1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (guava) - Chapter 2: Coding theory functions in GAP</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
</head>
<body>
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">Top of Book</a> <a href="chap1.html">Previous Chapter</a> <a href="chap3.html">Next Chapter</a> </div>
<p><a id="X7A93308C82637F4F" name="X7A93308C82637F4F"></a></p>
<div class="ChapSects"><a href="chap2.html#X7A93308C82637F4F">2. <span class="Heading">Coding theory functions in GAP</span></a>
<div class="ContSect"><span class="nocss"> </span><a href="chap2.html#X80F192497C008691">2.1 <span class="Heading">
Distance functions
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X82E5987E81487D18">2.1-1 AClosestVectorCombinationsMatFFEVecFFE</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X870DE258833C5AA0">2.1-2 AClosestVectorComb..MatFFEVecFFECoords</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X85135CEB86E61D49">2.1-3 DistancesDistributionMatFFEVecFFE</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7F2F630984A9D3D6">2.1-4 DistancesDistributionVecFFEsVecFFE</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7C9F4D657F9BA5A1">2.1-5 WeightVecFFE</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X85AA5C6587559C1C">2.1-6 DistanceVecFFE</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap2.html#X87C3D1B984960984">2.2 <span class="Heading">
Other functions
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7C2425A786F09054">2.2-1 ConwayPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap2.html#X7ECC593583E68A6C">2.2-2 RandomPrimitivePolynomial</a></span>
</div>
</div>
<h3>2. <span class="Heading">Coding theory functions in GAP</span></h3>
<p>This chapter will recall from the GAP4.4.5 manual some of the GAP coding theory and finite field functions useful for coding theory. Some of these functions are partially written in C for speed. The main functions are</p>
<ul>
<li><p><code class="code">AClosestVectorCombinationsMatFFEVecFFE</code>,</p>
</li>
<li><p><code class="code">AClosestVectorCombinationsMatFFEVecFFECoords</code>,</p>
</li>
<li><p><code class="code">CosetLeadersMatFFE</code>,</p>
</li>
<li><p><code class="code">DistancesDistributionMatFFEVecFFE</code>,</p>
</li>
<li><p><code class="code">DistancesDistributionVecFFEsVecFFE</code>,</p>
</li>
<li><p><code class="code">DistanceVecFFE</code> and <code class="code">WeightVecFFE</code>,</p>
</li>
<li><p><code class="code">ConwayPolynomial</code> and <code class="code">IsCheapConwayPolynomial</code>,</p>
</li>
<li><p><code class="code">IsPrimitivePolynomial</code>, and <code class="code">RandomPrimitivePolynomial</code>.</p>
</li>
</ul>
<p>However, the GAP command <code class="code">PrimitivePolynomial</code> returns an integer primitive polynomial not the finite field kind.</p>
<p><a id="X80F192497C008691" name="X80F192497C008691"></a></p>
<h4>2.1 <span class="Heading">
Distance functions
</span></h4>
<p><a id="X82E5987E81487D18" name="X82E5987E81487D18"></a></p>
<h5>2.1-1 AClosestVectorCombinationsMatFFEVecFFE</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> AClosestVectorCombinationsMatFFEVecFFE</code>( <var class="Arg">mat, F, vec, r, st</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command runs through the <var class="Arg">F</var>-linear combinations of the vectors in the rows of the matrix <var class="Arg">mat</var> that can be written as linear combinations of exactly <var class="Arg">r</var> rows (that is without using zero as a coefficient) and returns a vector from these that is closest to the vector <var class="Arg">vec</var>. The length of the rows of <var class="Arg">mat</var> and the length of <var class="Arg">vec</var> must be equal, and all elements must lie in <var class="Arg">F</var>. The rows of <var class="Arg">mat</var> must be linearly independent. If it finds a vector of distance at most <var class="Arg">st</var>, which must be a nonnegative integer, then it stops immediately and returns this vector.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(3);;
gap> x:= Indeterminate( F );; pol:= x^2+1;
x_1^2+Z(3)^0
gap> C := GeneratorPolCode(pol,8,F);
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> v:=Codeword("12101111");
[ 1 2 1 0 1 1 1 1 ]
gap> v:=VectorCodeword(v);
[ Z(3)^0, Z(3), Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0 ]
gap> G:=GeneratorMat(C);
[ [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ] ]
gap> AClosestVectorCombinationsMatFFEVecFFE(G,F,v,1,1);
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ]
</pre></td></tr></table>
<p><a id="X870DE258833C5AA0" name="X870DE258833C5AA0"></a></p>
<h5>2.1-2 AClosestVectorComb..MatFFEVecFFECoords</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> AClosestVectorComb..MatFFEVecFFECoords</code>( <var class="Arg">mat, F, vec, r, st</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AClosestVectorCombinationsMatFFEVecFFECoords</code> returns a two element list containing (a) the same closest vector as in <code class="code">AClosestVectorCombinationsMatFFEVecFFE</code>, and (b) a vector <var class="Arg">v</var> with exactly <var class="Arg">r</var> non-zero entries, such that v*mat is the closest vector.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(3);;
gap> x:= Indeterminate( F );; pol:= x^2+1;
x_1^2+Z(3)^0
gap> C := GeneratorPolCode(pol,8,F);
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> v:=Codeword("12101111"); v:=VectorCodeword(v);;
[ 1 2 1 0 1 1 1 1 ]
gap> G:=GeneratorMat(C);;
gap> AClosestVectorCombinationsMatFFEVecFFECoords(G,F,v,1,1);
[ [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]
</pre></td></tr></table>
<p><a id="X85135CEB86E61D49" name="X85135CEB86E61D49"></a></p>
<h5>2.1-3 DistancesDistributionMatFFEVecFFE</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DistancesDistributionMatFFEVecFFE</code>( <var class="Arg">mat, f, vec</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">DistancesDistributionMatFFEVecFFE</code> returns the distances distribution of the vector <var class="Arg">vec</var> to the vectors in the vector space generated by the rows of the matrix <var class="Arg">mat</var> over the finite field <var class="Arg">f</var>. All vectors must have the same length, and all elements must lie in a common field. The distances distribution is a list d of length Length(vec)+1, such that the value d[i] is the number of vectors in vecs that have distance i+1 to <var class="Arg">vec</var>.</p>
<table class="example">
<tr><td><pre>
gap> v:=[ Z(3)^0, Z(3), Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0 ];;
gap> vecs:=[ [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ] ];;
gap> DistancesDistributionMatFFEVecFFE(vecs,GF(3),v);
[ 0, 4, 6, 60, 109, 216, 192, 112, 30 ]
</pre></td></tr></table>
<p><a id="X7F2F630984A9D3D6" name="X7F2F630984A9D3D6"></a></p>
<h5>2.1-4 DistancesDistributionVecFFEsVecFFE</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DistancesDistributionVecFFEsVecFFE</code>( <var class="Arg">vecs, vec</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">DistancesDistributionVecFFEsVecFFE</code> returns the distances distribution of the vector <var class="Arg">vec</var> to the vectors in the list <var class="Arg">vecs</var>. All vectors must have the same length, and all elements must lie in a common field. The distances distribution is a list d of length Length(vec)+1, such that the value d[i] is the number of vectors in <var class="Arg">vecs</var> that have distance i+1 to <var class="Arg">vec</var>.</p>
<table class="example">
<tr><td><pre>
gap> v:=[ Z(3)^0, Z(3), Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0 ];;
gap> vecs:=[ [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ],
> [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ] ];;
gap> DistancesDistributionVecFFEsVecFFE(vecs,v);
[ 0, 0, 0, 0, 0, 4, 0, 1, 1 ]
</pre></td></tr></table>
<p><a id="X7C9F4D657F9BA5A1" name="X7C9F4D657F9BA5A1"></a></p>
<h5>2.1-5 WeightVecFFE</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> WeightVecFFE</code>( <var class="Arg">vec</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">WeightVecFFE</code> returns the weight of the finite field vector <var class="Arg">vec</var>, i.e. the number of nonzero entries.</p>
<table class="example">
<tr><td><pre>
gap> v:=[ Z(3)^0, Z(3), Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0 ];;
gap> WeightVecFFE(v);
7
</pre></td></tr></table>
<p><a id="X85AA5C6587559C1C" name="X85AA5C6587559C1C"></a></p>
<h5>2.1-6 DistanceVecFFE</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DistanceVecFFE</code>( <var class="Arg">vec1, vec2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The <em>Hamming metric</em> on GF(q)^n is the function</p>
<p class="pcenter">
dist((v_1,...,v_n),(w_1,...,w_n))
=|\{i\in [1..n]\ |\ v_i\not= w_i\}|.
</p>
<p>This is also called the (Hamming) distance between v=(v_1,...,v_n) and w=(w_1,...,w_n). <code class="code">DistanceVecFFE</code> returns the distance between the two vectors <var class="Arg">vec1</var> and <var class="Arg">vec2</var>, which must have the same length and whose elements must lie in a common field. The distance is the number of places where <var class="Arg">vec1</var> and <var class="Arg">vec2</var> differ.</p>
<table class="example">
<tr><td><pre>
gap> v1:=[ Z(3)^0, Z(3), Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0 ];;
gap> v2:=[ Z(3), Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0 ];;
gap> DistanceVecFFE(v1,v2);
2
</pre></td></tr></table>
<p><a id="X87C3D1B984960984" name="X87C3D1B984960984"></a></p>
<h4>2.2 <span class="Heading">
Other functions
</span></h4>
<p>We basically repeat, with minor variation, the material in the GAP manual or from Frank Luebeck's website <span class="URL"><a href="http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol">http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol</a></span> on Conway polynomials. The <strong class="button">prime fields</strong>: If p>= 2 is a prime then GF(p) denotes the field Z}/pZ}, with addition and multiplication performed mod p.</p>
<p>The <strong class="button">prime power fields</strong>: Suppose q=p^r is a prime power, r>1, and put F=GF(p). Let F[x] denote the ring of all polynomials over F and let f(x) denote a monic irreducible polynomial in F[x] of degree r. The quotient E = F[x]/(f(x))= F[x]/f(x)F[x] is a field with q elements. If f(x) and E are related in this way, we say that f(x) is the <strong class="button">defining polynomial</strong> of E. Any defining polynomial factors completely into distinct linear factors over the field it defines.</p>
<p>For any finite field F, the multiplicative group of non-zero elements F^x is a cyclic group. An alpha in F is called a <strong class="button">primitive element</strong> if it is a generator of F^x. A defining polynomial f(x) of F is said to be <strong class="button">primitive</strong> if it has a root in F which is a primitive element.</p>
<p><a id="X7C2425A786F09054" name="X7C2425A786F09054"></a></p>
<h5>2.2-1 ConwayPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ConwayPolynomial</code>( <var class="Arg">p, n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>A standard notation for the elements of GF(p) is given via the representatives 0, ..., p-1 of the cosets modulo p. We order these elements by 0 < 1 < 2 < ... < p-1. We introduce an ordering of the polynomials of degree r over GF(p). Let g(x) = g_rx^r + ... + g_0 and h(x) = h_rx^r + ... + h_0 (by convention, g_i=h_i=0 for i > r). Then we define g < h if and only if there is an index k with g_i = h_i for i > k and (-1)^r-k g_k < (-1)^r-k h_k.</p>
<p>The <strong class="button">Conway polynomial</strong> f_p,r(x) for GF(p^r) is the smallest polynomial of degree r with respect to this ordering such that:</p>
<ul>
<li><p>f_p,r(x) is monic,</p>
</li>
<li><p>f_p,r(x) is primitive, that is, any zero is a generator of the (cyclic) multiplicative group of GF(p^r),</p>
</li>
<li><p>for each proper divisor m of r we have that f_p,m(x^(p^r-1) / (p^m-1)) = 0 mod f_p,r(x); that is, the (p^r-1) / (p^m-1)-th power of a zero of f_p,r(x) is a zero of f_p,m(x).</p>
</li>
</ul>
<p><code class="code">ConwayPolynomial(p,n)</code> returns the polynomial f_p,r(x) defined above.</p>
<p><code class="code">IsCheapConwayPolynomial(p,n)</code> returns true if <code class="code">ConwayPolynomial( p, n )</code> will give a result in reasonable time. This is either the case when this polynomial is pre-computed, or if n,p are not too big.</p>
<p><a id="X7ECC593583E68A6C" name="X7ECC593583E68A6C"></a></p>
<h5>2.2-2 RandomPrimitivePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> RandomPrimitivePolynomial</code>( <var class="Arg">F, n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For a finite field <var class="Arg">F</var> and a positive integer <var class="Arg">n</var> this function returns a primitive polynomial of degree <var class="Arg">n</var> over <var class="Arg">F</var>, that is a zero of this polynomial has maximal multiplicative order |F|^n-1.</p>
<p><code class="code">IsPrimitivePolynomial(f)</code> can be used to check if a univariate polynomial <var class="Arg">f</var> is primitive or not.</p>
<div class="chlinkprevnextbot"> <a href="chap0.html">Top of Book</a> <a href="chap1.html">Previous Chapter</a> <a href="chap3.html">Next Chapter</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|