1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testTranslationRecovery.cpp
* @author Frank Dellaert, Akshay Krishnan
* @date March 2020
* @brief test recovering translations when rotations are given.
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/sfm/SfmData.h>
#include <gtsam/sfm/TranslationRecovery.h>
#include <gtsam/slam/dataset.h>
using namespace std;
using namespace gtsam;
// Returns the Unit3 direction as measured in the binary measurement, but
// computed from the input poses. Helper function used in the unit tests.
Unit3 GetDirectionFromPoses(const Values& poses,
const BinaryMeasurement<Unit3>& unitTranslation) {
const Pose3 wTa = poses.at<Pose3>(unitTranslation.key1()),
wTb = poses.at<Pose3>(unitTranslation.key2());
const Point3 Ta = wTa.translation(), Tb = wTb.translation();
return Unit3(Tb - Ta);
}
/* ************************************************************************* */
// We read the BAL file, which has 3 cameras in it, with poses. We then assume
// the rotations are correct, but translations have to be estimated from
// translation directions only. Since we have 3 cameras, A, B, and C, we can at
// most create three relative measurements, let's call them w_aZb, w_aZc, and
// bZc. These will be of type Unit3. We then call `recoverTranslations` which
// sets up an optimization problem for the three unknown translations.
TEST(TranslationRecovery, BAL) {
const string filename = findExampleDataFile("dubrovnik-3-7-pre");
SfmData db = SfmData::FromBalFile(filename);
// Get camera poses, as Values
size_t j = 0;
Values poses;
for (auto camera : db.cameras) {
poses.insert(j++, camera.pose());
}
// Simulate measurements
const auto relativeTranslations = TranslationRecovery::SimulateMeasurements(
poses, {{0, 1}, {0, 2}, {1, 2}});
// Check simulated measurements.
for (auto& unitTranslation : relativeTranslations) {
EXPECT(assert_equal(GetDirectionFromPoses(poses, unitTranslation),
unitTranslation.measured()));
}
TranslationRecovery algorithm;
const auto graph = algorithm.buildGraph(relativeTranslations);
EXPECT_LONGS_EQUAL(3, graph.size());
// Run translation recovery
const double scale = 2.0;
const auto result = algorithm.run(relativeTranslations, scale);
// Check result for first two translations, determined by prior
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0)));
EXPECT(assert_equal(
Point3(2 * GetDirectionFromPoses(poses, relativeTranslations[0])),
result.at<Point3>(1)));
// Check that the third translations is correct
Point3 Ta = poses.at<Pose3>(0).translation();
Point3 Tb = poses.at<Pose3>(1).translation();
Point3 Tc = poses.at<Pose3>(2).translation();
Point3 expected = (Tc - Ta) * (scale / (Tb - Ta).norm());
EXPECT(assert_equal(expected, result.at<Point3>(2), 1e-4));
// TODO(frank): how to get stats back?
// EXPECT_DOUBLES_EQUAL(0.0199833, actualError, 1e-5);
}
TEST(TranslationRecovery, TwoPoseTest) {
// Create a dataset with 2 poses.
// __ __
// \/ \/
// 0 _____ 1
//
// 0 and 1 face in the same direction but have a translation offset.
Values poses;
poses.insert<Pose3>(0, Pose3(Rot3(), Point3(0, 0, 0)));
poses.insert<Pose3>(1, Pose3(Rot3(), Point3(2, 0, 0)));
auto relativeTranslations =
TranslationRecovery::SimulateMeasurements(poses, {{0, 1}});
// Check simulated measurements.
for (auto& unitTranslation : relativeTranslations) {
EXPECT(assert_equal(GetDirectionFromPoses(poses, unitTranslation),
unitTranslation.measured()));
}
TranslationRecovery algorithm;
const auto graph = algorithm.buildGraph(relativeTranslations);
EXPECT_LONGS_EQUAL(1, graph.size());
// Run translation recovery
const auto result = algorithm.run(relativeTranslations, /*scale=*/3.0);
// Check result for first two translations, determined by prior
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0), 1e-8));
EXPECT(assert_equal(Point3(3, 0, 0), result.at<Point3>(1), 1e-8));
}
TEST(TranslationRecovery, ThreePoseTest) {
// Create a dataset with 3 poses.
// __ __
// \/ \/
// 0 _____ 1
// \ __ /
// \\//
// 3
//
// 0 and 1 face in the same direction but have a translation offset. 3 is in
// the same direction as 0 and 1, in between 0 and 1, with some Y axis offset.
Values poses;
poses.insert<Pose3>(0, Pose3(Rot3(), Point3(0, 0, 0)));
poses.insert<Pose3>(1, Pose3(Rot3(), Point3(2, 0, 0)));
poses.insert<Pose3>(3, Pose3(Rot3(), Point3(1, -1, 0)));
auto relativeTranslations = TranslationRecovery::SimulateMeasurements(
poses, {{0, 1}, {1, 3}, {3, 0}});
// Check simulated measurements.
for (auto& unitTranslation : relativeTranslations) {
EXPECT(assert_equal(GetDirectionFromPoses(poses, unitTranslation),
unitTranslation.measured()));
}
TranslationRecovery algorithm;
const auto graph = algorithm.buildGraph(relativeTranslations);
EXPECT_LONGS_EQUAL(3, graph.size());
const auto result = algorithm.run(relativeTranslations, /*scale=*/3.0);
// Check result
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0), 1e-8));
EXPECT(assert_equal(Point3(3, 0, 0), result.at<Point3>(1), 1e-8));
EXPECT(assert_equal(Point3(1.5, -1.5, 0), result.at<Point3>(3), 1e-8));
}
TEST(TranslationRecovery, ThreePosesIncludingZeroTranslation) {
// Create a dataset with 3 poses.
// __ __
// \/ \/
// 0 _____ 1
// 2 <|
//
// 0 and 1 face in the same direction but have a translation offset. 2 is at
// the same point as 1 but is rotated, with little FOV overlap.
Values poses;
poses.insert<Pose3>(0, Pose3(Rot3(), Point3(0, 0, 0)));
poses.insert<Pose3>(1, Pose3(Rot3(), Point3(2, 0, 0)));
poses.insert<Pose3>(2, Pose3(Rot3::RzRyRx(-M_PI / 2, 0, 0), Point3(2, 0, 0)));
auto relativeTranslations =
TranslationRecovery::SimulateMeasurements(poses, {{0, 1}, {1, 2}});
// Check simulated measurements.
for (auto& unitTranslation : relativeTranslations) {
EXPECT(assert_equal(GetDirectionFromPoses(poses, unitTranslation),
unitTranslation.measured()));
}
TranslationRecovery algorithm;
// Run translation recovery
const auto result = algorithm.run(relativeTranslations, /*scale=*/3.0);
// Check result
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0), 1e-8));
EXPECT(assert_equal(Point3(3, 0, 0), result.at<Point3>(1), 1e-8));
EXPECT(assert_equal(Point3(3, 0, 0), result.at<Point3>(2), 1e-8));
}
TEST(TranslationRecovery, FourPosesIncludingZeroTranslation) {
// Create a dataset with 4 poses.
// __ __
// \/ \/
// 0 _____ 1
// \ __ 2 <|
// \\//
// 3
//
// 0 and 1 face in the same direction but have a translation offset. 2 is at
// the same point as 1 but is rotated, with very little FOV overlap. 3 is in
// the same direction as 0 and 1, in between 0 and 1, with some Y axis offset.
Values poses;
poses.insert<Pose3>(0, Pose3(Rot3(), Point3(0, 0, 0)));
poses.insert<Pose3>(1, Pose3(Rot3(), Point3(2, 0, 0)));
poses.insert<Pose3>(2, Pose3(Rot3::RzRyRx(-M_PI / 2, 0, 0), Point3(2, 0, 0)));
poses.insert<Pose3>(3, Pose3(Rot3(), Point3(1, -1, 0)));
auto relativeTranslations = TranslationRecovery::SimulateMeasurements(
poses, {{0, 1}, {1, 2}, {1, 3}, {3, 0}});
// Check simulated measurements.
for (auto& unitTranslation : relativeTranslations) {
EXPECT(assert_equal(GetDirectionFromPoses(poses, unitTranslation),
unitTranslation.measured()));
}
TranslationRecovery algorithm;
// Run translation recovery
const auto result = algorithm.run(relativeTranslations, /*scale=*/4.0);
// Check result
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0), 1e-8));
EXPECT(assert_equal(Point3(4, 0, 0), result.at<Point3>(1), 1e-8));
EXPECT(assert_equal(Point3(4, 0, 0), result.at<Point3>(2), 1e-8));
EXPECT(assert_equal(Point3(2, -2, 0), result.at<Point3>(3), 1e-8));
}
TEST(TranslationRecovery, ThreePosesWithZeroTranslation) {
Values poses;
poses.insert<Pose3>(0, Pose3(Rot3::RzRyRx(-M_PI / 6, 0, 0), Point3(0, 0, 0)));
poses.insert<Pose3>(1, Pose3(Rot3(), Point3(0, 0, 0)));
poses.insert<Pose3>(2, Pose3(Rot3::RzRyRx(M_PI / 6, 0, 0), Point3(0, 0, 0)));
auto relativeTranslations = TranslationRecovery::SimulateMeasurements(
poses, {{0, 1}, {1, 2}, {2, 0}});
// Check simulated measurements.
for (auto& unitTranslation : relativeTranslations) {
EXPECT(assert_equal(GetDirectionFromPoses(poses, unitTranslation),
unitTranslation.measured()));
}
TranslationRecovery algorithm;
// Run translation recovery
const auto result = algorithm.run(relativeTranslations, /*scale=*/4.0);
// Check result
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0), 1e-8));
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(1), 1e-8));
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(2), 1e-8));
}
TEST(TranslationRecovery, ThreePosesWithOneSoftConstraint) {
// Create a dataset with 3 poses.
// __ __
// \/ \/
// 0 _____ 1
// \ __ /
// \\//
// 3
//
// 0 and 1 face in the same direction but have a translation offset. 3 is in
// the same direction as 0 and 1, in between 0 and 1, with some Y axis offset.
Values poses;
poses.insert<Pose3>(0, Pose3(Rot3(), Point3(0, 0, 0)));
poses.insert<Pose3>(1, Pose3(Rot3(), Point3(2, 0, 0)));
poses.insert<Pose3>(3, Pose3(Rot3(), Point3(1, -1, 0)));
auto relativeTranslations = TranslationRecovery::SimulateMeasurements(
poses, {{0, 1}, {0, 3}, {1, 3}});
std::vector<BinaryMeasurement<Point3>> betweenTranslations;
betweenTranslations.emplace_back(0, 3, Point3(1, -1, 0),
noiseModel::Isotropic::Sigma(3, 1e-2));
TranslationRecovery algorithm;
auto result =
algorithm.run(relativeTranslations, /*scale=*/0.0, betweenTranslations);
// Check result
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0), 1e-4));
EXPECT(assert_equal(Point3(2, 0, 0), result.at<Point3>(1), 1e-4));
EXPECT(assert_equal(Point3(1, -1, 0), result.at<Point3>(3), 1e-4));
}
TEST(TranslationRecovery, ThreePosesWithOneHardConstraint) {
// Create a dataset with 3 poses.
// __ __
// \/ \/
// 0 _____ 1
// \ __ /
// \\//
// 3
//
// 0 and 1 face in the same direction but have a translation offset. 3 is in
// the same direction as 0 and 1, in between 0 and 1, with some Y axis offset.
Values poses;
poses.insert<Pose3>(0, Pose3(Rot3(), Point3(0, 0, 0)));
poses.insert<Pose3>(1, Pose3(Rot3(), Point3(2, 0, 0)));
poses.insert<Pose3>(3, Pose3(Rot3(), Point3(1, -1, 0)));
auto relativeTranslations = TranslationRecovery::SimulateMeasurements(
poses, {{0, 1}, {0, 3}, {1, 3}});
std::vector<BinaryMeasurement<Point3>> betweenTranslations;
betweenTranslations.emplace_back(0, 1, Point3(2, 0, 0),
noiseModel::Constrained::All(3, 1e2));
TranslationRecovery algorithm;
auto result =
algorithm.run(relativeTranslations, /*scale=*/0.0, betweenTranslations);
// Check result
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0), 1e-4));
EXPECT(assert_equal(Point3(2, 0, 0), result.at<Point3>(1), 1e-4));
EXPECT(assert_equal(Point3(1, -1, 0), result.at<Point3>(3), 1e-4));
}
TEST(TranslationRecovery, NodeWithBetweenFactorAndNoMeasurements) {
// Checks that valid results are obtained when a between translation edge is
// provided with a node that does not have any other relative translations.
Values poses;
poses.insert<Pose3>(0, Pose3(Rot3(), Point3(0, 0, 0)));
poses.insert<Pose3>(1, Pose3(Rot3(), Point3(2, 0, 0)));
poses.insert<Pose3>(3, Pose3(Rot3(), Point3(1, -1, 0)));
poses.insert<Pose3>(4, Pose3(Rot3(), Point3(1, 2, 1)));
auto relativeTranslations = TranslationRecovery::SimulateMeasurements(
poses, {{0, 1}, {0, 3}, {1, 3}});
std::vector<BinaryMeasurement<Point3>> betweenTranslations;
betweenTranslations.emplace_back(0, 1, Point3(2, 0, 0),
noiseModel::Constrained::All(3, 1e2));
// Node 4 only has this between translation prior, no relative translations.
betweenTranslations.emplace_back(0, 4, Point3(1, 2, 1));
TranslationRecovery algorithm;
auto result =
algorithm.run(relativeTranslations, /*scale=*/0.0, betweenTranslations);
// Check result
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0), 1e-4));
EXPECT(assert_equal(Point3(2, 0, 0), result.at<Point3>(1), 1e-4));
EXPECT(assert_equal(Point3(1, -1, 0), result.at<Point3>(3), 1e-4));
EXPECT(assert_equal(Point3(1, 2, 1), result.at<Point3>(4), 1e-4));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */
|