1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testNonlinearOptimizer.cpp
* @brief Unit tests for NonlinearOptimizer class
* @author Frank Dellaert
*/
#include <tests/smallExample.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/NonlinearConjugateGradientOptimizer.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/DoglegOptimizer.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/base/Matrix.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/range/adaptor/map.hpp>
#include <boost/shared_ptr.hpp>
using boost::adaptors::map_values;
#include <iostream>
#include <fstream>
using namespace std;
using namespace gtsam;
const double tol = 1e-5;
using symbol_shorthand::X;
using symbol_shorthand::L;
/* ************************************************************************* */
TEST( NonlinearOptimizer, paramsEquals )
{
// default constructors lead to two identical params
GaussNewtonParams gnParams1;
GaussNewtonParams gnParams2;
CHECK(gnParams1.equals(gnParams2));
// but the params become different if we change something in gnParams2
gnParams2.setVerbosity("DELTA");
CHECK(!gnParams1.equals(gnParams2));
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, iterateLM )
{
// really non-linear factor graph
NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
// config far from minimum
Point2 x0(3,0);
Values config;
config.insert(X(1), x0);
// normal iterate
GaussNewtonParams gnParams;
GaussNewtonOptimizer gnOptimizer(fg, config, gnParams);
gnOptimizer.iterate();
// LM iterate with lambda 0 should be the same
LevenbergMarquardtParams lmParams;
lmParams.lambdaInitial = 0.0;
LevenbergMarquardtOptimizer lmOptimizer(fg, config, lmParams);
lmOptimizer.iterate();
CHECK(assert_equal(gnOptimizer.values(), lmOptimizer.values(), 1e-9));
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, optimize )
{
NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
// test error at minimum
Point2 xstar(0,0);
Values cstar;
cstar.insert(X(1), xstar);
DOUBLES_EQUAL(0.0,fg.error(cstar),0.0);
// test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
Point2 x0(3,3);
Values c0;
c0.insert(X(1), x0);
DOUBLES_EQUAL(199.0,fg.error(c0),1e-3);
// optimize parameters
Ordering ord;
ord.push_back(X(1));
// Gauss-Newton
GaussNewtonParams gnParams;
gnParams.ordering = ord;
Values actual1 = GaussNewtonOptimizer(fg, c0, gnParams).optimize();
DOUBLES_EQUAL(0,fg.error(actual1),tol);
// Levenberg-Marquardt
LevenbergMarquardtParams lmParams;
lmParams.ordering = ord;
Values actual2 = LevenbergMarquardtOptimizer(fg, c0, lmParams).optimize();
DOUBLES_EQUAL(0,fg.error(actual2),tol);
// Dogleg
DoglegParams dlParams;
dlParams.ordering = ord;
Values actual3 = DoglegOptimizer(fg, c0, dlParams).optimize();
DOUBLES_EQUAL(0,fg.error(actual3),tol);
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, SimpleLMOptimizer )
{
NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
Point2 x0(3,3);
Values c0;
c0.insert(X(1), x0);
Values actual = LevenbergMarquardtOptimizer(fg, c0).optimize();
DOUBLES_EQUAL(0,fg.error(actual),tol);
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, SimpleGNOptimizer )
{
NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
Point2 x0(3,3);
Values c0;
c0.insert(X(1), x0);
Values actual = GaussNewtonOptimizer(fg, c0).optimize();
DOUBLES_EQUAL(0,fg.error(actual),tol);
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, SimpleDLOptimizer )
{
NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
Point2 x0(3,3);
Values c0;
c0.insert(X(1), x0);
Values actual = DoglegOptimizer(fg, c0).optimize();
DOUBLES_EQUAL(0,fg.error(actual),tol);
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, optimization_method )
{
LevenbergMarquardtParams paramsQR;
paramsQR.linearSolverType = LevenbergMarquardtParams::MULTIFRONTAL_QR;
LevenbergMarquardtParams paramsChol;
paramsChol.linearSolverType = LevenbergMarquardtParams::MULTIFRONTAL_CHOLESKY;
NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
Point2 x0(3,3);
Values c0;
c0.insert(X(1), x0);
Values actualMFQR = LevenbergMarquardtOptimizer(fg, c0, paramsQR).optimize();
DOUBLES_EQUAL(0,fg.error(actualMFQR),tol);
Values actualMFChol = LevenbergMarquardtOptimizer(fg, c0, paramsChol).optimize();
DOUBLES_EQUAL(0,fg.error(actualMFChol),tol);
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, Factorization )
{
Values config;
config.insert(X(1), Pose2(0.,0.,0.));
config.insert(X(2), Pose2(1.5,0.,0.));
NonlinearFactorGraph graph;
graph.addPrior(X(1), Pose2(0.,0.,0.), noiseModel::Isotropic::Sigma(3, 1e-10));
graph += BetweenFactor<Pose2>(X(1),X(2), Pose2(1.,0.,0.), noiseModel::Isotropic::Sigma(3, 1));
Ordering ordering;
ordering.push_back(X(1));
ordering.push_back(X(2));
LevenbergMarquardtParams params;
LevenbergMarquardtParams::SetLegacyDefaults(¶ms);
LevenbergMarquardtOptimizer optimizer(graph, config, ordering, params);
optimizer.iterate();
Values expected;
expected.insert(X(1), Pose2(0.,0.,0.));
expected.insert(X(2), Pose2(1.,0.,0.));
CHECK(assert_equal(expected, optimizer.values(), 1e-5));
}
/* ************************************************************************* */
TEST(NonlinearOptimizer, NullFactor) {
NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
// Add null factor
fg.push_back(NonlinearFactorGraph::sharedFactor());
// test error at minimum
Point2 xstar(0,0);
Values cstar;
cstar.insert(X(1), xstar);
DOUBLES_EQUAL(0.0,fg.error(cstar),0.0);
// test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
Point2 x0(3,3);
Values c0;
c0.insert(X(1), x0);
DOUBLES_EQUAL(199.0,fg.error(c0),1e-3);
// optimize parameters
Ordering ord;
ord.push_back(X(1));
// Gauss-Newton
Values actual1 = GaussNewtonOptimizer(fg, c0, ord).optimize();
DOUBLES_EQUAL(0,fg.error(actual1),tol);
// Levenberg-Marquardt
Values actual2 = LevenbergMarquardtOptimizer(fg, c0, ord).optimize();
DOUBLES_EQUAL(0,fg.error(actual2),tol);
// Dogleg
Values actual3 = DoglegOptimizer(fg, c0, ord).optimize();
DOUBLES_EQUAL(0,fg.error(actual3),tol);
}
/* ************************************************************************* */
TEST_UNSAFE(NonlinearOptimizer, MoreOptimization) {
NonlinearFactorGraph fg;
fg.addPrior(0, Pose2(0, 0, 0), noiseModel::Isotropic::Sigma(3, 1));
fg += BetweenFactor<Pose2>(0, 1, Pose2(1, 0, M_PI / 2),
noiseModel::Isotropic::Sigma(3, 1));
fg += BetweenFactor<Pose2>(1, 2, Pose2(1, 0, M_PI / 2),
noiseModel::Isotropic::Sigma(3, 1));
Values init;
init.insert(0, Pose2(3, 4, -M_PI));
init.insert(1, Pose2(10, 2, -M_PI));
init.insert(2, Pose2(11, 7, -M_PI));
Values expected;
expected.insert(0, Pose2(0, 0, 0));
expected.insert(1, Pose2(1, 0, M_PI / 2));
expected.insert(2, Pose2(1, 1, M_PI));
VectorValues expectedGradient;
expectedGradient.insert(0,Z_3x1);
expectedGradient.insert(1,Z_3x1);
expectedGradient.insert(2,Z_3x1);
// Try LM and Dogleg
LevenbergMarquardtParams params = LevenbergMarquardtParams::LegacyDefaults();
{
LevenbergMarquardtOptimizer optimizer(fg, init, params);
// test convergence
Values actual = optimizer.optimize();
EXPECT(assert_equal(expected, actual));
// Check that the gradient is zero
GaussianFactorGraph::shared_ptr linear = optimizer.linearize();
EXPECT(assert_equal(expectedGradient,linear->gradientAtZero()));
}
EXPECT(assert_equal(expected, DoglegOptimizer(fg, init).optimize()));
// cout << "===================================================================================" << endl;
// Try LM with diagonal damping
Values initBetter;
initBetter.insert(0, Pose2(3,4,0));
initBetter.insert(1, Pose2(10,2,M_PI/3));
initBetter.insert(2, Pose2(11,7,M_PI/2));
{
params.diagonalDamping = true;
LevenbergMarquardtOptimizer optimizer(fg, initBetter, params);
// test the diagonal
GaussianFactorGraph::shared_ptr linear = optimizer.linearize();
VectorValues d = linear->hessianDiagonal();
VectorValues sqrtHessianDiagonal = d;
for (Vector& v : sqrtHessianDiagonal | map_values) v = v.cwiseSqrt();
GaussianFactorGraph damped = optimizer.buildDampedSystem(*linear, sqrtHessianDiagonal);
VectorValues expectedDiagonal = d + params.lambdaInitial * d;
EXPECT(assert_equal(expectedDiagonal, damped.hessianDiagonal()));
// test convergence (does not!)
Values actual = optimizer.optimize();
EXPECT(assert_equal(expected, actual));
// Check that the gradient is zero (it is not!)
linear = optimizer.linearize();
EXPECT(assert_equal(expectedGradient,linear->gradientAtZero()));
// Check that the gradient is zero for damped system (it is not!)
damped = optimizer.buildDampedSystem(*linear, sqrtHessianDiagonal);
VectorValues actualGradient = damped.gradientAtZero();
EXPECT(assert_equal(expectedGradient,actualGradient));
/* This block was made to test the original initial guess "init"
// Check errors at convergence and errors in direction of gradient (decreases!)
EXPECT_DOUBLES_EQUAL(46.02558,fg.error(actual),1e-5);
EXPECT_DOUBLES_EQUAL(44.742237,fg.error(actual.retract(-0.01*actualGradient)),1e-5);
// Check that solve yields gradient (it's not equal to gradient, as predicted)
VectorValues delta = damped.optimize();
double factor = actualGradient[0][0]/delta[0][0];
EXPECT(assert_equal(actualGradient,factor*delta));
// Still pointing downhill wrt actual gradient !
EXPECT_DOUBLES_EQUAL( 0.1056157,dot(-1*actualGradient,delta),1e-3);
// delta.print("This is the delta value computed by LM with diagonal damping");
// Still pointing downhill wrt expected gradient (IT DOES NOT! actually they are perpendicular)
EXPECT_DOUBLES_EQUAL( 0.0,dot(-1*expectedGradient,delta),1e-5);
// Check errors at convergence and errors in direction of solution (does not decrease!)
EXPECT_DOUBLES_EQUAL(46.0254859,fg.error(actual.retract(delta)),1e-5);
// Check errors at convergence and errors at a small step in direction of solution (does not decrease!)
EXPECT_DOUBLES_EQUAL(46.0255,fg.error(actual.retract(0.01*delta)),1e-3);
*/
}
}
/* ************************************************************************* */
TEST(NonlinearOptimizer, Pose2OptimizationWithHuberNoOutlier) {
NonlinearFactorGraph fg;
fg.addPrior(0, Pose2(0,0,0), noiseModel::Isotropic::Sigma(3,1));
fg += BetweenFactor<Pose2>(0, 1, Pose2(1,1.1,M_PI/4),
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(2.0),
noiseModel::Isotropic::Sigma(3,1)));
fg += BetweenFactor<Pose2>(0, 1, Pose2(1,0.9,M_PI/2),
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(3.0),
noiseModel::Isotropic::Sigma(3,1)));
Values init;
init.insert(0, Pose2(0,0,0));
init.insert(1, Pose2(0.961187, 0.99965, 1.1781));
Values expected;
expected.insert(0, Pose2(0,0,0));
expected.insert(1, Pose2(0.961187, 0.99965, 1.1781));
LevenbergMarquardtParams lm_params;
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
auto lm_result = LevenbergMarquardtOptimizer(fg, init, lm_params).optimize();
auto dl_result = DoglegOptimizer(fg, init).optimize();
EXPECT(assert_equal(expected, gn_result, 3e-2));
EXPECT(assert_equal(expected, lm_result, 3e-2));
EXPECT(assert_equal(expected, dl_result, 3e-2));
}
/* ************************************************************************* */
TEST(NonlinearOptimizer, Point2LinearOptimizationWithHuber) {
NonlinearFactorGraph fg;
fg.addPrior(0, Point2(0,0), noiseModel::Isotropic::Sigma(2,0.01));
fg += BetweenFactor<Point2>(0, 1, Point2(1,1.8),
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.0),
noiseModel::Isotropic::Sigma(2,1)));
fg += BetweenFactor<Point2>(0, 1, Point2(1,0.9),
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.0),
noiseModel::Isotropic::Sigma(2,1)));
fg += BetweenFactor<Point2>(0, 1, Point2(1,90),
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.0),
noiseModel::Isotropic::Sigma(2,1)));
Values init;
init.insert(0, Point2(1,1));
init.insert(1, Point2(1,0));
Values expected;
expected.insert(0, Point2(0,0));
expected.insert(1, Point2(1,1.85));
LevenbergMarquardtParams params;
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize();
auto dl_result = DoglegOptimizer(fg, init).optimize();
EXPECT(assert_equal(expected, gn_result, 1e-4));
EXPECT(assert_equal(expected, lm_result, 1e-4));
EXPECT(assert_equal(expected, dl_result, 1e-4));
}
/* ************************************************************************* */
TEST(NonlinearOptimizer, Pose2OptimizationWithHuber) {
NonlinearFactorGraph fg;
fg.addPrior(0, Pose2(0,0, 0), noiseModel::Isotropic::Sigma(3,0.1));
fg += BetweenFactor<Pose2>(0, 1, Pose2(0,9, M_PI/2),
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(0.2),
noiseModel::Isotropic::Sigma(3,1)));
fg += BetweenFactor<Pose2>(0, 1, Pose2(0, 11, M_PI/2),
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(0.2),
noiseModel::Isotropic::Sigma(3,1)));
fg += BetweenFactor<Pose2>(0, 1, Pose2(0, 10, M_PI/2),
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(0.2),
noiseModel::Isotropic::Sigma(3,1)));
fg += BetweenFactor<Pose2>(0, 1, Pose2(0,9, 0),
noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(0.2),
noiseModel::Isotropic::Sigma(3,1)));
Values init;
init.insert(0, Pose2(0, 0, 0));
init.insert(1, Pose2(0, 10, M_PI/4));
Values expected;
expected.insert(0, Pose2(0, 0, 0));
expected.insert(1, Pose2(0, 10, 1.45212));
LevenbergMarquardtParams params;
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize();
auto dl_result = DoglegOptimizer(fg, init).optimize();
EXPECT(assert_equal(expected, gn_result, 1e-1));
EXPECT(assert_equal(expected, lm_result, 1e-1));
EXPECT(assert_equal(expected, dl_result, 1e-1));
}
/* ************************************************************************* */
TEST(NonlinearOptimizer, RobustMeanCalculation) {
NonlinearFactorGraph fg;
Values init;
Values expected;
auto huber = noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(20),
noiseModel::Isotropic::Sigma(1, 1));
vector<double> pts{-10,-3,-1,1,3,10,1000};
for(auto pt : pts) {
fg.addPrior(0, pt, huber);
}
init.insert(0, 100.0);
expected.insert(0, 3.33333333);
DoglegParams params_dl;
params_dl.setRelativeErrorTol(1e-10);
auto gn_result = GaussNewtonOptimizer(fg, init).optimize();
auto lm_result = LevenbergMarquardtOptimizer(fg, init).optimize();
auto dl_result = DoglegOptimizer(fg, init, params_dl).optimize();
EXPECT(assert_equal(expected, gn_result, tol));
EXPECT(assert_equal(expected, lm_result, tol));
EXPECT(assert_equal(expected, dl_result, tol));
}
/* ************************************************************************* */
TEST(NonlinearOptimizer, disconnected_graph) {
Values expected;
expected.insert(X(1), Pose2(0.,0.,0.));
expected.insert(X(2), Pose2(1.5,0.,0.));
expected.insert(X(3), Pose2(3.0,0.,0.));
Values init;
init.insert(X(1), Pose2(0.,0.,0.));
init.insert(X(2), Pose2(0.,0.,0.));
init.insert(X(3), Pose2(0.,0.,0.));
NonlinearFactorGraph graph;
graph.addPrior(X(1), Pose2(0.,0.,0.), noiseModel::Isotropic::Sigma(3,1));
graph += BetweenFactor<Pose2>(X(1),X(2), Pose2(1.5,0.,0.), noiseModel::Isotropic::Sigma(3,1));
graph.addPrior(X(3), Pose2(3.,0.,0.), noiseModel::Isotropic::Sigma(3,1));
EXPECT(assert_equal(expected, LevenbergMarquardtOptimizer(graph, init).optimize()));
}
/* ************************************************************************* */
#include <gtsam/linear/iterative.h>
class IterativeLM : public LevenbergMarquardtOptimizer {
/// Solver specific parameters
ConjugateGradientParameters cgParams_;
Values initial_;
public:
/// Constructor
IterativeLM(const NonlinearFactorGraph& graph, const Values& initialValues,
const ConjugateGradientParameters& p,
const LevenbergMarquardtParams& params =
LevenbergMarquardtParams::LegacyDefaults())
: LevenbergMarquardtOptimizer(graph, initialValues, params),
cgParams_(p),
initial_(initialValues) {}
/// Solve that uses conjugate gradient
VectorValues solve(const GaussianFactorGraph& gfg,
const NonlinearOptimizerParams& params) const override {
VectorValues zeros = initial_.zeroVectors();
return conjugateGradientDescent(gfg, zeros, cgParams_);
}
};
/* ************************************************************************* */
TEST(NonlinearOptimizer, subclass_solver) {
Values expected;
expected.insert(X(1), Pose2(0., 0., 0.));
expected.insert(X(2), Pose2(1.5, 0., 0.));
expected.insert(X(3), Pose2(3.0, 0., 0.));
Values init;
init.insert(X(1), Pose2(0., 0., 0.));
init.insert(X(2), Pose2(0., 0., 0.));
init.insert(X(3), Pose2(0., 0., 0.));
NonlinearFactorGraph graph;
graph.addPrior(X(1), Pose2(0., 0., 0.), noiseModel::Isotropic::Sigma(3, 1));
graph += BetweenFactor<Pose2>(X(1), X(2), Pose2(1.5, 0., 0.),
noiseModel::Isotropic::Sigma(3, 1));
graph.addPrior(X(3), Pose2(3., 0., 0.), noiseModel::Isotropic::Sigma(3, 1));
ConjugateGradientParameters p;
Values actual = IterativeLM(graph, init, p).optimize();
EXPECT(assert_equal(expected, actual, 1e-4));
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, logfile )
{
NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
Point2 x0(3,3);
Values c0;
c0.insert(X(1), x0);
// Levenberg-Marquardt
LevenbergMarquardtParams lmParams;
static const string filename("testNonlinearOptimizer.log");
lmParams.logFile = filename;
LevenbergMarquardtOptimizer(fg, c0, lmParams).optimize();
// stringstream expected,actual;
// ifstream ifs(("../../gtsam/tests/" + filename).c_str());
// if(!ifs) throw std::runtime_error(filename);
// expected << ifs.rdbuf();
// ifs.close();
// ifstream ifs2(filename.c_str());
// if(!ifs2) throw std::runtime_error(filename);
// actual << ifs2.rdbuf();
// EXPECT(actual.str()==expected.str());
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, iterationHook_LM )
{
NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
Point2 x0(3,3);
Values c0;
c0.insert(X(1), x0);
// Levenberg-Marquardt
LevenbergMarquardtParams lmParams;
size_t lastIterCalled = 0;
lmParams.iterationHook = [&](size_t iteration, double oldError, double newError)
{
// Tests:
lastIterCalled = iteration;
EXPECT(newError<oldError);
// Example of evolution printout:
//std::cout << "iter: " << iteration << " error: " << oldError << " => " << newError <<"\n";
};
LevenbergMarquardtOptimizer(fg, c0, lmParams).optimize();
EXPECT(lastIterCalled>5);
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, iterationHook_CG )
{
NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
Point2 x0(3,3);
Values c0;
c0.insert(X(1), x0);
// Levenberg-Marquardt
NonlinearConjugateGradientOptimizer::Parameters cgParams;
size_t lastIterCalled = 0;
cgParams.iterationHook = [&](size_t iteration, double oldError, double newError)
{
// Tests:
lastIterCalled = iteration;
EXPECT(newError<oldError);
// Example of evolution printout:
//std::cout << "iter: " << iteration << " error: " << oldError << " => " << newError <<"\n";
};
NonlinearConjugateGradientOptimizer(fg, c0, cgParams).optimize();
EXPECT(lastIterCalled>5);
}
/* ************************************************************************* */
//// Minimal traits example
struct MyType : public Vector3 {
using Vector3::Vector3;
};
namespace gtsam {
template <>
struct traits<MyType> {
static bool Equals(const MyType& a, const MyType& b, double tol) {
return (a - b).array().abs().maxCoeff() < tol;
}
static void Print(const MyType&, const string&) {}
static int GetDimension(const MyType&) { return 3; }
static MyType Retract(const MyType& a, const Vector3& b) { return a + b; }
static Vector3 Local(const MyType& a, const MyType& b) { return b - a; }
};
}
TEST(NonlinearOptimizer, Traits) {
NonlinearFactorGraph fg;
fg.addPrior(0, MyType(0, 0, 0), noiseModel::Isotropic::Sigma(3, 1));
Values init;
init.insert(0, MyType(0,0,0));
LevenbergMarquardtOptimizer optimizer(fg, init);
Values actual = optimizer.optimize();
EXPECT(assert_equal(init, actual));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */
|