<Pose2>(2).bearing(vals.at<Point2>(101)),
vals.at<Pose2>(2).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));
fg += BearingRangeFactor<Pose2,Point2>(3, 100,
vals.at<Pose2>(3).bearing(vals.at<Point2>(100)),
vals.at<Pose2>(3).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
fg += BearingRangeFactor<Pose2,Point2>(3, 101,
vals.at<Pose2>(3).bearing(vals.at<Point2>(101)),
vals.at<Pose2>(3).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));
auto testMarginals = [&] (Marginals marginals, KeySet set) {
KeyVector keys(set.begin(), set.end());
JointMarginal joint = marginals.jointMarginalCovariance(keys);
LONGS_EQUAL(3, (long)joint(0,0).rows());
LONGS_EQUAL(3, (long)joint(1,1).rows());
LONGS_EQUAL(3, (long)joint(2,2).rows());
LONGS_EQUAL(3, (long)joint(3,3).rows());
LONGS_EQUAL(2, (long)joint(100,100).rows());
LONGS_EQUAL(2, (long)joint(101,101).rows());
};
Marginals marginals(fg, vals);
KeySet set = fg.keys();
testMarginals(marginals, set);
GaussianFactorGraph gfg = *fg.linearize(vals);
marginals = Marginals(gfg, vals);
set = gfg.keys();
testMarginals(marginals, set);
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */
|