1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* @file testNonlinearEquality.cpp
* @author Alex Cunningham
*/
#include <tests/simulated2DConstraints.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
namespace eq2D = simulated2D::equality_constraints;
static const double tol = 1e-5;
typedef PriorFactor<Pose2> PosePrior;
typedef NonlinearEquality<Pose2> PoseNLE;
typedef boost::shared_ptr<PoseNLE> shared_poseNLE;
static Symbol key('x', 1);
//******************************************************************************
TEST ( NonlinearEquality, linearization ) {
Pose2 value = Pose2(2.1, 1.0, 2.0);
Values linearize;
linearize.insert(key, value);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize
SharedDiagonal constraintModel = noiseModel::Constrained::All(3);
JacobianFactor expLF(key, I_3x3, Z_3x1, constraintModel);
GaussianFactor::shared_ptr actualLF = nle->linearize(linearize);
EXPECT(assert_equal((const GaussianFactor&)expLF, *actualLF));
}
//******************************************************************************
TEST ( NonlinearEquality, linearization_pose ) {
Symbol key('x', 1);
Pose2 value;
Values config;
config.insert(key, value);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
GaussianFactor::shared_ptr actualLF = nle->linearize(config);
EXPECT(true);
}
//******************************************************************************
TEST ( NonlinearEquality, linearization_fail ) {
Pose2 value = Pose2(2.1, 1.0, 2.0);
Pose2 wrong = Pose2(2.1, 3.0, 4.0);
Values bad_linearize;
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize to ensure that it fails for bad linearization points
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
}
//******************************************************************************
TEST ( NonlinearEquality, linearization_fail_pose ) {
Symbol key('x', 1);
Pose2 value(2.0, 1.0, 2.0), wrong(2.0, 3.0, 4.0);
Values bad_linearize;
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize to ensure that it fails for bad linearization points
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
}
//******************************************************************************
TEST ( NonlinearEquality, linearization_fail_pose_origin ) {
Symbol key('x', 1);
Pose2 value, wrong(2.0, 3.0, 4.0);
Values bad_linearize;
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize to ensure that it fails for bad linearization points
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
}
//******************************************************************************
TEST ( NonlinearEquality, error ) {
Pose2 value = Pose2(2.1, 1.0, 2.0);
Pose2 wrong = Pose2(2.1, 3.0, 4.0);
Values feasible, bad_linearize;
feasible.insert(key, value);
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check error function outputs
Vector actual = nle->unwhitenedError(feasible);
EXPECT(assert_equal(actual, Z_3x1));
actual = nle->unwhitenedError(bad_linearize);
EXPECT(
assert_equal(actual, Vector::Constant(3, std::numeric_limits<double>::infinity())));
}
//******************************************************************************
TEST ( NonlinearEquality, equals ) {
Pose2 value1 = Pose2(2.1, 1.0, 2.0);
Pose2 value2 = Pose2(2.1, 3.0, 4.0);
// create some constraints to compare
shared_poseNLE nle1(new PoseNLE(key, value1));
shared_poseNLE nle2(new PoseNLE(key, value1));
shared_poseNLE nle3(new PoseNLE(key, value2));
// verify
EXPECT(nle1->equals(*nle2));
// basic equality = true
EXPECT(nle2->equals(*nle1));
// test symmetry of equals()
EXPECT(!nle1->equals(*nle3));
// test config
}
//******************************************************************************
TEST ( NonlinearEquality, allow_error_pose ) {
Symbol key1('x', 1);
Pose2 feasible1(1.0, 2.0, 3.0);
double error_gain = 500.0;
PoseNLE nle(key1, feasible1, error_gain);
// the unwhitened error should provide logmap to the feasible state
Pose2 badPoint1(0.0, 2.0, 3.0);
Vector actVec = nle.evaluateError(badPoint1);
Vector expVec = Vector3(-0.989992, -0.14112, 0.0);
EXPECT(assert_equal(expVec, actVec, 1e-5));
// the actual error should have a gain on it
Values config;
config.insert(key1, badPoint1);
double actError = nle.error(config);
DOUBLES_EQUAL(500.0, actError, 1e-9);
// check linearization
GaussianFactor::shared_ptr actLinFactor = nle.linearize(config);
Matrix A1 = I_3x3;
Vector b = expVec;
SharedDiagonal model = noiseModel::Constrained::All(3);
GaussianFactor::shared_ptr expLinFactor(
new JacobianFactor(key1, A1, b, model));
EXPECT(assert_equal(*expLinFactor, *actLinFactor, 1e-5));
}
//******************************************************************************
TEST ( NonlinearEquality, allow_error_optimize ) {
Symbol key1('x', 1);
Pose2 feasible1(1.0, 2.0, 3.0);
double error_gain = 500.0;
PoseNLE nle(key1, feasible1, error_gain);
// add to a graph
NonlinearFactorGraph graph;
graph += nle;
// initialize away from the ideal
Pose2 initPose(0.0, 2.0, 3.0);
Values init;
init.insert(key1, initPose);
// optimize
Ordering ordering;
ordering.push_back(key1);
Values result = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();
// verify
Values expected;
expected.insert(key1, feasible1);
EXPECT(assert_equal(expected, result));
}
//******************************************************************************
TEST ( NonlinearEquality, allow_error_optimize_with_factors ) {
// create a hard constraint
Symbol key1('x', 1);
Pose2 feasible1(1.0, 2.0, 3.0);
// initialize away from the ideal
Values init;
Pose2 initPose(0.0, 2.0, 3.0);
init.insert(key1, initPose);
double error_gain = 500.0;
PoseNLE nle(key1, feasible1, error_gain);
// create a soft prior that conflicts
PosePrior prior(key1, initPose, noiseModel::Isotropic::Sigma(3, 0.1));
// add to a graph
NonlinearFactorGraph graph;
graph += nle;
graph += prior;
// optimize
Ordering ordering;
ordering.push_back(key1);
Values actual = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();
// verify
Values expected;
expected.insert(key1, feasible1);
EXPECT(assert_equal(expected, actual));
}
//******************************************************************************
static SharedDiagonal hard_model = noiseModel::Constrained::All(2);
static SharedDiagonal soft_model = noiseModel::Isotropic::Sigma(2, 1.0);
//******************************************************************************
TEST( testNonlinearEqualityConstraint, unary_basics ) {
Point2 pt(1.0, 2.0);
Symbol key1('x', 1);
double mu = 1000.0;
eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
Values config1;
config1.insert(key, pt);
EXPECT(constraint.active(config1));
EXPECT(assert_equal(Z_2x1, constraint.evaluateError(pt), tol));
EXPECT(assert_equal(Z_2x1, constraint.unwhitenedError(config1), tol));
EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
Values config2;
Point2 ptBad1(2.0, 2.0);
config2.insert(key, ptBad1);
EXPECT(constraint.active(config2));
EXPECT(
assert_equal(Vector2(1.0, 0.0), constraint.evaluateError(ptBad1), tol));
EXPECT(
assert_equal(Vector2(1.0, 0.0), constraint.unwhitenedError(config2), tol));
EXPECT_DOUBLES_EQUAL(500.0, constraint.error(config2), tol);
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, unary_linearization ) {
Point2 pt(1.0, 2.0);
Symbol key1('x', 1);
double mu = 1000.0;
eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
Values config1;
config1.insert(key, pt);
GaussianFactor::shared_ptr actual1 = constraint.linearize(config1);
GaussianFactor::shared_ptr expected1(
new JacobianFactor(key, I_2x2, Z_2x1, hard_model));
EXPECT(assert_equal(*expected1, *actual1, tol));
Values config2;
Point2 ptBad(2.0, 2.0);
config2.insert(key, ptBad);
GaussianFactor::shared_ptr actual2 = constraint.linearize(config2);
GaussianFactor::shared_ptr expected2(
new JacobianFactor(key, I_2x2, Vector2(-1.0, 0.0), hard_model));
EXPECT(assert_equal(*expected2, *actual2, tol));
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, unary_simple_optimization ) {
// create a single-node graph with a soft and hard constraint to
// ensure that the hard constraint overrides the soft constraint
Point2 truth_pt(1.0, 2.0);
Symbol key('x', 1);
double mu = 10.0;
eq2D::UnaryEqualityConstraint::shared_ptr constraint(
new eq2D::UnaryEqualityConstraint(truth_pt, key, mu));
Point2 badPt(100.0, -200.0);
simulated2D::Prior::shared_ptr factor(
new simulated2D::Prior(badPt, soft_model, key));
NonlinearFactorGraph graph;
graph.push_back(constraint);
graph.push_back(factor);
Values initValues;
initValues.insert(key, badPt);
// verify error values
EXPECT(constraint->active(initValues));
Values expected;
expected.insert(key, truth_pt);
EXPECT(constraint->active(expected));
EXPECT_DOUBLES_EQUAL(0.0, constraint->error(expected), tol);
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
EXPECT(assert_equal(expected, actual, tol));
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, odo_basics ) {
Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
Symbol key1('x', 1), key2('x', 2);
double mu = 1000.0;
eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
Values config1;
config1.insert(key1, x1);
config1.insert(key2, x2);
EXPECT(constraint.active(config1));
EXPECT(assert_equal(Z_2x1, constraint.evaluateError(x1, x2), tol));
EXPECT(assert_equal(Z_2x1, constraint.unwhitenedError(config1), tol));
EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
Values config2;
Point2 x1bad(2.0, 2.0);
Point2 x2bad(2.0, 2.0);
config2.insert(key1, x1bad);
config2.insert(key2, x2bad);
EXPECT(constraint.active(config2));
EXPECT(
assert_equal(Vector2(-1.0, -1.0), constraint.evaluateError(x1bad, x2bad), tol));
EXPECT(
assert_equal(Vector2(-1.0, -1.0), constraint.unwhitenedError(config2), tol));
EXPECT_DOUBLES_EQUAL(1000.0, constraint.error(config2), tol);
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, odo_linearization ) {
Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
Symbol key1('x', 1), key2('x', 2);
double mu = 1000.0;
eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
Values config1;
config1.insert(key1, x1);
config1.insert(key2, x2);
GaussianFactor::shared_ptr actual1 = constraint.linearize(config1);
GaussianFactor::shared_ptr expected1(
new JacobianFactor(key1, -I_2x2, key2, I_2x2, Z_2x1,
hard_model));
EXPECT(assert_equal(*expected1, *actual1, tol));
Values config2;
Point2 x1bad(2.0, 2.0);
Point2 x2bad(2.0, 2.0);
config2.insert(key1, x1bad);
config2.insert(key2, x2bad);
GaussianFactor::shared_ptr actual2 = constraint.linearize(config2);
GaussianFactor::shared_ptr expected2(
new JacobianFactor(key1, -I_2x2, key2, I_2x2, Vector2(1.0, 1.0),
hard_model));
EXPECT(assert_equal(*expected2, *actual2, tol));
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, odo_simple_optimize ) {
// create a two-node graph, connected by an odometry constraint, with
// a hard prior on one variable, and a conflicting soft prior
// on the other variable - the constraints should override the soft constraint
Point2 truth_pt1(1.0, 2.0), truth_pt2(3.0, 2.0);
Symbol key1('x', 1), key2('x', 2);
// hard prior on x1
eq2D::UnaryEqualityConstraint::shared_ptr constraint1(
new eq2D::UnaryEqualityConstraint(truth_pt1, key1));
// soft prior on x2
Point2 badPt(100.0, -200.0);
simulated2D::Prior::shared_ptr factor(
new simulated2D::Prior(badPt, soft_model, key2));
// odometry constraint
eq2D::OdoEqualityConstraint::shared_ptr constraint2(
new eq2D::OdoEqualityConstraint(truth_pt2-truth_pt1, key1, key2));
NonlinearFactorGraph graph;
graph.push_back(constraint1);
graph.push_back(constraint2);
graph.push_back(factor);
Values initValues;
initValues.insert(key1, Point2(0,0));
initValues.insert(key2, badPt);
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
Values expected;
expected.insert(key1, truth_pt1);
expected.insert(key2, truth_pt2);
CHECK(assert_equal(expected, actual, tol));
}
//******************************************************************************
TEST (testNonlinearEqualityConstraint, two_pose ) {
/*
* Determining a ground truth linear system
* with two poses seeing one landmark, with each pose
* constrained to a particular value
*/
NonlinearFactorGraph graph;
Symbol x1('x', 1), x2('x', 2);
Symbol l1('l', 1), l2('l', 2);
Point2 pt_x1(1.0, 1.0), pt_x2(5.0, 6.0);
graph += eq2D::UnaryEqualityConstraint(pt_x1, x1);
graph += eq2D::UnaryEqualityConstraint(pt_x2, x2);
Point2 z1(0.0, 5.0);
SharedNoiseModel sigma(noiseModel::Isotropic::Sigma(2, 0.1));
graph += simulated2D::Measurement(z1, sigma, x1, l1);
Point2 z2(-4.0, 0.0);
graph += simulated2D::Measurement(z2, sigma, x2, l2);
graph += eq2D::PointEqualityConstraint(l1, l2);
Values initialEstimate;
initialEstimate.insert(x1, pt_x1);
initialEstimate.insert(x2, Point2(0,0));
initialEstimate.insert(l1, Point2(1.0, 6.0)); // ground truth
initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
Values actual =
LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
Values expected;
expected.insert(x1, pt_x1);
expected.insert(l1, Point2(1.0, 6.0));
expected.insert(l2, Point2(1.0, 6.0));
expected.insert(x2, Point2(5.0, 6.0));
CHECK(assert_equal(expected, actual, 1e-5));
}
//******************************************************************************
TEST (testNonlinearEqualityConstraint, map_warp ) {
// get a graph
NonlinearFactorGraph graph;
// keys
Symbol x1('x', 1), x2('x', 2);
Symbol l1('l', 1), l2('l', 2);
// constant constraint on x1
Point2 pose1(1.0, 1.0);
graph += eq2D::UnaryEqualityConstraint(pose1, x1);
SharedDiagonal sigma = noiseModel::Isotropic::Sigma(2, 0.1);
// measurement from x1 to l1
Point2 z1(0.0, 5.0);
graph += simulated2D::Measurement(z1, sigma, x1, l1);
// measurement from x2 to l2
Point2 z2(-4.0, 0.0);
graph += simulated2D::Measurement(z2, sigma, x2, l2);
// equality constraint between l1 and l2
graph += eq2D::PointEqualityConstraint(l1, l2);
// create an initial estimate
Values initialEstimate;
initialEstimate.insert(x1, Point2(1.0, 1.0));
initialEstimate.insert(l1, Point2(1.0, 6.0));
initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
initialEstimate.insert(x2, Point2(0.0, 0.0)); // other pose starts at origin
// optimize
Values actual =
LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
Values expected;
expected.insert(x1, Point2(1.0, 1.0));
expected.insert(l1, Point2(1.0, 6.0));
expected.insert(l2, Point2(1.0, 6.0));
expected.insert(x2, Point2(5.0, 6.0));
CHECK(assert_equal(expected, actual, tol));
}
//******************************************************************************
TEST (testNonlinearEqualityConstraint, stereo_constrained ) {
// make a realistic calibration matrix
static double fov = 60; // degrees
static int w = 640, h = 480;
static Cal3_S2 K(fov, w, h);
static boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
// create initial estimates
Rot3 faceTowardsY(Point3(1, 0, 0), Point3(0, 0, -1), Point3(0, 1, 0));
Pose3 poseLeft(faceTowardsY, Point3(0, 0, 0)); // origin, left camera
PinholeCamera<Cal3_S2> leftCamera(poseLeft, K);
Pose3 poseRight(faceTowardsY, Point3(2, 0, 0)); // 2 units to the right
PinholeCamera<Cal3_S2> rightCamera(poseRight, K);
Point3 landmark(1, 5, 0); //centered between the cameras, 5 units away
// keys
Symbol key_x1('x', 1), key_x2('x', 2);
Symbol key_l1('l', 1), key_l2('l', 2);
// create graph
NonlinearFactorGraph graph;
// create equality constraints for poses
graph += NonlinearEquality<Pose3>(key_x1, leftCamera.pose());
graph += NonlinearEquality<Pose3>(key_x2, rightCamera.pose());
// create factors
SharedDiagonal vmodel = noiseModel::Unit::Create(2);
graph += GenericProjectionFactor<Pose3, Point3, Cal3_S2>(
leftCamera.project(landmark), vmodel, key_x1, key_l1, shK);
graph += GenericProjectionFactor<Pose3, Point3, Cal3_S2>(
rightCamera.project(landmark), vmodel, key_x2, key_l2, shK);
// add equality constraint saying there is only one point
graph += NonlinearEquality2<Point3>(key_l1, key_l2);
// create initial data
Point3 landmark1(0.5, 5, 0);
Point3 landmark2(1.5, 5, 0);
Values initValues;
initValues.insert(key_x1, poseLeft);
initValues.insert(key_x2, poseRight);
initValues.insert(key_l1, landmark1);
initValues.insert(key_l2, landmark2);
// optimize
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
// create config
Values truthValues;
truthValues.insert(key_x1, leftCamera.pose());
truthValues.insert(key_x2, rightCamera.pose());
truthValues.insert(key_l1, landmark);
truthValues.insert(key_l2, landmark);
// check if correct
CHECK(assert_equal(truthValues, actual, 1e-5));
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************
|