File: testPCGSolver.cpp

package info (click to toggle)
gtsam 4.2.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 46,108 kB
  • sloc: cpp: 127,191; python: 14,312; xml: 8,442; makefile: 252; sh: 119; ansic: 101
file content (191 lines) | stat: -rw-r--r-- 7,112 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/* ----------------------------------------------------------------------------

 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 * Atlanta, Georgia 30332-0415
 * All Rights Reserved
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)

 * See LICENSE for the license information

 * -------------------------------------------------------------------------- */

/**
 * @file    testPCGSolver.cpp
 * @brief   Unit tests for PCGSolver class
 * @author  Yong-Dian Jian
 * @date    Aug 06, 2014
 */

#include <tests/smallExample.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/PCGSolver.h>
#include <gtsam/linear/SubgraphPreconditioner.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/Matrix.h>

#include <CppUnitLite/TestHarness.h>

#include <boost/shared_ptr.hpp>

#include <iostream>
#include <fstream>

using namespace std;
using namespace gtsam;

const double tol = 1e-3;

using symbol_shorthand::X;
using symbol_shorthand::L;

/* ************************************************************************* */
// Test cholesky decomposition
TEST( PCGSolver, llt ) {
  Matrix R = (Matrix(3,3) <<
                1., -1., -1.,
                0.,  2., -1.,
                0.,  0.,  1.).finished();
  Matrix AtA = R.transpose() * R;

  Vector Rvector = (Vector(9) << 1., -1., -1.,
                                 0.,  2., -1.,
                                 0.,  0.,  1.).finished();
//  Vector Rvector = (Vector(6) << 1., -1., -1.,
//                                      2., -1.,
//                                           1.).finished();

  Vector b = Vector3(1., 2., 3.);

  Vector x = Vector3(6.5, 2.5, 3.) ;

  /* test cholesky */
  Matrix Rhat = AtA.llt().matrixL().transpose();
  EXPECT(assert_equal(R, Rhat, 1e-5));

  /* test backward substitution */
  Vector xhat = Rhat.triangularView<Eigen::Upper>().solve(b);
  EXPECT(assert_equal(x, xhat, 1e-5));

  /* test in-place back substitution */
  xhat = b;
  Rhat.triangularView<Eigen::Upper>().solveInPlace(xhat);
  EXPECT(assert_equal(x, xhat, 1e-5));

  /* test triangular matrix map */
  Eigen::Map<Eigen::MatrixXd> Radapter(Rvector.data(), 3, 3);
  xhat = Radapter.transpose().triangularView<Eigen::Upper>().solve(b);
  EXPECT(assert_equal(x, xhat, 1e-5));

}

/* ************************************************************************* */
// Test GaussianFactorGraphSystem::multiply and getb
TEST( GaussianFactorGraphSystem, multiply_getb)
{
  // Create a Gaussian Factor Graph
  GaussianFactorGraph simpleGFG;
  SharedDiagonal unit2 = noiseModel::Diagonal::Sigmas(Vector2(0.5, 0.3));
  simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << -1, -1).finished(), unit2);
  simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10).finished(), 0, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << 2, -1).finished(), unit2);
  simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << 0, 1).finished(), unit2);
  simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << -1, 1.5).finished(), unit2);
  simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
  simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
  simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);

  // Create a dummy-preconditioner and a GaussianFactorGraphSystem
  DummyPreconditioner dummyPreconditioner;
  KeyInfo keyInfo(simpleGFG);
  std::map<Key,Vector> lambda;
  dummyPreconditioner.build(simpleGFG, keyInfo, lambda);
  GaussianFactorGraphSystem gfgs(simpleGFG, dummyPreconditioner, keyInfo, lambda);

  // Prepare container for each variable
  Vector initial, residual, preconditionedResidual, p, actualAp;
  initial = (Vector(6) << 0., 0., 0., 0., 0., 0.).finished();

  // Calculate values using GaussianFactorGraphSystem same as inside of PCGSolver
  gfgs.residual(initial, residual);                         /* r = b-Ax */
  gfgs.leftPrecondition(residual, preconditionedResidual);  /* pr = L^{-1} (b-Ax) */
  gfgs.rightPrecondition(preconditionedResidual, p);        /* p = L^{-T} pr */
  gfgs.multiply(p, actualAp);                                     /* A p */

  // Expected value of Ap for the first iteration of this example problem
  Vector expectedAp = (Vector(6) << 100400, -249074.074, -2080, 148148.148, -146480, 37962.963).finished();
  EXPECT(assert_equal(expectedAp, actualAp, 1e-3));

  // Expected value of getb
  Vector expectedb = (Vector(6) << 100.0, -194.444, -20.0, 138.889, -120.0, -55.556).finished();
  Vector actualb;
  gfgs.getb(actualb);
  EXPECT(assert_equal(expectedb, actualb, 1e-3));
}

/* ************************************************************************* */
// Test Dummy Preconditioner
TEST(PCGSolver, dummy) {
  LevenbergMarquardtParams params;
  params.linearSolverType = LevenbergMarquardtParams::Iterative;
  auto pcg = boost::make_shared<PCGSolverParameters>();
  pcg->preconditioner_ = boost::make_shared<DummyPreconditionerParameters>();
  params.iterativeParams = pcg;

  NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();

  Point2 x0(10, 10);
  Values c0;
  c0.insert(X(1), x0);

  Values actualPCG = LevenbergMarquardtOptimizer(fg, c0, params).optimize();

  DOUBLES_EQUAL(0, fg.error(actualPCG), tol);
}

/* ************************************************************************* */
// Test Block-Jacobi Precondioner
TEST(PCGSolver, blockjacobi) {
  LevenbergMarquardtParams params;
  params.linearSolverType = LevenbergMarquardtParams::Iterative;
  auto pcg = boost::make_shared<PCGSolverParameters>();
  pcg->preconditioner_ =
      boost::make_shared<BlockJacobiPreconditionerParameters>();
  params.iterativeParams = pcg;

  NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();

  Point2 x0(10, 10);
  Values c0;
  c0.insert(X(1), x0);

  Values actualPCG = LevenbergMarquardtOptimizer(fg, c0, params).optimize();

  DOUBLES_EQUAL(0, fg.error(actualPCG), tol);
}

/* ************************************************************************* */
// Test Incremental Subgraph PCG Solver
TEST(PCGSolver, subgraph) {
  LevenbergMarquardtParams params;
  params.linearSolverType = LevenbergMarquardtParams::Iterative;
  auto pcg = boost::make_shared<PCGSolverParameters>();
  pcg->preconditioner_ = boost::make_shared<SubgraphPreconditionerParameters>();
  params.iterativeParams = pcg;

  NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();

  Point2 x0(10, 10);
  Values c0;
  c0.insert(X(1), x0);

  Values actualPCG = LevenbergMarquardtOptimizer(fg, c0, params).optimize();

  DOUBLES_EQUAL(0, fg.error(actualPCG), tol);
}

/* ************************************************************************* */
int main() {
  TestResult tr;
  return TestRegistry::runAllTests(tr);
}