File: testNonlinearFactorGraph.cpp

package info (click to toggle)
gtsam 4.2.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 46,108 kB
  • sloc: cpp: 127,191; python: 14,312; xml: 8,442; makefile: 252; sh: 119; ansic: 101
file content (389 lines) | stat: -rw-r--r-- 13,138 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/* ----------------------------------------------------------------------------

 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 * Atlanta, Georgia 30332-0415
 * All Rights Reserved
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)

 * See LICENSE for the license information

 * -------------------------------------------------------------------------- */

/**
 * @file    testNonlinearFactorGraph.cpp
 * @brief   Unit tests for Non-Linear Factor NonlinearFactorGraph
 * @brief   testNonlinearFactorGraph
 * @author  Carlos Nieto
 * @author  Christian Potthast
 * @author  Frank Dellaert
 */

#include <gtsam/base/Testable.h>
#include <gtsam/base/Matrix.h>
#include <tests/smallExample.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/symbolic/SymbolicFactorGraph.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/sam/RangeFactor.h>
#include <gtsam/slam/BetweenFactor.h>

#include <CppUnitLite/TestHarness.h>

/*STL/C++*/
#include <iostream>

using namespace std;
using namespace gtsam;
using namespace example;

using symbol_shorthand::X;
using symbol_shorthand::L;

/* ************************************************************************* */
TEST( NonlinearFactorGraph, equals )
{
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
  NonlinearFactorGraph fg2 = createNonlinearFactorGraph();
  CHECK( fg.equals(fg2) );
}

/* ************************************************************************* */
TEST( NonlinearFactorGraph, error )
{
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
  Values c1 = createValues();
  double actual1 = fg.error(c1);
  DOUBLES_EQUAL( 0.0, actual1, 1e-9 );

  Values c2 = createNoisyValues();
  double actual2 = fg.error(c2);
  DOUBLES_EQUAL( 5.625, actual2, 1e-9 );
}

/* ************************************************************************* */
TEST( NonlinearFactorGraph, keys )
{
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
  KeySet actual = fg.keys();
  LONGS_EQUAL(3, (long)actual.size());
  KeySet::const_iterator it = actual.begin();
  LONGS_EQUAL((long)L(1), (long)*(it++));
  LONGS_EQUAL((long)X(1), (long)*(it++));
  LONGS_EQUAL((long)X(2), (long)*(it++));
}

/* ************************************************************************* */
TEST( NonlinearFactorGraph, GET_ORDERING)
{
  Ordering expected; expected += L(1), X(2), X(1); // For starting with l1,x1,x2
  NonlinearFactorGraph nlfg = createNonlinearFactorGraph();
  Ordering actual = Ordering::Colamd(nlfg);
  EXPECT(assert_equal(expected,actual));

  // Constrained ordering - put x2 at the end
  Ordering expectedConstrained; expectedConstrained += L(1), X(1), X(2);
  FastMap<Key, int> constraints;
  constraints[X(2)] = 1;
  Ordering actualConstrained = Ordering::ColamdConstrained(nlfg, constraints);
  EXPECT(assert_equal(expectedConstrained, actualConstrained));
}

/* ************************************************************************* */
TEST( NonlinearFactorGraph, probPrime )
{
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
  Values cfg = createValues();

  // evaluate the probability of the factor graph
  double actual = fg.probPrime(cfg);
  double expected = 1.0;
  DOUBLES_EQUAL(expected,actual,0);
}

/* ************************************************************************* */
TEST(NonlinearFactorGraph, ProbPrime2) {
  NonlinearFactorGraph fg;
  fg.emplace_shared<PriorFactor<double>>(1, 0.0,
                                         noiseModel::Isotropic::Sigma(1, 1.0));

  Values values;
  values.insert(1, 1.0);

  // The prior factor squared error is: 0.5.
  EXPECT_DOUBLES_EQUAL(0.5, fg.error(values), 1e-12);

  // The probability value is: exp^(-factor_error) / sqrt(2 * PI)
  // Ignore the denominator and we get: exp^(-factor_error) = exp^(-0.5)
  double expected = exp(-0.5);
  EXPECT_DOUBLES_EQUAL(expected, fg.probPrime(values), 1e-12);
}

/* ************************************************************************* */
TEST( NonlinearFactorGraph, linearize )
{
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
  Values initial = createNoisyValues();
  GaussianFactorGraph linearFG = *fg.linearize(initial);
  GaussianFactorGraph expected = createGaussianFactorGraph();
  CHECK(assert_equal(expected,linearFG)); // Needs correct linearizations
}

/* ************************************************************************* */
TEST( NonlinearFactorGraph, clone )
{
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
  NonlinearFactorGraph actClone = fg.clone();
  EXPECT(assert_equal(fg, actClone));
  for (size_t i=0; i<fg.size(); ++i)
    EXPECT(fg[i] != actClone[i]);
}

/* ************************************************************************* */
TEST( NonlinearFactorGraph, rekey )
{
  NonlinearFactorGraph init = createNonlinearFactorGraph();
  map<Key,Key> rekey_mapping;
  rekey_mapping.insert(make_pair(L(1), L(4)));
  NonlinearFactorGraph actRekey = init.rekey(rekey_mapping);

  // ensure deep clone
  LONGS_EQUAL((long)init.size(), (long)actRekey.size());
  for (size_t i=0; i<init.size(); ++i)
      EXPECT(init[i] != actRekey[i]);

  NonlinearFactorGraph expRekey;
  // original measurements
  expRekey.push_back(init[0]);
  expRekey.push_back(init[1]);

  // updated measurements
  Point2 z3(0, -1),  z4(-1.5, -1.);
  SharedDiagonal sigma0_2 = noiseModel::Isotropic::Sigma(2,0.2);
  expRekey += simulated2D::Measurement(z3, sigma0_2, X(1), L(4));
  expRekey += simulated2D::Measurement(z4, sigma0_2, X(2), L(4));

  EXPECT(assert_equal(expRekey, actRekey));
}

/* ************************************************************************* */
TEST( NonlinearFactorGraph, symbolic )
{
  NonlinearFactorGraph graph = createNonlinearFactorGraph();

  SymbolicFactorGraph expected;
  expected.push_factor(X(1));
  expected.push_factor(X(1), X(2));
  expected.push_factor(X(1), L(1));
  expected.push_factor(X(2), L(1));

  SymbolicFactorGraph actual = *graph.symbolic();

  EXPECT(assert_equal(expected, actual));
}

/* ************************************************************************* */
TEST(NonlinearFactorGraph, UpdateCholesky) {
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
  Values initial = createNoisyValues();

  // solve conventionally
  GaussianFactorGraph linearFG = *fg.linearize(initial);
  auto delta = linearFG.optimizeDensely();
  auto expected = initial.retract(delta);

  // solve with new method
  EXPECT(assert_equal(expected, fg.updateCholesky(initial)));

  // solve with Ordering
  Ordering ordering;
  ordering += L(1), X(2), X(1);
  EXPECT(assert_equal(expected, fg.updateCholesky(initial, ordering)));

  // solve with new method, heavily damped
  auto dampen = [](const HessianFactor::shared_ptr& hessianFactor) {
    auto iterator = hessianFactor->begin();
    for (; iterator != hessianFactor->end(); iterator++) {
      const auto index = std::distance(hessianFactor->begin(), iterator);
      auto block = hessianFactor->info().diagonalBlock(index);
      for (int j = 0; j < block.rows(); j++) {
        block(j, j) += 1e9;
      }
    }
  };
  EXPECT(assert_equal(initial, fg.updateCholesky(initial, dampen), 1e-6));
}

/* ************************************************************************* */
// Example from issue #452 which threw an ILS error. The reason was a very 
// weak prior on heading, which was tightened, and the ILS disappeared.
TEST(testNonlinearFactorGraph, eliminate) {
  // Linearization point
  Pose2 T11(0, 0, 0);
  Pose2 T12(1, 0, 0);
  Pose2 T21(0, 1, 0);
  Pose2 T22(1, 1, 0);

  // Factor graph
  auto graph = NonlinearFactorGraph();

  // Priors
  auto prior = noiseModel::Isotropic::Sigma(3, 1);
  graph.addPrior(11, T11, prior);
  graph.addPrior(21, T21, prior);

  // Odometry
  auto model = noiseModel::Diagonal::Sigmas(Vector3(0.01, 0.01, 0.3));
  graph.add(BetweenFactor<Pose2>(11, 12, T11.between(T12), model));
  graph.add(BetweenFactor<Pose2>(21, 22, T21.between(T22), model));

  // Range factor
  auto model_rho = noiseModel::Isotropic::Sigma(1, 0.01);
  graph.add(RangeFactor<Pose2>(12, 22, 1.0, model_rho));

  Values values;
  values.insert(11, T11.retract(Vector3(0.1,0.2,0.3)));
  values.insert(12, T12);
  values.insert(21, T21);
  values.insert(22, T22);
  auto linearized = graph.linearize(values);

  // Eliminate
  Ordering ordering;
  ordering += 11, 21, 12, 22;
  auto bn = linearized->eliminateSequential(ordering);
  EXPECT_LONGS_EQUAL(4, bn->size());
}

/* ************************************************************************* */
TEST(testNonlinearFactorGraph, addPrior) {
  Key k(0);

  // Factor graph.
  auto graph = NonlinearFactorGraph();

  // Add a prior factor for key k.
  auto model_double = noiseModel::Isotropic::Sigma(1, 1);
  graph.addPrior<double>(k, 10, model_double);

  // Assert the graph has 0 error with the correct values.
  Values values;
  values.insert(k, 10.0);
  EXPECT_DOUBLES_EQUAL(0, graph.error(values), 1e-16);

  // Assert the graph has some error with incorrect values.
  values.clear();
  values.insert(k, 11.0);
  EXPECT(0 != graph.error(values));

  // Clear the factor graph and values.
  values.clear();
  graph.erase(graph.begin(), graph.end());

  // Add a Pose3 prior to the factor graph. Use a gaussian noise model by
  // providing the covariance matrix.
  Eigen::DiagonalMatrix<double, 6, 6> covariance_pose3;
  covariance_pose3.setIdentity();
  Pose3 pose{Rot3(), Point3(0, 0, 0)};
  graph.addPrior(k, pose, covariance_pose3);

  // Assert the graph has 0 error with the correct values.
  values.insert(k, pose);
  EXPECT_DOUBLES_EQUAL(0, graph.error(values), 1e-16);

  // Assert the graph has some error with incorrect values.
  values.clear();
  Pose3 pose_incorrect{Rot3::RzRyRx(-M_PI, M_PI, -M_PI / 8), Point3(1, 2, 3)};
  values.insert(k, pose_incorrect);
  EXPECT(0 != graph.error(values));
}

/* ************************************************************************* */
TEST(NonlinearFactorGraph, printErrors)
{
  const NonlinearFactorGraph fg = createNonlinearFactorGraph();
  const Values c = createValues();

  // Test that it builds with default parameters.
  // We cannot check the output since (at present) output is fixed to std::cout.
  fg.printErrors(c);

  // Second round: using callback filter to check that we actually visit all factors:
  std::vector<bool> visited;
  visited.assign(fg.size(), false);
  const auto testFilter =
      [&](const gtsam::Factor *f, double error, size_t index) {
        EXPECT(f!=nullptr);
        EXPECT(error>=.0);
        visited.at(index)=true;
        return false; // do not print
      };
  fg.printErrors(c,"Test graph: ", gtsam::DefaultKeyFormatter,testFilter);

  for (bool visit : visited) EXPECT(visit==true);
}

/* ************************************************************************* */
TEST(NonlinearFactorGraph, dot) {
  string expected =
      "graph {\n"
      "  size=\"5,5\";\n"
      "\n"
      "  var7782220156096217089[label=\"l1\"];\n"
      "  var8646911284551352321[label=\"x1\"];\n"
      "  var8646911284551352322[label=\"x2\"];\n"
      "\n"
      "  factor0[label=\"\", shape=point];\n"
      "  var8646911284551352321--factor0;\n"
      "  factor1[label=\"\", shape=point];\n"
      "  var8646911284551352321--factor1;\n"
      "  var8646911284551352322--factor1;\n"
      "  factor2[label=\"\", shape=point];\n"
      "  var8646911284551352321--factor2;\n"
      "  var7782220156096217089--factor2;\n"
      "  factor3[label=\"\", shape=point];\n"
      "  var8646911284551352322--factor3;\n"
      "  var7782220156096217089--factor3;\n"
      "}\n";

  const NonlinearFactorGraph fg = createNonlinearFactorGraph();
  string actual = fg.dot();
  EXPECT(actual == expected);
}

/* ************************************************************************* */
TEST(NonlinearFactorGraph, dot_extra) {
  string expected =
      "graph {\n"
      "  size=\"5,5\";\n"
      "\n"
      "  var7782220156096217089[label=\"l1\", pos=\"0,0!\"];\n"
      "  var8646911284551352321[label=\"x1\", pos=\"1,0!\"];\n"
      "  var8646911284551352322[label=\"x2\", pos=\"1,1.5!\"];\n"
      "\n"
      "  factor0[label=\"\", shape=point];\n"
      "  var8646911284551352321--factor0;\n"
      "  factor1[label=\"\", shape=point];\n"
      "  var8646911284551352321--factor1;\n"
      "  var8646911284551352322--factor1;\n"
      "  factor2[label=\"\", shape=point];\n"
      "  var8646911284551352321--factor2;\n"
      "  var7782220156096217089--factor2;\n"
      "  factor3[label=\"\", shape=point];\n"
      "  var8646911284551352322--factor3;\n"
      "  var7782220156096217089--factor3;\n"
      "}\n";

  const NonlinearFactorGraph fg = createNonlinearFactorGraph();
  const Values c = createValues();

  stringstream ss;
  fg.dot(ss, c);
  EXPECT(ss.str() == expected);
}

/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */