1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/*
* Copyright (C) 2014 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.math;
import com.google.common.collect.ImmutableMap;
import java.math.RoundingMode;
import java.util.Arrays;
import java.util.Collection;
import java.util.Map;
/**
* Enumerates several algorithms providing equivalent functionality to {@link Quantiles}, for use in
* {@link QuantilesBenchmark}. These algorithms each calculate either a single quantile or multiple
* quantiles. All algorithms modify the dataset they are given (the cost of a copy to avoid this
* will be constant across algorithms).
*
* @author Pete Gillin
* @since 20.0
*/
enum QuantilesAlgorithm {
/**
* Sorts the dataset, and picks values from it. When computing multiple quantiles, we sort once
* and pick multiple values.
*/
SORTING {
@Override
double singleQuantile(int index, int scale, double[] dataset) {
Arrays.sort(dataset);
return singleQuantileFromSorted(index, scale, dataset);
}
@Override
Map<Integer, Double> multipleQuantiles(
Collection<Integer> indexes, int scale, double[] dataset) {
Arrays.sort(dataset);
ImmutableMap.Builder<Integer, Double> builder = ImmutableMap.builder();
for (int index : indexes) {
builder.put(index, singleQuantileFromSorted(index, scale, dataset));
}
return builder.buildOrThrow();
}
private double singleQuantileFromSorted(int index, int scale, double[] dataset) {
long numerator = (long) index * (dataset.length - 1);
int positionFloor = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN);
int remainder = (int) (numerator - positionFloor * scale);
if (remainder == 0) {
return dataset[positionFloor];
} else {
double positionFrac = (double) remainder / scale;
return dataset[positionFloor]
+ positionFrac * (dataset[positionFloor + 1] - dataset[positionFloor]);
}
}
},
/**
* Uses quickselect. When calculating multiple quantiles, each quickselect starts from scratch.
*/
QUICKSELECT {
@Override
double singleQuantile(int index, int scale, double[] dataset) {
long numerator = (long) index * (dataset.length - 1);
int positionFloor = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN);
int remainder = (int) (numerator - positionFloor * scale);
double percentileFloor = select(positionFloor, dataset);
if (remainder == 0) {
return percentileFloor;
} else {
double percentileCeiling = getMinValue(dataset, positionFloor + 1);
double positionFrac = (double) remainder / scale;
return percentileFloor + positionFrac * (percentileCeiling - percentileFloor);
}
}
@Override
Map<Integer, Double> multipleQuantiles(
Collection<Integer> indexes, int scale, double[] dataset) {
ImmutableMap.Builder<Integer, Double> builder = ImmutableMap.builder();
for (int index : indexes) {
builder.put(index, singleQuantile(index, scale, dataset));
}
return builder.buildOrThrow();
}
},
/** Uses {@link Quantiles}. */
TARGET {
@Override
double singleQuantile(int index, int scale, double[] dataset) {
return Quantiles.scale(scale).index(index).computeInPlace(dataset);
}
@Override
Map<Integer, Double> multipleQuantiles(
Collection<Integer> indexes, int scale, double[] dataset) {
return Quantiles.scale(scale).indexes(indexes).computeInPlace(dataset);
}
},
;
/**
* Calculates a single quantile. Equivalent to {@code
* Quantiles.scale(scale).index(index).computeInPlace(dataset)}.
*/
abstract double singleQuantile(int index, int scale, double[] dataset);
/**
* Calculates multiple quantiles. Equivalent to {@code
* Quantiles.scale(scale).indexes(indexes).computeInPlace(dataset)}.
*/
abstract Map<Integer, Double> multipleQuantiles(
Collection<Integer> indexes, int scale, double[] dataset);
static double getMinValue(double[] array, int from) {
// This is basically a copy of com.google.math.Rank#getMinValue, with a small change in the
// method signature: we always search to the end of the array.
int min = from;
for (int i = from + 1; i < array.length; i++) {
if (array[min] > array[i]) {
min = i;
}
}
return array[min];
}
static double select(int k, double[] array) {
// This is basically a copy of com.google.math.Rank#select, with a small change in the method
// signature: we make k 0-based rather than 1-based; and we drop from and to, and always work on
// the whole array.
int from = 0;
int to = array.length - 1;
while (true) {
if (to <= from + 1) {
// Two or less elements left.
if (to == from + 1 && array[to] < array[from]) {
// Exactly two elements left.
swap(array, from, to);
}
return array[k];
} else {
int midIndex = (from + to) >>> 1;
// Choose the median of the elements at the from, to and mid indexes,
// and rearrange so that array[from]<=array[from+1], and
// array[to] => array[from + 1].
swap(array, midIndex, from + 1);
if (array[from] > array[to]) {
swap(array, from, to);
}
if (array[from + 1] > array[to]) {
swap(array, from + 1, to);
}
if (array[from] > array[from + 1]) {
swap(array, from, from + 1);
}
// Perform a partition with the selected median.
int low = from + 1, high = to; // Indexes for partitioning.
double partition = array[from + 1]; // Choose partitioning element.
while (true) {
// Skip the elements smaller than the partition.
do {
low++;
} while (array[low] < partition);
// Skip the elements larger than the partition.
do {
high--;
} while (array[high] > partition);
if (high < low) {
break; // Pointers crossed. Partitioning complete.
}
swap(array, low, high); // End of innermost loop.
}
array[from + 1] = array[high]; // Insert partitioning element.
array[high] = partition;
// Continue the partition that contains the kth element.
if (high >= k) {
to = high - 1;
}
if (high <= k) {
from = low;
}
}
}
}
private static void swap(double[] array, int i, int j) {
// This is a copy of com.google.math.Rank#swap.
double temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
|