File: chap4.html

package info (click to toggle)
guava 3.6-2
  • links: PTS
  • area: main
  • in suites: lenny, squeeze, wheezy
  • size: 11,788 kB
  • ctags: 2,359
  • sloc: ansic: 20,846; xml: 10,043; sh: 2,855; makefile: 388
file content (2086 lines) | stat: -rw-r--r-- 123,964 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (guava) - Chapter 4: Codes</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
</head>
<body>


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">Top of Book</a>&nbsp;  &nbsp;<a href="chap3.html">Previous Chapter</a>&nbsp;  &nbsp;<a href="chap5.html">Next Chapter</a>&nbsp;  </div>

<p><a id="X85FDDF0B7B7D87FB" name="X85FDDF0B7B7D87FB"></a></p>
<div class="ChapSects"><a href="chap4.html#X85FDDF0B7B7D87FB">4. <span class="Heading">Codes</span></a>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X7ECE60E1873B49A6">4.1 <span class="Heading">Comparisons of Codes</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8123456781234567">4.1-1 =</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X832DA51986A3882C">4.2 <span class="Heading">
Operations for Codes
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7F2703417F270341">4.2-1 +</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8123456781234567">4.2-2 *</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8123456781234567">4.2-3 *</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8744BA5E78BCF3F9">4.2-4 InformationWord</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X864091AA7D4AFE86">4.3 <span class="Heading">
Boolean Functions for Codes
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X87BDB89B7AAFE8AD">4.3-1 in</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X79CA175481F8105F">4.3-2 IsSubset</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7F71186281DEA83A">4.3-3 IsCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7B24748A7CE8D4B9">4.3-4 IsLinearCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X850C23D07C9A9B19">4.3-5 IsCyclicCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X85E3BD26856424F7">4.3-6 IsPerfectCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X789380D28018EC3F">4.3-7 IsMDSCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X80166D8D837FEB58">4.3-8 IsSelfDualCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7B2A0CC481D2366F">4.3-9 IsSelfOrthogonalCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8358D43981EBE970">4.3-10 IsDoublyEvenCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X79ACAEF5865414A0">4.3-11 IsSinglyEvenCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7CE150ED7C3DC455">4.3-12 IsEvenCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7B6DB8CC84FCAC1C">4.3-13 IsSelfComplementaryCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7AFD3844859B20BF">4.3-14 IsAffineCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X861D32FB81EF0D77">4.3-15 IsAlmostAffineCode</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X86442DCD7A0B2146">4.4 <span class="Heading">
Equivalence and Isomorphism of Codes
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X843034687D9C75B0">4.4-1 IsEquivalent</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X874DED8E86BC180B">4.4-2 CodeIsomorphism</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X87677B0787B4461A">4.4-3 AutomorphismGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X79F3261F86C29F6D">4.4-4 PermutationAutomorphismGroup</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X866EB39483DDAE72">4.5 <span class="Heading">
Domain Functions for Codes
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X808A4061809A6E67">4.5-1 IsFinite</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X858ADA3B7A684421">4.5-2 Size</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X86F070E0807DC34E">4.5-3 LeftActingDomain</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7E6926C6850E7C4E">4.5-4 Dimension</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X856D927378C33548">4.5-5 AsSSortedList</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X823827927D6A8235">4.6 <span class="Heading">
Printing and Displaying Codes
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7AFA64D97A1F39A3">4.6-1 Print</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X81FB5BE27903EC32">4.6-2 String</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X83A5C59278E13248">4.6-3 Display</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7CD08C8C780543C4">4.6-4 DisplayBoundsInfo</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X7D0F48B685A3ECDD">4.7 <span class="Heading">
Generating (Check) Matrices and Polynomials
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X817224657C9829C4">4.7-1 GeneratorMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X85D4B26E7FB38D57">4.7-2 CheckMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X78E33C3A843B0261">4.7-3 GeneratorPol</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7C45AA317BB1195F">4.7-4 CheckPol</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7F4CB9DB7CD97178">4.7-5 RootsOfCode</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X8170B52D7C154247">4.8 <span class="Heading">
Parameters of Codes
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7A36C3C67B0062E8">4.8-1 WordLength</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7E33FD56792DBF3D">4.8-2 Redundancy</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7B31613D8538BD29">4.8-3 MinimumDistance</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X813F226F855590EE">4.8-4 MinimumDistanceLeon</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X84EDF67B86B4154C">4.8-5 MinimumWeight</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X823B9A797EE42F6D">4.8-6 DecreaseMinimumDistanceUpperBound</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7A679B0A7816B030">4.8-7 MinimumDistanceRandom</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7A195E317D2AB7CE">4.8-8 CoveringRadius</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X81004B007EC5DF58">4.8-9 SetCoveringRadius</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X806384B4815EFF2E">4.9 <span class="Heading">
Distributions
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7AEE64467FB1E0B9">4.9-1 MinimumWeightWords</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8728BCC9842A6E5D">4.9-2 WeightDistribution</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X871FD301820717A4">4.9-3 InnerDistribution</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X87AD54F87C5EE77E">4.9-4 DistancesDistribution</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8495870687195324">4.9-5 OuterDistribution</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap4.html#X7D9A39BF801948C8">4.10 <span class="Heading">
Decoding Functions
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7A42FF7D87FC34AC">4.10-1 Decode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7D870C9387C47D9F">4.10-2 Decodeword</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7D48DE2A84474C6A">4.10-3 GeneralizedReedSolomonDecoderGao</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7CFF98D483502053">4.10-4 GeneralizedReedSolomonListDecoder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X80E17FA27DCAB676">4.10-5 BitFlipDecoder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7B88DEB37F28404A">4.10-6 NearestNeighborGRSDecodewords</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X825E35757D778787">4.10-7 NearestNeighborDecodewords</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7D02E0FE8735D3E6">4.10-8 Syndrome</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7B9E71987E4294A7">4.10-9 SyndromeTable</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X8642D0BD789DA9B5">4.10-10 StandardArray</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X83231E717CCB0247">4.10-11 PermutationDecode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X85B692177E2A745D">4.10-12 PermutationDecodeNC</a></span>
</div>
</div>

<h3>4. <span class="Heading">Codes</span></h3>

<p>A <em>code</em> is a set of codewords (recall a codeword in <strong class="pkg">GUAVA</strong> is simply a sequence of elements of a finite field GF(q), where q is a prime power). We call these the <em>elements</em> of the code. Depending on the type of code, a codeword can be interpreted as a vector or as a polynomial. This is explained in more detail in Chapter <a href="chap3.html#X836BAA9A7EBD08B1"><b>3.</b></a>.</p>

<p>In <strong class="pkg">GUAVA</strong>, codes can be a set specified by its elements (this will be called an <em>unrestricted code</em>), by a generator matrix listing a set of basis elements (for a linear code) or by a generator polynomial (for a cyclic code).</p>

<p>Any code can be defined by its elements. If you like, you can give the code a name.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );
a (4,3,1..4)2..4 example code over GF(2) 
</pre></td></tr></table>

<p>An (n,M,d) code is a code with word <em>length</em> n, <em>size</em> M and <em>minimum distance</em> d. If the minimum distance has not yet been calculated, the lower bound and upper bound are printed (except in the case where the code is a random linear codes, where these are not printed for efficiency reasons). So</p>


<pre class="normal">

a (4,3,1..4)2..4 code over GF(2)

</pre>

<p>means a binary unrestricted code of length 4, with 3 elements and the minimum distance is greater than or equal to 1 and less than or equal to 4 and the covering radius is greater than or equal to 2 and less than or equal to 4.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );
a (4,3,1..4)2..4 example code over GF(2) 
gap&gt; MinimumDistance(C);
2
gap&gt; C;
a (4,3,2)2..4 example code over GF(2) 
</pre></td></tr></table>

<p>If the set of elements is a linear subspace of GF(q)^n, the code is called <em>linear</em>. If a code is linear, it can be defined by its <em>generator matrix</em> or <em>parity check matrix</em>. By definition, the rows of the generator matrix is a basis for the code (as a vector space over GF(q)). By definition, the rows of the parity check matrix is a basis for the dual space of the code,</p>

<p class="pcenter">
C^* = \{ v \in GF(q)^n\ |\ v\cdot c = 0,\ for \ all\ c \in C \}.
</p>


<table class="example">
<tr><td><pre>
gap&gt; G := GeneratorMatCode([[1,0,1],[0,1,2]], "demo code", GF(3) );
a linear [3,2,1..2]1 demo code over GF(3) 
</pre></td></tr></table>

<p>So a linear [n, k, d]r code is a code with word <em>length</em> n, <em>dimension</em> k, <em>minimum distance</em> d and <em>covering radius</em> r.</p>

<p>If the code is linear and all cyclic shifts of its codewords (regarded as n-tuples) are again codewords, the code is called <em>cyclic</em>. All elements of a cyclic code are multiples of the monic polynomial modulo a polynomial x^n -1, where n is the word length of the code. Such a polynomial is called a <em>generator polynomial</em> The generator polynomial must divide x^n-1 and its quotient is called a <em>check polynomial</em>. Multiplying a codeword in a cyclic code by the check polynomial yields zero (modulo the polynomial x^n -1). In <strong class="pkg">GUAVA</strong>, a cyclic code can be defined by either its generator polynomial or check polynomial.</p>


<table class="example">
<tr><td><pre>
gap&gt; G := GeneratorPolCode(Indeterminate(GF(2))+Z(2)^0, 7, GF(2) );
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
</pre></td></tr></table>

<p>It is possible that <strong class="pkg">GUAVA</strong> does not know that an unrestricted code is in fact linear. This situation occurs for example when a code is generated from a list of elements with the function <code class="code">ElementsCode</code> (see <code class="func">ElementsCode</code> (<a href="chap5.html#X81AACBDD86E89D7D"><b>5.1-1</b></a>)). By calling the function <code class="code">IsLinearCode</code> (see <code class="func">IsLinearCode</code> (<a href="chap4.html#X7B24748A7CE8D4B9"><b>4.3-4</b></a>)), <strong class="pkg">GUAVA</strong> tests if the code can be represented by a generator matrix. If so, the code record and the operations are converted accordingly.</p>


<table class="example">
<tr><td><pre>
gap&gt; L := Z(2)*[ [0,0,0], [1,0,0], [0,1,1], [1,1,1] ];;
gap&gt; C := ElementsCode( L, GF(2) );
a (3,4,1..3)1 user defined unrestricted code over GF(2)
# so far, GUAVA does not know what kind of code this is
gap&gt; IsLinearCode( C );
true                      # it is linear
gap&gt; C;
a linear [3,2,1]1 user defined unrestricted code over GF(2) 
</pre></td></tr></table>

<p>Of course the same holds for unrestricted codes that in fact are cyclic, or codes, defined by a generator matrix, that actually are cyclic.</p>

<p>Codes are printed simply by giving a small description of their parameters, the word length, size or dimension and perhaps the minimum distance, followed by a short description and the base field of the code. The function <code class="code">Display</code> gives a more detailed description, showing the construction history of the code.</p>

<p><strong class="pkg">GUAVA</strong> doesn't place much emphasis on the actual encoding and decoding processes; some algorithms have been included though. Encoding works simply by multiplying an information vector with a code, decoding is done by the functions <code class="code">Decode</code> or <code class="code">Decodeword</code>. For more information about encoding and decoding, see sections <a href="chap4.html#X832DA51986A3882C"><b>4.2</b></a> and <a href="chap4.html#X7A42FF7D87FC34AC"><b>4.10-1</b></a>.</p>


<table class="example">
<tr><td><pre>
gap&gt; R := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap&gt; w := [ 1, 0, 1, 1 ] * R;
[ 1 0 0 1 1 0 0 1 ]
gap&gt; Decode( R, w );
[ 1 0 1 1 ]
gap&gt; Decode( R, w + "10000000" ); # One error at the first position
[ 1 0 1 1 ]                       # Corrected by Guava 
</pre></td></tr></table>

<p>Sections <a href="chap4.html#X7ECE60E1873B49A6"><b>4.1</b></a> and <a href="chap4.html#X832DA51986A3882C"><b>4.2</b></a> describe the operations that are available for codes. Section <a href="chap4.html#X864091AA7D4AFE86"><b>4.3</b></a> describe the functions that tests whether an object is a code and what kind of code it is (see <code class="code">IsCode</code>, <code class="func">IsLinearCode</code> (<a href="chap4.html#X7B24748A7CE8D4B9"><b>4.3-4</b></a>) and <code class="code">IsCyclicCode</code>) and various other boolean functions for codes. Section <a href="chap4.html#X86442DCD7A0B2146"><b>4.4</b></a> describe functions about equivalence and isomorphism of codes (see <code class="func">IsEquivalent</code> (<a href="chap4.html#X843034687D9C75B0"><b>4.4-1</b></a>), <code class="func">CodeIsomorphism</code> (<a href="chap4.html#X874DED8E86BC180B"><b>4.4-2</b></a>) and <code class="func">AutomorphismGroup</code> (<a href="chap4.html#X87677B0787B4461A"><b>4.4-3</b></a>)). Section <a href="chap4.html#X866EB39483DDAE72"><b>4.5</b></a> describes functions that work on <em>domains</em> (see Chapter "Domains and their Elements" in the GAP Reference Manual). Section <a href="chap4.html#X823827927D6A8235"><b>4.6</b></a> describes functions for printing and displaying codes. Section <a href="chap4.html#X7D0F48B685A3ECDD"><b>4.7</b></a> describes functions that return the matrices and polynomials that define a code (see <code class="func">GeneratorMat</code> (<a href="chap4.html#X817224657C9829C4"><b>4.7-1</b></a>), <code class="func">CheckMat</code> (<a href="chap4.html#X85D4B26E7FB38D57"><b>4.7-2</b></a>), <code class="func">GeneratorPol</code> (<a href="chap4.html#X78E33C3A843B0261"><b>4.7-3</b></a>), <code class="func">CheckPol</code> (<a href="chap4.html#X7C45AA317BB1195F"><b>4.7-4</b></a>), <code class="func">RootsOfCode</code> (<a href="chap4.html#X7F4CB9DB7CD97178"><b>4.7-5</b></a>)). Section <a href="chap4.html#X8170B52D7C154247"><b>4.8</b></a> describes functions that return the basic parameters of codes (see <code class="func">WordLength</code> (<a href="chap4.html#X7A36C3C67B0062E8"><b>4.8-1</b></a>), <code class="func">Redundancy</code> (<a href="chap4.html#X7E33FD56792DBF3D"><b>4.8-2</b></a>) and <code class="func">MinimumDistance</code> (<a href="chap4.html#X7B31613D8538BD29"><b>4.8-3</b></a>)). Section <a href="chap4.html#X806384B4815EFF2E"><b>4.9</b></a> describes functions that return distance and weight distributions (see <code class="func">WeightDistribution</code> (<a href="chap4.html#X8728BCC9842A6E5D"><b>4.9-2</b></a>), <code class="func">InnerDistribution</code> (<a href="chap4.html#X871FD301820717A4"><b>4.9-3</b></a>), <code class="func">OuterDistribution</code> (<a href="chap4.html#X8495870687195324"><b>4.9-5</b></a>) and <code class="func">DistancesDistribution</code> (<a href="chap4.html#X87AD54F87C5EE77E"><b>4.9-4</b></a>)). Section <a href="chap4.html#X7D9A39BF801948C8"><b>4.10</b></a> describes functions that are related to decoding (see <code class="func">Decode</code> (<a href="chap4.html#X7A42FF7D87FC34AC"><b>4.10-1</b></a>), <code class="func">Decodeword</code> (<a href="chap4.html#X7D870C9387C47D9F"><b>4.10-2</b></a>), <code class="func">Syndrome</code> (<a href="chap4.html#X7D02E0FE8735D3E6"><b>4.10-8</b></a>), <code class="func">SyndromeTable</code> (<a href="chap4.html#X7B9E71987E4294A7"><b>4.10-9</b></a>) and <code class="func">StandardArray</code> (<a href="chap4.html#X8642D0BD789DA9B5"><b>4.10-10</b></a>)). In Chapters <a href="chap5.html#X87EB64ED831CCE99"><b>5.</b></a> and <a href="chap6.html#X866FC1117814B64D"><b>6.</b></a> which follow, we describe functions that generate and manipulate codes.</p>

<p><a id="X7ECE60E1873B49A6" name="X7ECE60E1873B49A6"></a></p>

<h4>4.1 <span class="Heading">Comparisons of Codes</span></h4>

<p><a id="X8123456781234567" name="X8123456781234567"></a></p>

<h5>4.1-1 =</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; =</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The equality operator <code class="code">C1 = C2</code> evaluates to `true' if the codes <var class="Arg">C1</var> and <var class="Arg">C2</var> are equal, and to `false' otherwise.</p>

<p>The equality operator is also denoted <code class="code">EQ</code>, and <code class="code">Eq(C1,C2)</code> is the same as <code class="code">C1 = C2</code>. There is also an inequality operator, &lt; &gt;, or <code class="code">not EQ</code>.</p>

<p>Note that codes are equal if and only if their set of elements are equal. Codes can also be compared with objects of other types. Of course they are never equal.</p>


<table class="example">
<tr><td><pre>
gap&gt; M := [ [0, 0], [1, 0], [0, 1], [1, 1] ];;
gap&gt; C1 := ElementsCode( M, GF(2) );
a (2,4,1..2)0 user defined unrestricted code over GF(2)
gap&gt; M = C1;
false
gap&gt; C2 := GeneratorMatCode( [ [1, 0], [0, 1] ], GF(2) );
a linear [2,2,1]0 code defined by generator matrix over GF(2)
gap&gt; C1 = C2;
true
gap&gt; ReedMullerCode( 1, 3 ) = HadamardCode( 8 );
true
gap&gt; WholeSpaceCode( 5, GF(4) ) = WholeSpaceCode( 5, GF(2) );
false
</pre></td></tr></table>

<p>Another way of comparing codes is <code class="code">IsEquivalent</code>, which checks if two codes are equivalent (see <code class="func">IsEquivalent</code> (<a href="chap4.html#X843034687D9C75B0"><b>4.4-1</b></a>)). By the way, this called <code class="code">CodeIsomorphism</code>. For the current version of <strong class="pkg">GUAVA</strong>, unless one of the codes is unrestricted, this calls Leon's C program (which only works for binary linear codes and only on a unix/linux computer).</p>

<p><a id="X832DA51986A3882C" name="X832DA51986A3882C"></a></p>

<h4>4.2 <span class="Heading">
Operations for Codes
</span></h4>

<p><a id="X7F2703417F270341" name="X7F2703417F270341"></a></p>

<h5>4.2-1 +</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; +</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The operator `+' evaluates to the direct sum of the codes <var class="Arg">C1</var> and <var class="Arg">C2</var>. See <code class="func">DirectSumCode</code> (<a href="chap6.html#X79E00D3A8367D65A"><b>6.2-1</b></a>).</p>


<table class="example">
<tr><td><pre>
gap&gt; C1:=RandomLinearCode(10,5);
a  [10,5,?] randomly generated code over GF(2)
gap&gt; C2:=RandomLinearCode(9,4);
a  [9,4,?] randomly generated code over GF(2)
gap&gt; C1+C2;
a linear [10,9,1]0..10 unknown linear code over GF(2)
</pre></td></tr></table>

<p><a id="X8123456781234567" name="X8123456781234567"></a></p>

<h5>4.2-2 *</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; *</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The operator `*' evaluates to the direct product of the codes <var class="Arg">C1</var> and <var class="Arg">C2</var>. See <code class="func">DirectProductCode</code> (<a href="chap6.html#X7BFBBA5784C293C1"><b>6.2-3</b></a>).</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] ], GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap&gt; C2 := GeneratorMatCode( [ [0,0,1, 1], [0,0,0, 1] ], GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap&gt; C1*C2;
a linear [16,4,1]4..12 direct product code
</pre></td></tr></table>

<p><a id="X8123456781234567" name="X8123456781234567"></a></p>

<h5>4.2-3 *</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; *</code>( <var class="Arg">m, C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The operator <code class="code">m*C</code> evaluates to the element of <var class="Arg">C</var> belonging to information word ('message') <var class="Arg">m</var>. Here <var class="Arg">m</var> may be a vector, polynomial, string or codeword or a list of those. This is the way to do encoding in <strong class="pkg">GUAVA</strong>. <var class="Arg">C</var> must be linear, because in <strong class="pkg">GUAVA</strong>, encoding by multiplication is only defined for linear codes. If <var class="Arg">C</var> is a cyclic code, this multiplication is the same as multiplying an information polynomial <var class="Arg">m</var> by the generator polynomial of <var class="Arg">C</var>. If <var class="Arg">C</var> is a linear code, it is equal to the multiplication of an information vector <var class="Arg">m</var> by a generator matrix of <var class="Arg">C</var>.</p>

<p>To invert this, use the function <code class="code">InformationWord</code> (see <code class="func">InformationWord</code> (<a href="chap4.html#X8744BA5E78BCF3F9"><b>4.2-4</b></a>), which simply calls the function <code class="code">Decode</code>).</p>


<table class="example">
<tr><td><pre>
gap&gt; C := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] ], GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap&gt; m:=Codeword("11");
[ 1 1 ]
gap&gt; m*C;
[ 1 1 0 0 ]
</pre></td></tr></table>

<p><a id="X8744BA5E78BCF3F9" name="X8744BA5E78BCF3F9"></a></p>

<h5>4.2-4 InformationWord</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; InformationWord</code>( <var class="Arg">C, c</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Here <var class="Arg">C</var> is a linear code and <var class="Arg">c</var> is a codeword in it. The command <code class="code">InformationWord</code> returns the message word (or 'information digits') m satisfying <code class="code">c=m*C</code>. This command simply calls <code class="code">Decode</code>, provided <code class="code">c in C</code> is true. Otherwise, it returns an error.</p>

<p>To invert this, use the encoding function <code class="code">*</code> (see <code class="func">*</code> (<a href="chap4.html#X8123456781234567"><b>4.2-3</b></a>)).</p>


<table class="example">
<tr><td><pre>
gap&gt; C:=HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap&gt; c:=Random(C);
[ 0 0 0 1 1 1 1 ]
gap&gt; InformationWord(C,c);
[ 0 1 1 1 ]
gap&gt; c:=Codeword("1111100");
[ 1 1 1 1 1 0 0 ]
gap&gt; InformationWord(C,c);
"ERROR: codeword must belong to code"
gap&gt; C:=NordstromRobinsonCode();
a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap&gt; c:=Random(C);
[ 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 ]
gap&gt; InformationWord(C,c);
"ERROR: code must be linear"
</pre></td></tr></table>

<p><a id="X864091AA7D4AFE86" name="X864091AA7D4AFE86"></a></p>

<h4>4.3 <span class="Heading">
Boolean Functions for Codes
</span></h4>

<p><a id="X87BDB89B7AAFE8AD" name="X87BDB89B7AAFE8AD"></a></p>

<h5>4.3-1 in</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; in</code>( <var class="Arg">c, C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The command <code class="code">c in C</code> evaluates to `true' if <var class="Arg">C</var> contains the codeword or list of codewords specified by <var class="Arg">c</var>. Of course, <var class="Arg">c</var> and <var class="Arg">C</var> must have the same word lengths and base fields.</p>


<table class="example">
<tr><td><pre>
gap&gt; C:= HammingCode( 2 );; eC:= AsSSortedList( C );
[ [ 0 0 0 ], [ 1 1 1 ] ]
gap&gt; eC[2] in C;
true
gap&gt; [ 0 ] in C;
false 
</pre></td></tr></table>

<p><a id="X79CA175481F8105F" name="X79CA175481F8105F"></a></p>

<h5>4.3-2 IsSubset</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsSubset</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The command <code class="code">IsSubset(C1,C2)</code> returns `true' if <var class="Arg">C2</var> is a subcode of <var class="Arg">C1</var>, i.e. if <var class="Arg">C1</var> contains all the elements of <var class="Arg">C2</var>.</p>


<table class="example">
<tr><td><pre>
gap&gt; IsSubset( HammingCode(3), RepetitionCode( 7 ) );
true
gap&gt; IsSubset( RepetitionCode( 7 ), HammingCode( 3 ) );
false
gap&gt; IsSubset( WholeSpaceCode( 7 ), HammingCode( 3 ) );
true
</pre></td></tr></table>

<p><a id="X7F71186281DEA83A" name="X7F71186281DEA83A"></a></p>

<h5>4.3-3 IsCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsCode</code>( <var class="Arg">obj</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsCode</code> returns `true' if <var class="Arg">obj</var>, which can be an object of arbitrary type, is a code and `false' otherwise. Will cause an error if <var class="Arg">obj</var> is an unbound variable.</p>


<table class="example">
<tr><td><pre>
gap&gt; IsCode( 1 );
false
gap&gt; IsCode( ReedMullerCode( 2,3 ) );
true
</pre></td></tr></table>

<p><a id="X7B24748A7CE8D4B9" name="X7B24748A7CE8D4B9"></a></p>

<h5>4.3-4 IsLinearCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsLinearCode</code>( <var class="Arg">obj</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsLinearCode</code> checks if object <var class="Arg">obj</var> (not necessarily a code) is a linear code. If a code has already been marked as linear or cyclic, the function automatically returns `true'. Otherwise, the function checks if a basis G of the elements of <var class="Arg">obj</var> exists that generates the elements of <var class="Arg">obj</var>. If so, G is recorded as a generator matrix of <var class="Arg">obj</var> and the function returns `true'. If not, the function returns `false'.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := ElementsCode( [ [0,0,0],[1,1,1] ], GF(2) );
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap&gt; IsLinearCode( C );
true
gap&gt; IsLinearCode( ElementsCode( [ [1,1,1] ], GF(2) ) );
false
gap&gt; IsLinearCode( 1 );
false 
</pre></td></tr></table>

<p><a id="X850C23D07C9A9B19" name="X850C23D07C9A9B19"></a></p>

<h5>4.3-5 IsCyclicCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsCyclicCode</code>( <var class="Arg">obj</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsCyclicCode</code> checks if the object <var class="Arg">obj</var> is a cyclic code. If a code has already been marked as cyclic, the function automatically returns `true'. Otherwise, the function checks if a polynomial g exists that generates the elements of <var class="Arg">obj</var>. If so, g is recorded as a generator polynomial of <var class="Arg">obj</var> and the function returns `true'. If not, the function returns `false'.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := ElementsCode( [ [0,0,0], [1,1,1] ], GF(2) );
a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap&gt; # GUAVA does not know the code is cyclic
gap&gt; IsCyclicCode( C );      # this command tells GUAVA to find out
true
gap&gt; IsCyclicCode( HammingCode( 4, GF(2) ) );
false
gap&gt; IsCyclicCode( 1 );
false 
</pre></td></tr></table>

<p><a id="X85E3BD26856424F7" name="X85E3BD26856424F7"></a></p>

<h5>4.3-6 IsPerfectCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsPerfectCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsPerfectCode(C)</code> returns `true' if <var class="Arg">C</var> is a perfect code. If Csubset GF(q)^n then, by definition, this means that for some positive integer t, the space GF(q)^n is covered by non-overlapping spheres of (Hamming) radius t centered at the codewords in <var class="Arg">C</var>. For a code with odd minimum distance d = 2t+1, this is the case when every word of the vector space of <var class="Arg">C</var> is at distance at most t from exactly one element of <var class="Arg">C</var>. Codes with even minimum distance are never perfect.</p>

<p>In fact, a code that is not "trivially perfect" (the binary repetition codes of odd length, the codes consisting of one word, and the codes consisting of the whole vector space), and does not have the parameters of a Hamming or Golay code, cannot be perfect (see section 1.12 in <a href="chapBib.html#biBHP03">[HP03]</a>).</p>


<table class="example">
<tr><td><pre>
gap&gt; H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap&gt; IsPerfectCode( H );
true
gap&gt; IsPerfectCode( ElementsCode([[1,1,0],[0,0,1]],GF(2)) );
true
gap&gt; IsPerfectCode( ReedSolomonCode( 6, 3 ) );
false
gap&gt; IsPerfectCode( BinaryGolayCode() );
true 
</pre></td></tr></table>

<p><a id="X789380D28018EC3F" name="X789380D28018EC3F"></a></p>

<h5>4.3-7 IsMDSCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsMDSCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsMDSCode(C)</code> returns true if <var class="Arg">C</var> is a maximum distance separable (MDS) code. A linear [n, k, d]-code of length n, dimension k and minimum distance d is an MDS code if k=n-d+1, in other words if <var class="Arg">C</var> meets the Singleton bound (see <code class="func">UpperBoundSingleton</code> (<a href="chap7.html#X8673277C7F6C04C3"><b>7.1-1</b></a>)). An unrestricted (n, M, d) code is called <em>MDS</em> if k=n-d+1, with k equal to the largest integer less than or equal to the logarithm of M with base q, the size of the base field of <var class="Arg">C</var>.</p>

<p>Well-known MDS codes include the repetition codes, the whole space codes, the even weight codes (these are the only <em>binary</em> MDS codes) and the Reed-Solomon codes.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := ReedSolomonCode( 6, 3 );
a cyclic [6,4,3]2 Reed-Solomon code over GF(7)
gap&gt; IsMDSCode( C1 );
true    # 6-3+1 = 4
gap&gt; IsMDSCode( QRCode( 23, GF(2) ) );
false 
</pre></td></tr></table>

<p><a id="X80166D8D837FEB58" name="X80166D8D837FEB58"></a></p>

<h5>4.3-8 IsSelfDualCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsSelfDualCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsSelfDualCode(C)</code> returns `true' if <var class="Arg">C</var> is self-dual, i.e. when <var class="Arg">C</var> is equal to its dual code (see also <code class="func">DualCode</code> (<a href="chap6.html#X799B12F085ACB609"><b>6.1-14</b></a>)). A code is self-dual if it contains all vectors that its elements are orthogonal to. If a code is self-dual, it automatically is self-orthogonal (see <code class="func">IsSelfOrthogonalCode</code> (<a href="chap4.html#X7B2A0CC481D2366F"><b>4.3-9</b></a>)).</p>

<p>If <var class="Arg">C</var> is a non-linear code, it cannot be self-dual (the dual code is always linear), so `false' is returned. A linear code can only be self-dual when its dimension k is equal to the redundancy r.</p>


<table class="example">
<tr><td><pre>
gap&gt; IsSelfDualCode( ExtendedBinaryGolayCode() );
true
gap&gt; C := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap&gt; DualCode( C ) = C;
true 
</pre></td></tr></table>

<p><a id="X7B2A0CC481D2366F" name="X7B2A0CC481D2366F"></a></p>

<h5>4.3-9 IsSelfOrthogonalCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsSelfOrthogonalCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsSelfOrthogonalCode(C)</code> returns `true' if <var class="Arg">C</var> is self-orthogonal. A code is <em>self-orthogonal</em> if every element of <var class="Arg">C</var> is orthogonal to all elements of <var class="Arg">C</var>, including itself. (In the linear case, this simply means that the generator matrix of <var class="Arg">C</var> multiplied with its transpose yields a null matrix.)</p>


<table class="example">
<tr><td><pre>
gap&gt; R := ReedMullerCode(1,4);
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap&gt; IsSelfOrthogonalCode(R);
true
gap&gt; IsSelfDualCode(R);
false 
</pre></td></tr></table>

<p><a id="X8358D43981EBE970" name="X8358D43981EBE970"></a></p>

<h5>4.3-10 IsDoublyEvenCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsDoublyEvenCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsDoublyEvenCode(C)</code> returns `true' if <var class="Arg">C</var> is a binary linear code which has codewords of weight divisible by 4 only. According to <a href="chapBib.html#biBHP03">[HP03]</a>, a doubly-even code is self-orthogonal and every row in its generator matrix has weight that is divisible by 4.</p>


<table class="example">
<tr><td><pre>
gap&gt; C:=BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap&gt; WeightDistribution(C);
[ 1, 0, 0, 0, 0, 0, 0, 253, 506, 0, 0, 1288, 1288, 0, 0, 506, 253, 0, 0, 0, 0, 0, 0, 1 ]
gap&gt; IsDoublyEvenCode(C);  
false
gap&gt; C:=ExtendedCode(C);  
a linear [24,12,8]4 extended code
gap&gt; WeightDistribution(C);
[ 1, 0, 0, 0, 0, 0, 0, 0, 759, 0, 0, 0, 2576, 0, 0, 0, 759, 0, 0, 0, 0, 0, 0, 0, 1 ]
gap&gt; IsDoublyEvenCode(C);  
true
</pre></td></tr></table>

<p><a id="X79ACAEF5865414A0" name="X79ACAEF5865414A0"></a></p>

<h5>4.3-11 IsSinglyEvenCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsSinglyEvenCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsSinglyEvenCode(C)</code> returns `true' if <var class="Arg">C</var> is a binary self-orthogonal linear code which is not doubly-even. In other words, <var class="Arg">C</var> is a binary self-orthogonal code which has codewords of even weight.</p>


<table class="example">
<tr><td><pre>
gap&gt; x:=Indeterminate(GF(2));                     
x_1
gap&gt; C:=QuasiCyclicCode( [x^0, 1+x^3+x^5+x^6+x^7], 11, GF(2) );
a linear [22,11,1..6]4..7 quasi-cyclic code over GF(2)
gap&gt; IsSelfDualCode(C);  # self-dual is a restriction of self-orthogonal
true
gap&gt; IsDoublyEvenCode(C);
false
gap&gt; IsSinglyEvenCode(C);
true
</pre></td></tr></table>

<p><a id="X7CE150ED7C3DC455" name="X7CE150ED7C3DC455"></a></p>

<h5>4.3-12 IsEvenCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsEvenCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsEvenCode(C)</code> returns `true' if <var class="Arg">C</var> is a binary linear code which has codewords of even weight--regardless whether or not it is self-orthogonal.</p>


<table class="example">
<tr><td><pre>
gap&gt; C:=BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap&gt; IsSelfOrthogonalCode(C);
false
gap&gt; IsEvenCode(C);
false
gap&gt; C:=ExtendedCode(C);
a linear [24,12,8]4 extended code
gap&gt; IsSelfOrthogonalCode(C);
true
gap&gt; IsEvenCode(C);
true
gap&gt; C:=ExtendedCode(QRCode(17,GF(2)));
a linear [18,9,6]3..5 extended code
gap&gt; IsSelfOrthogonalCode(C);
false
gap&gt; IsEvenCode(C);
true
</pre></td></tr></table>

<p><a id="X7B6DB8CC84FCAC1C" name="X7B6DB8CC84FCAC1C"></a></p>

<h5>4.3-13 IsSelfComplementaryCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsSelfComplementaryCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsSelfComplementaryCode</code> returns `true' if</p>

<p class="pcenter">
v \in C \Rightarrow 1 - v \in C,
</p>

<p>where 1 is the all-one word of length n.</p>


<table class="example">
<tr><td><pre>
gap&gt; IsSelfComplementaryCode( HammingCode( 3, GF(2) ) );
true
gap&gt; IsSelfComplementaryCode( EvenWeightSubcode(
&gt; HammingCode( 3, GF(2) ) ) );
false 
</pre></td></tr></table>

<p><a id="X7AFD3844859B20BF" name="X7AFD3844859B20BF"></a></p>

<h5>4.3-14 IsAffineCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsAffineCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsAffineCode</code> returns `true' if <var class="Arg">C</var> is an affine code. A code is called <em>affine</em> if it is an affine space. In other words, a code is affine if it is a coset of a linear code.</p>


<table class="example">
<tr><td><pre>
gap&gt; IsAffineCode( HammingCode( 3, GF(2) ) );
true
gap&gt; IsAffineCode( CosetCode( HammingCode( 3, GF(2) ),
&gt; [ 1, 0, 0, 0, 0, 0, 0 ] ) );
true
gap&gt; IsAffineCode( NordstromRobinsonCode() );
false 
</pre></td></tr></table>

<p><a id="X861D32FB81EF0D77" name="X861D32FB81EF0D77"></a></p>

<h5>4.3-15 IsAlmostAffineCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsAlmostAffineCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsAlmostAffineCode</code> returns `true' if <var class="Arg">C</var> is an almost affine code. A code is called <em>almost affine</em> if the size of any punctured code of <var class="Arg">C</var> is q^r for some r, where q is the size of the alphabet of the code. Every affine code is also almost affine, and every code over GF(2) and GF(3) that is almost affine is also affine.</p>


<table class="example">
<tr><td><pre>
gap&gt; code := ElementsCode( [ [0,0,0], [0,1,1], [0,2,2], [0,3,3],
&gt;                             [1,0,1], [1,1,0], [1,2,3], [1,3,2],
&gt;                             [2,0,2], [2,1,3], [2,2,0], [2,3,1],
&gt;                             [3,0,3], [3,1,2], [3,2,1], [3,3,0] ],
&gt;                             GF(4) );;
gap&gt; IsAlmostAffineCode( code );
true
gap&gt; IsAlmostAffineCode( NordstromRobinsonCode() );
false 
</pre></td></tr></table>

<p><a id="X86442DCD7A0B2146" name="X86442DCD7A0B2146"></a></p>

<h4>4.4 <span class="Heading">
Equivalence and Isomorphism of Codes
</span></h4>

<p><a id="X843034687D9C75B0" name="X843034687D9C75B0"></a></p>

<h5>4.4-1 IsEquivalent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsEquivalent</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>We say that <var class="Arg">C1</var> is <em>permutation equivalent</em> to <var class="Arg">C2</var> if <var class="Arg">C1</var> can be obtained from <var class="Arg">C2</var> by carrying out column permutations. <code class="code">IsEquivalent</code> returns true if <var class="Arg">C1</var> and <var class="Arg">C2</var> are equivalent codes. At this time, <code class="code">IsEquivalent</code> only handles <em>binary</em> codes. (The external unix/linux program <strong class="button">desauto</strong> from J. S. Leon is called by <code class="code">IsEquivalent</code>.) Of course, if <var class="Arg">C1</var> and <var class="Arg">C2</var> are equal, they are also equivalent.</p>

<p>Note that the algorithm is <em>very slow</em> for non-linear codes.</p>

<p>More generally, we say that <var class="Arg">C1</var> is <em>equivalent</em> to <var class="Arg">C2</var> if <var class="Arg">C1</var> can be obtained from <var class="Arg">C2</var> by carrying out column permutations and a permutation of the alphabet.</p>


<table class="example">
<tr><td><pre>
gap&gt; x:= Indeterminate( GF(2) );; pol:= x^3+x+1; 
Z(2)^0+x_1+x_1^3
gap&gt; H := GeneratorPolCode( pol, 7, GF(2));          
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap&gt; H = HammingCode(3, GF(2));
false
gap&gt; IsEquivalent(H, HammingCode(3, GF(2)));
true                        # H is equivalent to a Hamming code
gap&gt; CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7) 
</pre></td></tr></table>

<p><a id="X874DED8E86BC180B" name="X874DED8E86BC180B"></a></p>

<h5>4.4-2 CodeIsomorphism</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; CodeIsomorphism</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>If the two codes <var class="Arg">C1</var> and <var class="Arg">C2</var> are permutation equivalent codes (see <code class="func">IsEquivalent</code> (<a href="chap4.html#X843034687D9C75B0"><b>4.4-1</b></a>)), <code class="code">CodeIsomorphism</code> returns the permutation that transforms <var class="Arg">C1</var> into <var class="Arg">C2</var>. If the codes are not equivalent, it returns `false'.</p>

<p>At this time, <code class="code">IsEquivalent</code> only computes isomorphisms between <em>binary</em> codes on a linux/unix computer (since it calls Leon's C program <strong class="button">desauto</strong>).</p>


<table class="example">
<tr><td><pre>
gap&gt; x:= Indeterminate( GF(2) );; pol:= x^3+x+1; 
Z(2)^0+x_1+x_1^3
gap&gt; H := GeneratorPolCode( pol, 7, GF(2));          
a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap&gt; CodeIsomorphism(H, HammingCode(3, GF(2)));
(3,4)(5,6,7) 
gap&gt; PermutedCode(H, (3,4)(5,6,7)) = HammingCode(3, GF(2));
true 
</pre></td></tr></table>

<p><a id="X87677B0787B4461A" name="X87677B0787B4461A"></a></p>

<h5>4.4-3 AutomorphismGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; AutomorphismGroup</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AutomorphismGroup</code> returns the automorphism group of a linear code <var class="Arg">C</var>. For a binary code, the automorphism group is the largest permutation group of degree n such that each permutation applied to the columns of <var class="Arg">C</var> again yields <var class="Arg">C</var>. <strong class="pkg">GUAVA</strong> calls the external program <strong class="button">desauto</strong> written by J. S. Leon, if it exists, to compute the automorphism group. If Leon's program is not compiled on the system (and in the default directory) then it calls instead the much slower program <code class="code">PermutationAutomorphismGroup</code>.</p>

<p>See Leon <a href="chapBib.html#biBLeon82">[Leo82]</a> for a more precise description of the method, and the <code class="file">guava/src/leon/doc</code> subdirectory for for details about Leon's C programs.</p>

<p>The function <code class="code">PermutedCode</code> permutes the columns of a code (see <code class="func">PermutedCode</code> (<a href="chap6.html#X79577EB27BE8524B"><b>6.1-4</b></a>)).</p>


<table class="example">
<tr><td><pre>
gap&gt; R := RepetitionCode(7,GF(2));
a cyclic [7,1,7]3 repetition code over GF(2)
gap&gt; AutomorphismGroup(R);
Sym( [ 1 .. 7 ] )
                        # every permutation keeps R identical
gap&gt; C := CordaroWagnerCode(7);
a linear [7,2,4]3 Cordaro-Wagner code over GF(2)
gap&gt; AsSSortedList(C);
[ [ 0 0 0 0 0 0 0 ], [ 0 0 1 1 1 1 1 ], [ 1 1 0 0 0 1 1 ], [ 1 1 1 1 1 0 0 ] ]
gap&gt; AutomorphismGroup(C);
Group([ (3,4), (4,5), (1,6)(2,7), (1,2), (6,7) ])
gap&gt; C2 :=  PermutedCode(C, (1,6)(2,7));
a linear [7,2,4]3 permuted code
gap&gt; AsSSortedList(C2);
[ [ 0 0 0 0 0 0 0 ], [ 0 0 1 1 1 1 1 ], [ 1 1 0 0 0 1 1 ], [ 1 1 1 1 1 0 0 ] ]
gap&gt; C2 = C;
true 
</pre></td></tr></table>

<p><a id="X79F3261F86C29F6D" name="X79F3261F86C29F6D"></a></p>

<h5>4.4-4 PermutationAutomorphismGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; PermutationAutomorphismGroup</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PermutationAutomorphismGroup</code> returns the permutation automorphism group of a linear code <var class="Arg">C</var>. This is the largest permutation group of degree n such that each permutation applied to the columns of <var class="Arg">C</var> again yields <var class="Arg">C</var>. It is written in GAP, so is much slower than <code class="code">AutomorphismGroup</code>.</p>

<p>When <var class="Arg">C</var> is binary <code class="code">PermutationAutomorphismGroup</code> does <em>not</em> call <code class="code">AutomorphismGroup</code>, even though they agree mathematically in that case. This way <code class="code">PermutationAutomorphismGroup</code> can be called on any platform which runs GAP.</p>

<p>The older name for this command, <code class="code">PermutationGroup</code>, will become obsolete in the next version of GAP.</p>


<table class="example">
<tr><td><pre>
gap&gt; R := RepetitionCode(3,GF(3));
a cyclic [3,1,3]2 repetition code over GF(3)
gap&gt; G:=PermutationAutomorphismGroup(R);
Group([ (), (1,3), (1,2,3), (2,3), (1,3,2), (1,2) ])
gap&gt; G=SymmetricGroup(3);
true
</pre></td></tr></table>

<p><a id="X866EB39483DDAE72" name="X866EB39483DDAE72"></a></p>

<h4>4.5 <span class="Heading">
Domain Functions for Codes
</span></h4>

<p>These are some GAP functions that work on `Domains' in general. Their specific effect on `Codes' is explained here.</p>

<p><a id="X808A4061809A6E67" name="X808A4061809A6E67"></a></p>

<h5>4.5-1 IsFinite</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IsFinite</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsFinite</code> is an implementation of the GAP domain function <code class="code">IsFinite</code>. It returns true for a code <var class="Arg">C</var>.</p>


<table class="example">
<tr><td><pre>
gap&gt; IsFinite( RepetitionCode( 1000, GF(11) ) );
true 
</pre></td></tr></table>

<p><a id="X858ADA3B7A684421" name="X858ADA3B7A684421"></a></p>

<h5>4.5-2 Size</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; Size</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Size</code> returns the size of <var class="Arg">C</var>, the number of elements of the code. If the code is linear, the size of the code is equal to q^k, where q is the size of the base field of <var class="Arg">C</var> and k is the dimension.</p>


<table class="example">
<tr><td><pre>
gap&gt; Size( RepetitionCode( 1000, GF(11) ) );
11
gap&gt; Size( NordstromRobinsonCode() );
256 
</pre></td></tr></table>

<p><a id="X86F070E0807DC34E" name="X86F070E0807DC34E"></a></p>

<h5>4.5-3 LeftActingDomain</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; LeftActingDomain</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">LeftActingDomain</code> returns the base field of a code <var class="Arg">C</var>. Each element of <var class="Arg">C</var> consists of elements of this base field. If the base field is F, and the word length of the code is n, then the codewords are elements of F^n. If <var class="Arg">C</var> is a cyclic code, its elements are interpreted as polynomials with coefficients over F.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := ElementsCode([[0,0,0], [1,0,1], [0,1,0]], GF(4));
a (3,3,1..3)2..3 user defined unrestricted code over GF(4)
gap&gt; LeftActingDomain( C1 );
GF(2^2)
gap&gt; LeftActingDomain( HammingCode( 3, GF(9) ) );
GF(3^2) 
</pre></td></tr></table>

<p><a id="X7E6926C6850E7C4E" name="X7E6926C6850E7C4E"></a></p>

<h5>4.5-4 Dimension</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; Dimension</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Dimension</code> returns the parameter k of <var class="Arg">C</var>, the dimension of the code, or the number of information symbols in each codeword. The dimension is not defined for non-linear codes; <code class="code">Dimension</code> then returns an error.</p>


<table class="example">
<tr><td><pre>
gap&gt; Dimension( NullCode( 5, GF(5) ) );
0
gap&gt; C := BCHCode( 15, 4, GF(4) );
a cyclic [15,9,5]3..4 BCH code, delta=5, b=1 over GF(4)
gap&gt; Dimension( C );
9
gap&gt; Size( C ) = Size( LeftActingDomain( C ) ) ^ Dimension( C );
true 
</pre></td></tr></table>

<p><a id="X856D927378C33548" name="X856D927378C33548"></a></p>

<h5>4.5-5 AsSSortedList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; AsSSortedList</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AsSSortedList</code> (as strictly sorted list) returns an immutable, duplicate free list of the elements of <var class="Arg">C</var>. For a finite field GF(q) generated by powers of Z(q), the ordering on</p>

<p class="pcenter">
GF(q)=\{ 0 , Z(q)^0, Z(q), Z(q)^2, ...Z(q)^{q-2} \} 
</p>

<p>is that determined by the exponents i. These elements are of the type codeword (see <code class="func">Codeword</code> (<a href="chap3.html#X7B9E353D852851AA"><b>3.1-1</b></a>)). Note that for large codes, generating the elements may be very time- and memory-consuming. For generating a specific element or a subset of the elements, use <code class="code">CodewordNr</code> (see <code class="func">CodewordNr</code> (<a href="chap3.html#X7E7ED91C79BF3EF3"><b>3.1-2</b></a>)).</p>


<table class="example">
<tr><td><pre>
gap&gt; C := ConferenceCode( 5 );
a (5,12,2)1..4 conference code over GF(2)
gap&gt; AsSSortedList( C );
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 1 1 ], [ 0 1 1 0 1 ], [ 0 1 1 1 0 ], 
  [ 1 0 0 1 1 ], [ 1 0 1 0 1 ], [ 1 0 1 1 0 ], [ 1 1 0 0 1 ], [ 1 1 0 1 0 ], 
  [ 1 1 1 0 0 ], [ 1 1 1 1 1 ] ]
gap&gt; CodewordNr( C, [ 1, 2 ] );
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ] ]
</pre></td></tr></table>

<p><a id="X823827927D6A8235" name="X823827927D6A8235"></a></p>

<h4>4.6 <span class="Heading">
Printing and Displaying Codes
</span></h4>

<p><a id="X7AFA64D97A1F39A3" name="X7AFA64D97A1F39A3"></a></p>

<h5>4.6-1 Print</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; Print</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Print</code> prints information about <var class="Arg">C</var>. This is the same as typing the identifier <var class="Arg">C</var> at the GAP-prompt.</p>

<p>If the argument is an unrestricted code, information in the form</p>


<pre class="normal">

a (n,M,d)r ... code over GF(q)

</pre>

<p>is printed, where <var class="Arg">n</var> is the word length, <var class="Arg">M</var> the number of elements of the code, <var class="Arg">d</var> the minimum distance and <var class="Arg">r</var> the covering radius.</p>

<p>If the argument is a linear code, information in the form</p>


<pre class="normal">

a linear [n,k,d]r ... code over GF(q)

</pre>

<p>is printed, where <var class="Arg">n</var> is the word length, <var class="Arg">k</var> the dimension of the code, <var class="Arg">d</var> the minimum distance and <var class="Arg">r</var> the covering radius.</p>

<p>Except for codes produced by <code class="code">RandomLinearCode</code>, if <var class="Arg">d</var> is not yet known, it is displayed in the form</p>


<pre class="normal">

lowerbound..upperbound

</pre>

<p>and if <var class="Arg">r</var> is not yet known, it is displayed in the same way. For certain ranges of n, the values of <var class="Arg">lowerbound</var> and <var class="Arg">upperbound</var> are obtained from tables.</p>

<p>The function <code class="code">Display</code> gives more information. See <code class="func">Display</code> (<a href="chap4.html#X83A5C59278E13248"><b>4.6-3</b></a>).</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := ExtendedCode( HammingCode( 3, GF(2) ) );
a linear [8,4,4]2 extended code
gap&gt; Print( "This is ", NordstromRobinsonCode(), ". \n");
This is a (16,256,6)4 Nordstrom-Robinson code over GF(2). 
</pre></td></tr></table>

<p><a id="X81FB5BE27903EC32" name="X81FB5BE27903EC32"></a></p>

<h5>4.6-2 String</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; String</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">String</code> returns information about <var class="Arg">C</var> in a string. This function is used by <code class="code">Print</code>.</p>


<table class="example">
<tr><td><pre>
gap&gt; x:= Indeterminate( GF(3) );; pol:= x^2+1;
x_1^2+Z(3)^0
gap&gt; Factors(pol);
[ x_1^2+Z(3)^0 ]
gap&gt; H := GeneratorPolCode( pol, 8, GF(3));
a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap&gt; String(H);
"a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)"
</pre></td></tr></table>

<p><a id="X83A5C59278E13248" name="X83A5C59278E13248"></a></p>

<h5>4.6-3 Display</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; Display</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Display</code> prints the method of construction of code <var class="Arg">C</var>. With this history, in most cases an equal or equivalent code can be reconstructed. If <var class="Arg">C</var> is an unmanipulated code, the result is equal to output of the function <code class="code">Print</code> (see <code class="func">Print</code> (<a href="chap4.html#X7AFA64D97A1F39A3"><b>4.6-1</b></a>)).</p>


<table class="example">
<tr><td><pre>
gap&gt; Display( RepetitionCode( 6, GF(3) ) );
a cyclic [6,1,6]4 repetition code over GF(3)
gap&gt; C1 := ExtendedCode( HammingCode(2) );;
gap&gt; C2 := PuncturedCode( ReedMullerCode( 2, 3 ) );;
gap&gt; Display( LengthenedCode( UUVCode( C1, C2 ) ) );
a linear [12,8,2]2..4 code, lengthened with 1 column(s) of
a linear [11,8,1]1..2 U U+V construction code of
U: a linear [4,1,4]2 extended code of
   a linear [3,1,3]1 Hamming (2,2) code over GF(2)
V: a linear [7,7,1]0 punctured code of
   a cyclic [8,7,2]1 Reed-Muller (2,3) code over GF(2)
</pre></td></tr></table>

<p><a id="X7CD08C8C780543C4" name="X7CD08C8C780543C4"></a></p>

<h5>4.6-4 DisplayBoundsInfo</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; DisplayBoundsInfo</code>( <var class="Arg">bds</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">DisplayBoundsInfo</code> prints the method of construction of the code C indicated in <code class="code">bds:= BoundsMinimumDistance( n, k, GF(q) )</code>.</p>


<table class="example">
<tr><td><pre>
gap&gt; bounds := BoundsMinimumDistance( 20, 17, GF(4) );
gap&gt; DisplayBoundsInfo(bounds);
an optimal linear [20,17,d] code over GF(4) has d=3
--------------------------------------------------------------------------------------------------
Lb(20,17)=3, by shortening of:
Lb(21,18)=3, by applying contruction B to a [81,77,3] code
Lb(81,77)=3, by shortening of:
Lb(85,81)=3, reference: Ham
--------------------------------------------------------------------------------------------------
Ub(20,17)=3, by considering shortening to:
Ub(7,4)=3, by considering puncturing to:
Ub(6,4)=2, by construction B applied to:
Ub(2,1)=2, repetition code
--------------------------------------------------------------------------------------------------
Reference Ham:
%T this reference is unknown, for more info
%T contact A.E. Brouwer (aeb@cwi.nl)
</pre></td></tr></table>

<p><a id="X7D0F48B685A3ECDD" name="X7D0F48B685A3ECDD"></a></p>

<h4>4.7 <span class="Heading">
Generating (Check) Matrices and Polynomials
</span></h4>

<p><a id="X817224657C9829C4" name="X817224657C9829C4"></a></p>

<h5>4.7-1 GeneratorMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; GeneratorMat</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneratorMat</code> returns a generator matrix of <var class="Arg">C</var>. The code consists of all linear combinations of the rows of this matrix.</p>

<p>If until now no generator matrix of <var class="Arg">C</var> was determined, it is computed from either the parity check matrix, the generator polynomial, the check polynomial or the elements (if possible), whichever is available.</p>

<p>If <var class="Arg">C</var> is a non-linear code, the function returns an error.</p>


<table class="example">
<tr><td><pre>
gap&gt; GeneratorMat( HammingCode( 3, GF(2) ) );
[ [ an immutable GF2 vector of length 7], 
  [ an immutable GF2 vector of length 7], 
  [ an immutable GF2 vector of length 7], 
  [ an immutable GF2 vector of length 7] ]
gap&gt; Display(last);
 1 1 1 . . . .
 1 . . 1 1 . .
 . 1 . 1 . 1 .
 1 1 . 1 . . 1
gap&gt; GeneratorMat( RepetitionCode( 5, GF(25) ) );
[ [ Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0, Z(5)^0 ] ]
gap&gt; GeneratorMat( NullCode( 14, GF(4) ) );
[  ]
</pre></td></tr></table>

<p><a id="X85D4B26E7FB38D57" name="X85D4B26E7FB38D57"></a></p>

<h5>4.7-2 CheckMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; CheckMat</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CheckMat</code> returns a parity check matrix of <var class="Arg">C</var>. The code consists of all words orthogonal to each of the rows of this matrix. The transpose of the matrix is a right inverse of the generator matrix. The parity check matrix is computed from either the generator matrix, the generator polynomial, the check polynomial or the elements of <var class="Arg">C</var> (if possible), whichever is available.</p>

<p>If <var class="Arg">C</var> is a non-linear code, the function returns an error.</p>


<table class="example">
<tr><td><pre>
gap&gt; CheckMat( HammingCode(3, GF(2) ) );
[ [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
  [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],
  [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ]
gap&gt; Display(last);
 . . . 1 1 1 1
 . 1 1 . . 1 1
 1 . 1 . 1 . 1
gap&gt; CheckMat( RepetitionCode( 5, GF(25) ) );
[ [ Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5), 0*Z(5) ],
  [ 0*Z(5), Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5) ],
  [ 0*Z(5), 0*Z(5), Z(5)^0, Z(5)^2, 0*Z(5) ],
  [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, Z(5)^2 ] ]
gap&gt; CheckMat( WholeSpaceCode( 12, GF(4) ) );
[  ] 
</pre></td></tr></table>

<p><a id="X78E33C3A843B0261" name="X78E33C3A843B0261"></a></p>

<h5>4.7-3 GeneratorPol</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; GeneratorPol</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneratorPol</code> returns the generator polynomial of <var class="Arg">C</var>. The code consists of all multiples of the generator polynomial modulo x^n-1, where n is the word length of <var class="Arg">C</var>. The generator polynomial is determined from either the check polynomial, the generator or check matrix or the elements of <var class="Arg">C</var> (if possible), whichever is available.</p>

<p>If <var class="Arg">C</var> is not a cyclic code, the function returns `false'.</p>


<table class="example">
<tr><td><pre>
gap&gt; GeneratorPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)^0+x_1
gap&gt; GeneratorPol( WholeSpaceCode( 4, GF(2) ) );
Z(2)^0
gap&gt; GeneratorPol( NullCode( 7, GF(3) ) );
-Z(3)^0+x_1^7
</pre></td></tr></table>

<p><a id="X7C45AA317BB1195F" name="X7C45AA317BB1195F"></a></p>

<h5>4.7-4 CheckPol</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; CheckPol</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CheckPol</code> returns the check polynomial of <var class="Arg">C</var>. The code consists of all polynomials f with</p>

<p class="pcenter">
f\cdot h \equiv 0 \ ({\rm mod}\  x^n-1),
</p>

<p>where h is the check polynomial, and n is the word length of <var class="Arg">C</var>. The check polynomial is computed from the generator polynomial, the generator or parity check matrix or the elements of <var class="Arg">C</var> (if possible), whichever is available.</p>

<p>If <var class="Arg">C</var> if not a cyclic code, the function returns an error.</p>


<table class="example">
<tr><td><pre>
gap&gt; CheckPol(GeneratorMatCode([[1, 1, 0], [0, 1, 1]], GF(2)));
Z(2)^0+x_1+x_1^2
gap&gt; CheckPol(WholeSpaceCode(4, GF(2)));
Z(2)^0+x_1^4
gap&gt; CheckPol(NullCode(7,GF(3)));
Z(3)^0
</pre></td></tr></table>

<p><a id="X7F4CB9DB7CD97178" name="X7F4CB9DB7CD97178"></a></p>

<h5>4.7-5 RootsOfCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; RootsOfCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">RootsOfCode</code> returns a list of all zeros of the generator polynomial of a cyclic code <var class="Arg">C</var>. These are finite field elements in the splitting field of the generator polynomial, GF(q^m), m is the multiplicative order of the size of the base field of the code, modulo the word length.</p>

<p>The reverse process, constructing a code from a set of roots, can be carried out by the function <code class="code">RootsCode</code> (see <code class="func">RootsCode</code> (<a href="chap5.html#X818F0E6583E01D4B"><b>5.5-3</b></a>)).</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := ReedSolomonCode( 16, 5 );
a cyclic [16,12,5]3..4 Reed-Solomon code over GF(17)
gap&gt; RootsOfCode( C1 );
[ Z(17), Z(17)^2, Z(17)^3, Z(17)^4 ]
gap&gt; C2 := RootsCode( 16, last );
a cyclic [16,12,5]3..4 code defined by roots over GF(17)
gap&gt; C1 = C2;
true 
</pre></td></tr></table>

<p><a id="X8170B52D7C154247" name="X8170B52D7C154247"></a></p>

<h4>4.8 <span class="Heading">
Parameters of Codes
</span></h4>

<p><a id="X7A36C3C67B0062E8" name="X7A36C3C67B0062E8"></a></p>

<h5>4.8-1 WordLength</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; WordLength</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">WordLength</code> returns the parameter n of <var class="Arg">C</var>, the word length of the elements. Elements of cyclic codes are polynomials of maximum degree n-1, as calculations are carried out modulo x^n-1.</p>


<table class="example">
<tr><td><pre>
gap&gt; WordLength( NordstromRobinsonCode() );
16
gap&gt; WordLength( PuncturedCode( WholeSpaceCode(7) ) );
6
gap&gt; WordLength( UUVCode( WholeSpaceCode(7), RepetitionCode(7) ) );
14 
</pre></td></tr></table>

<p><a id="X7E33FD56792DBF3D" name="X7E33FD56792DBF3D"></a></p>

<h5>4.8-2 Redundancy</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; Redundancy</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Redundancy</code> returns the redundancy r of <var class="Arg">C</var>, which is equal to the number of check symbols in each element. If <var class="Arg">C</var> is not a linear code the redundancy is not defined and <code class="code">Redundancy</code> returns an error.</p>

<p>If a linear code <var class="Arg">C</var> has dimension k and word length n, it has redundancy r=n-k.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap&gt; Redundancy(C);
5
gap&gt; Redundancy( DualCode(C) );
6 
</pre></td></tr></table>

<p><a id="X7B31613D8538BD29" name="X7B31613D8538BD29"></a></p>

<h5>4.8-3 MinimumDistance</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; MinimumDistance</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">MinimumDistance</code> returns the minimum distance of <var class="Arg">C</var>, the largest integer d with the property that every element of <var class="Arg">C</var> has at least a Hamming distance d (see <code class="func">DistanceCodeword</code> (<a href="chap3.html#X7CDA1B547D55E6FB"><b>3.6-2</b></a>)) to any other element of <var class="Arg">C</var>. For linear codes, the minimum distance is equal to the minimum weight. This means that d is also the smallest positive value with w[d+1] &lt;&gt; 0, where w=(w[1],w[2],...,w[n]) is the weight distribution of <var class="Arg">C</var> (see <code class="func">WeightDistribution</code> (<a href="chap4.html#X8728BCC9842A6E5D"><b>4.9-2</b></a>)). For unrestricted codes, d is the smallest positive value with w[d+1] &lt;&gt; 0, where w is the inner distribution of <var class="Arg">C</var> (see <code class="func">InnerDistribution</code> (<a href="chap4.html#X871FD301820717A4"><b>4.9-3</b></a>)).</p>

<p>For codes with only one element, the minimum distance is defined to be equal to the word length.</p>

<p>For linear codes <var class="Arg">C</var>, the algorithm used is the following: After replacing <var class="Arg">C</var> by a permutation equivalent <var class="Arg">C'</var>, one may assume the generator matrix has the following form G=(I_k , | , A), for some kx (n-k) matrix A. If A=0 then return d(C)=1. Next, find the minimum distance of the code spanned by the rows of A. Call this distance d(A). Note that d(A) is equal to the the Hamming distance d(v,0) where v is some proper linear combination of i distinct rows of A. Return d(C)=d(A)+i, where i is as in the previous step.</p>

<p>This command may also be called using the syntax <code class="code">MinimumDistance(C, w)</code>. In this form, <code class="code">MinimumDistance</code> returns the minimum distance of a codeword <var class="Arg">w</var> to the code <var class="Arg">C</var>, also called the <em>distance from <var class="Arg">w</var> to</em> <var class="Arg">C</var>. This is the smallest value d for which there is an element c of the code <var class="Arg">C</var> which is at distance d from <var class="Arg">w</var>. So d is also the minimum value for which D[d+1] &lt;&gt; 0, where D is the distance distribution of <var class="Arg">w</var> to <var class="Arg">C</var> (see <code class="func">DistancesDistribution</code> (<a href="chap4.html#X87AD54F87C5EE77E"><b>4.9-4</b></a>)).</p>

<p>Note that <var class="Arg">w</var> must be an element of the same vector space as the elements of <var class="Arg">C</var>. <var class="Arg">w</var> does not necessarily belong to the code (if it does, the minimum distance is zero).</p>


<table class="example">
<tr><td><pre>
gap&gt; C := MOLSCode(7);; MinimumDistance(C);
3
gap&gt; WeightDistribution(C);
[ 1, 0, 0, 24, 24 ]
gap&gt; MinimumDistance( WholeSpaceCode( 5, GF(3) ) );
1
gap&gt; MinimumDistance( NullCode( 4, GF(2) ) );
4
gap&gt; C := ConferenceCode(9);; MinimumDistance(C);
4
gap&gt; InnerDistribution(C);
[ 1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ] 
gap&gt; C := MOLSCode(7);; w := CodewordNr( C, 17 );
[ 3 3 6 2 ]
gap&gt; MinimumDistance( C, w );
0
gap&gt; C := RemovedElementsCode( C, w );; MinimumDistance( C, w );
3                           # so w no longer belongs to C 
</pre></td></tr></table>

<p>See also the <strong class="pkg">GUAVA</strong> commands relating to bounds on the minimum distance in section <a href="chap7.html#X87C753EB840C34D3"><b>7.1</b></a>.</p>

<p><a id="X813F226F855590EE" name="X813F226F855590EE"></a></p>

<h5>4.8-4 MinimumDistanceLeon</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; MinimumDistanceLeon</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">MinimumDistanceLeon</code> returns the ``probable'' minimum distance d_Leon of a linear binary code <var class="Arg">C</var>, using an implementation of Leon's probabilistic polynomial time algorithm. Briefly: Let <var class="Arg">C</var> be a linear code of dimension k over GF(q) as above. The algorithm has input parameters s and rho, where s is an integer between 2 and n-k, and rho is an integer between 2 and k.</p>


<ul>
<li><p>Find a generator matrix G of C.</p>

</li>
<li><p>Randomly permute the columns of G.</p>

</li>
<li><p>Perform Gaussian elimination on the permuted matrix to obtain a new matrix of the following form:</p>

<p class="pcenter">
G=(I_{k} \, | \, Z \, | \, B)
</p>

<p>with Z a kx s matrix. If (Z,B) is the zero matrix then return 1 for the minimum distance. If Z=0 but not B then either choose another permutation of the rows of <var class="Arg">C</var> or return `method fails'.</p>

</li>
<li><p>Search Z for at most rho rows that lead to codewords of weight less than rho.</p>

</li>
<li><p>For these codewords, compute the weight of the whole word in <var class="Arg">C</var>. Return this weight.</p>

</li>
</ul>
<p>(See for example J. S. Leon, <a href="chapBib.html#biBLeon88">[Leo88]</a> for more details.) Sometimes (as is the case in <strong class="pkg">GUAVA</strong>) this probabilistic algorithm is repeated several times and the most commonly occurring value is taken.</p>


<table class="example">
<tr><td><pre>
gap&gt; C:=RandomLinearCode(50,22,GF(2));
a  [50,22,?] randomly generated code over GF(2)
gap&gt; MinimumDistanceLeon(C); time;
6
211
gap&gt; MinimumDistance(C); time;
6
1204
</pre></td></tr></table>

<p><a id="X84EDF67B86B4154C" name="X84EDF67B86B4154C"></a></p>

<h5>4.8-5 MinimumWeight</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; MinimumWeight</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">MinimumWeight</code> returns the minimum Hamming weight of a linear code <var class="Arg">C</var>. At the moment, this function works for binary and ternary codes only. The <code class="code">MinimumWeight</code> function relies on an external executable program which is written in C language. As a consequence, the execution time of <code class="code">MinimumWeight</code> function is faster than that of <code class="func">MinimumDistance</code> (<a href="chap4.html#X7B31613D8538BD29"><b>4.8-3</b></a>) function.</p>

<p>The <code class="code">MinimumWeight</code> function implements Chen's <a href="chapBib.html#biBChen69">[Che69]</a> algorithm if <var class="Arg">C</var> is cyclic, and Zimmermann's <a href="chapBib.html#biBZimmermann96">[Zim96]</a> algorithm if <var class="Arg">C</var> is a general linear code. This function has a built-in check on the constraints of the minimum weight codewords. For example, for a self-orthogonal code over GF(3), the minimum weight codewords have weight that is divisible by 3, i.e. 0 mod 3 congruence. Similary, self-orthogonal codes over GF(2) have codeword weights that are divisible by 4 and even codes over GF(2) have codewords weights that are divisible by 2. By taking these constraints into account, in many cases, the execution time may be significantly reduced. Consider the minimum Hamming weight enumeration of the [151,45] binary cyclic code (second example below). This cyclic code is self-orthogonal, so the weight of all codewords is divisible by 4. Without considering this constraint, the computation will finish at information weight 10, rather than 9. We can see that, this 0 mod 4 constraint on the codeword weights, has allowed us to avoid enumeration of b(45,10) = 3,190,187,286 additional codewords, where b(n,k)=n!/((n-k)!k!) is the binomial coefficient of integers n and k.</p>

<p>Note that the C source code for this minimum weight computation has not yet been optimised, especially the code for GF(3), and there are chances to improve the speed of this function. Your contributions are most welcomed.</p>

<p>If you find any bugs on this function, please report it to ctjhai@plymouth.ac.uk.</p>


<table class="example">
<tr><td><pre>
gap&gt; # Extended ternary quadratic residue code of length 48
gap&gt; n := 47;;
gap&gt; x := Indeterminate(GF(3));;
gap&gt; F := Factors(x^n-1);;
gap&gt; v := List([1..n], i-&gt;Zero(GF(3)));;
gap&gt; v := v + MutableCopyMat(VectorCodeword( Codeword(F[2]) ));;
gap&gt; G := CirculantMatrix(24, v);;
gap&gt; for i in [1..Size(G)] do; s:=Zero(GF(3));
&gt; for j in [1..Size(G[i])] do; s:=s+G[i][j]; od; Append(G[i], [ s ]);
&gt; od;;
gap&gt; C := GeneratorMatCodeNC(G, GF(3));
a  [48,24,?] randomly generated code over GF(3)
gap&gt; MinimumWeight(C);
[48,24] linear code over GF(3) - minimum weight evaluation
Known lower-bound: 1
There are 2 generator matrices, ranks : 24 24 
The weight of the minimum weight codeword satisfies 0 mod 3 congruence
Enumerating codewords with information weight 1 (w=1)
    Found new minimum weight 15
Number of matrices required for codeword enumeration 2
Completed w= 1, 48 codewords enumerated, lower-bound 6, upper-bound 15
Termination expected with information weight 6 at matrix 1
-----------------------------------------------------------------------------
Enumerating codewords with information weight 2 (w=2) using 2 matrices
Completed w= 2, 1104 codewords enumerated, lower-bound 6, upper-bound 15
Termination expected with information weight 6 at matrix 1
-----------------------------------------------------------------------------
Enumerating codewords with information weight 3 (w=3) using 2 matrices
Completed w= 3, 16192 codewords enumerated, lower-bound 9, upper-bound 15
Termination expected with information weight 6 at matrix 1
-----------------------------------------------------------------------------
Enumerating codewords with information weight 4 (w=4) using 2 matrices
Completed w= 4, 170016 codewords enumerated, lower-bound 12, upper-bound 15
Termination expected with information weight 6 at matrix 1
-----------------------------------------------------------------------------
Enumerating codewords with information weight 5 (w=5) using 2 matrices
Completed w= 5, 1360128 codewords enumerated, lower-bound 12, upper-bound 15
Termination expected with information weight 6 at matrix 1
-----------------------------------------------------------------------------
Enumerating codewords with information weight 6 (w=6) using 1 matrices
Completed w= 6, 4307072 codewords enumerated, lower-bound 15, upper-bound 15
-----------------------------------------------------------------------------
Minimum weight: 15
15
gap&gt; 

gap&gt; # Binary cyclic code [151,45,36]
gap&gt; n := 151;;
gap&gt; x := Indeterminate(GF(2));;
gap&gt; F := Factors(x^n-1);;
gap&gt; C := CheckPolCode(F[2]*F[3]*F[3]*F[4], n, GF(2));
a cyclic [151,45,1..50]31..75 code defined by check polynomial over GF(2)
gap&gt; MinimumWeight(C);
[151,45] cyclic code over GF(2) - minimum weight evaluation
Known lower-bound: 1
The weight of the minimum weight codeword satisfies 0 mod 4 congruence
Enumerating codewords with information weight 1 (w=1)
    Found new minimum weight 56
    Found new minimum weight 44
Number of matrices required for codeword enumeration 1
Completed w= 1, 45 codewords enumerated, lower-bound 8, upper-bound 44
Termination expected with information weight 11
-----------------------------------------------------------------------------
Enumerating codewords with information weight 2 (w=2) using 1 matrix
Completed w= 2, 990 codewords enumerated, lower-bound 12, upper-bound 44
Termination expected with information weight 11
-----------------------------------------------------------------------------
Enumerating codewords with information weight 3 (w=3) using 1 matrix
   Found new minimum weight 40
   Found new minimum weight 36
Completed w= 3, 14190 codewords enumerated, lower-bound 16, upper-bound 36
Termination expected with information weight 9
-----------------------------------------------------------------------------
Enumerating codewords with information weight 4 (w=4) using 1 matrix
Completed w= 4, 148995 codewords enumerated, lower-bound 20, upper-bound 36
Termination expected with information weight 9
-----------------------------------------------------------------------------
Enumerating codewords with information weight 5 (w=5) using 1 matrix
Completed w= 5, 1221759 codewords enumerated, lower-bound 24, upper-bound 36
Termination expected with information weight 9
-----------------------------------------------------------------------------
Enumerating codewords with information weight 6 (w=6) using 1 matrix
Completed w= 6, 8145060 codewords enumerated, lower-bound 24, upper-bound 36
Termination expected with information weight 9
-----------------------------------------------------------------------------
Enumerating codewords with information weight 7 (w=7) using 1 matrix
Completed w= 7, 45379620 codewords enumerated, lower-bound 28, upper-bound 36
Termination expected with information weight 9
-----------------------------------------------------------------------------
Enumerating codewords with information weight 8 (w=8) using 1 matrix
Completed w= 8, 215553195 codewords enumerated, lower-bound 32, upper-bound 36
Termination expected with information weight 9
-----------------------------------------------------------------------------
Enumerating codewords with information weight 9 (w=9) using 1 matrix
Completed w= 9, 886163135 codewords enumerated, lower-bound 36, upper-bound 36
-----------------------------------------------------------------------------
Minimum weight: 36
36
</pre></td></tr></table>

<p><a id="X823B9A797EE42F6D" name="X823B9A797EE42F6D"></a></p>

<h5>4.8-6 DecreaseMinimumDistanceUpperBound</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; DecreaseMinimumDistanceUpperBound</code>( <var class="Arg">C, t, m</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">DecreaseMinimumDistanceUpperBound</code> is an implementation of the algorithm for the minimum distance of a linear binary code <var class="Arg">C</var> by Leon <a href="chapBib.html#biBLeon88">[Leo88]</a>. This algorithm tries to find codewords with small minimum weights. The parameter <var class="Arg">t</var> is at least 1 and less than the dimension of <var class="Arg">C</var>. The best results are obtained if it is close to the dimension of the code. The parameter <var class="Arg">m</var> gives the number of runs that the algorithm will perform.</p>

<p>The result returned is a record with two fields; the first, <code class="code">mindist</code>, gives the lowest weight found, and <code class="code">word</code> gives the corresponding codeword. (This was implemented before <code class="code">MinimumDistanceLeon</code> but independently. The older manual had given the command incorrectly, so the command was only found after reading all the <em>*.gi</em> files in the <strong class="pkg">GUAVA</strong> library. Though both <code class="code">MinimumDistance</code> and <code class="code">MinimumDistanceLeon</code> often run much faster than <code class="code">DecreaseMinimumDistanceUpperBound</code>, <code class="code">DecreaseMinimumDistanceUpperBound</code> appears to be more accurate than <code class="code">MinimumDistanceLeon</code>.)</p>


<table class="example">
<tr><td><pre>
gap&gt; C:=RandomLinearCode(5,2,GF(2));
a  [5,2,?] randomly generated code over GF(2)
gap&gt; DecreaseMinimumDistanceUpperBound(C,1,4);
rec( mindist := 3, word := [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] )
gap&gt; MinimumDistance(C);
3
gap&gt; C:=RandomLinearCode(8,4,GF(2));
a  [8,4,?] randomly generated code over GF(2)
gap&gt; DecreaseMinimumDistanceUpperBound(C,3,4);
rec( mindist := 2,
  word := [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] )
gap&gt; MinimumDistance(C);
2
</pre></td></tr></table>

<p><a id="X7A679B0A7816B030" name="X7A679B0A7816B030"></a></p>

<h5>4.8-7 MinimumDistanceRandom</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; MinimumDistanceRandom</code>( <var class="Arg">C, num, s</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">MinimumDistanceRandom</code> returns an upper bound for the minimum distance d_random of a linear binary code <var class="Arg">C</var>, using a probabilistic polynomial time algorithm. Briefly: Let <var class="Arg">C</var> be a linear code of dimension k over GF(q) as above. The algorithm has input parameters num and s, where s is an integer between 2 and n-1, and num is an integer greater than or equal to 1.</p>


<ul>
<li><p>Find a generator matrix G of C.</p>

</li>
<li><p>Randomly permute the columns of G, written G_p..</p>

</li>
<li><p class="pcenter">
G=(A, B)
</p>

<p>with A a kx s matrix. If A is the zero matrix then return `method fails'.</p>

</li>
<li><p>Search A for at most 5 rows that lead to codewords, in the code C_A with generator matrix A, of minimum weight.</p>

</li>
<li><p>For these codewords, use the associated linear combination to compute the weight of the whole word in <var class="Arg">C</var>. Return this weight and codeword.</p>

</li>
</ul>
<p>This probabilistic algorithm is repeated <var class="Arg">num</var> times (with different random permutations of the rows of G each time) and the weight and codeword of the lowest occurring weight is taken.</p>


<table class="example">
<tr><td><pre>
gap&gt; C:=RandomLinearCode(60,20,GF(2));
a  [60,20,?] randomly generated code over GF(2)
gap&gt; #mindist(C);time;
gap&gt; #mindistleon(C,10,30);time; #doesn't work well
gap&gt; a:=MinimumDistanceRandom(C,10,30);time; # done 10 times -with fastest time!!

 This is a probabilistic algorithm which may return the wrong answer.
[ 12, [ 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 
        1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 ] ]
130
gap&gt; a[2] in C;
true
gap&gt; b:=DecreaseMinimumDistanceUpperBound(C,10,1); time; #only done once!
rec( mindist := 12, word := [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 
      Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 
      0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 
      Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 
      0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 
      0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 
      0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] )
649
gap&gt; Codeword(b!.word) in C;
true
gap&gt; MinimumDistance(C);time;
12
196
gap&gt; c:=MinimumDistanceLeon(C);time;
12
66
gap&gt; C:=RandomLinearCode(30,10,GF(3));
a  [30,10,?] randomly generated code over GF(3)
gap&gt; a:=MinimumDistanceRandom(C,10,10);time;

 This is a probabilistic algorithm which may return the wrong answer.
[ 13, [ 0 0 0 1 0 0 0 0 0 0 1 0 2 2 1 1 0 2 2 0 1 0 2 1 0 0 0 1 0 2 ] ]
229
gap&gt; a[2] in C;
true
gap&gt; MinimumDistance(C);time;
9
45
gap&gt; c:=MinimumDistanceLeon(C);
Code must be binary. Quitting.
0
gap&gt; a:=MinimumDistanceRandom(C,1,29);time;

 This is a probabilistic algorithm which may return the wrong answer.
[ 10, [ 0 0 1 0 2 0 2 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 2 2 2 0 ] ]
53
</pre></td></tr></table>

<p><a id="X7A195E317D2AB7CE" name="X7A195E317D2AB7CE"></a></p>

<h5>4.8-8 CoveringRadius</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; CoveringRadius</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CoveringRadius</code> returns the <em>covering radius</em> of a linear code <var class="Arg">C</var>. This is the smallest number r with the property that each element v of the ambient vector space of <var class="Arg">C</var> has at most a distance r to the code <var class="Arg">C</var>. So for each vector v there must be an element c of <var class="Arg">C</var> with d(v,c) &lt;= r. The smallest covering radius of any [n,k] binary linear code is denoted t(n,k). A binary linear code with reasonable small covering radius is called a <em>covering code</em>.</p>

<p>If <var class="Arg">C</var> is a perfect code (see <code class="func">IsPerfectCode</code> (<a href="chap4.html#X85E3BD26856424F7"><b>4.3-6</b></a>)), the covering radius is equal to t, the number of errors the code can correct, where d = 2t+1, with d the minimum distance of <var class="Arg">C</var> (see <code class="func">MinimumDistance</code> (<a href="chap4.html#X7B31613D8538BD29"><b>4.8-3</b></a>)).</p>

<p>If there exists a function called <code class="code">SpecialCoveringRadius</code> in the `operations' field of the code, then this function will be called to compute the covering radius of the code. At the moment, no code-specific functions are implemented.</p>

<p>If the length of <code class="code">BoundsCoveringRadius</code> (see <code class="func">BoundsCoveringRadius</code> (<a href="chap7.html#X8320D1C180A1AAAD"><b>7.2-1</b></a>)), is 1, then the value in</p>


<pre class="normal">

C.boundsCoveringRadius

</pre>

<p>is returned. Otherwise, the function</p>


<pre class="normal">

C.operations.CoveringRadius

</pre>

<p>is executed, unless the redundancy of <var class="Arg">C</var> is too large. In the last case, a warning is issued.</p>

<p>The algorithm used to compute the covering radius is the following. First, <code class="code">CosetLeadersMatFFE</code> is used to compute the list of coset leaders (which returns a codeword in each coset of GF(q)^n/C of minimum weight). Then <code class="code">WeightVecFFE</code> is used to compute the weight of each of these coset leaders. The program returns the maximum of these weights.</p>


<table class="example">
<tr><td><pre>
gap&gt; H := RandomLinearCode(10, 5, GF(2));
a  [10,5,?] randomly generated code over GF(2)
gap&gt; CoveringRadius(H);
3
gap&gt; H := HammingCode(4, GF(2));; IsPerfectCode(H);
true
gap&gt; CoveringRadius(H);
1                       # Hamming codes have minimum distance 3
gap&gt; CoveringRadius(ReedSolomonCode(7,4));
3 
gap&gt; CoveringRadius( BCHCode( 17, 3, GF(2) ) );
3
gap&gt; CoveringRadius( HammingCode( 5, GF(2) ) );
1
gap&gt; C := ReedMullerCode( 1, 9 );;
gap&gt; CoveringRadius( C );
CoveringRadius: warning, the covering radius of
this code cannot be computed straightforward.
Try to use IncreaseCoveringRadiusLowerBound( code ).
(see the manual for more details).
The covering radius of code lies in the interval:
[ 240 .. 248 ]
</pre></td></tr></table>

<p>See also the <strong class="pkg">GUAVA</strong> commands relating to bounds on the minimum distance in section <a href="chap7.html#X817D0A647D3331EB"><b>7.2</b></a>.</p>

<p><a id="X81004B007EC5DF58" name="X81004B007EC5DF58"></a></p>

<h5>4.8-9 SetCoveringRadius</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; SetCoveringRadius</code>( <var class="Arg">C, intlist</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">SetCoveringRadius</code> enables the user to set the covering radius herself, instead of letting <strong class="pkg">GUAVA</strong> compute it. If <var class="Arg">intlist</var> is an integer, <strong class="pkg">GUAVA</strong> will simply put it in the `boundsCoveringRadius' field. If it is a list of integers, however, it will intersect this list with the `boundsCoveringRadius' field, thus taking the best of both lists. If this would leave an empty list, the field is set to <var class="Arg">intlist</var>. Because some other computations use the covering radius of the code, it is important that the entered value is not wrong, otherwise new results may be invalid.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := BCHCode( 17, 3, GF(2) );;
gap&gt; BoundsCoveringRadius( C );
[ 3 .. 4 ]
gap&gt; SetCoveringRadius( C, [ 2 .. 3 ] );
gap&gt; BoundsCoveringRadius( C );
[ [ 2 .. 3 ] ]
</pre></td></tr></table>

<p><a id="X806384B4815EFF2E" name="X806384B4815EFF2E"></a></p>

<h4>4.9 <span class="Heading">
Distributions
</span></h4>

<p><a id="X7AEE64467FB1E0B9" name="X7AEE64467FB1E0B9"></a></p>

<h5>4.9-1 MinimumWeightWords</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; MinimumWeightWords</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">MinimumWeightWords</code> returns the list of minimum weight codewords of <var class="Arg">C</var>.</p>

<p>This algorithm is written in GAP is slow, so is only suitable for small codes.</p>

<p>This does not call the very fast function <code class="code">MinimumWeight</code> (see <code class="func">MinimumWeight</code> (<a href="chap4.html#X84EDF67B86B4154C"><b>4.8-5</b></a>)).</p>


<table class="example">
<tr><td><pre>
gap&gt; C:=HammingCode(3,GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap&gt; MinimumWeightWords(C);
[ [ 1 0 0 0 0 1 1 ], [ 0 1 0 1 0 1 0 ], [ 0 1 0 0 1 0 1 ], [ 1 0 0 1 1 0 0 ], [ 0 0 1 0 1 1 0 ],
  [ 0 0 1 1 0 0 1 ], [ 1 1 1 0 0 0 0 ] ]

</pre></td></tr></table>

<p><a id="X8728BCC9842A6E5D" name="X8728BCC9842A6E5D"></a></p>

<h5>4.9-2 WeightDistribution</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; WeightDistribution</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">WeightDistribution</code> returns the weight distribution of <var class="Arg">C</var>, as a vector. The i^th element of this vector contains the number of elements of <var class="Arg">C</var> with weight i-1. For linear codes, the weight distribution is equal to the inner distribution (see <code class="func">InnerDistribution</code> (<a href="chap4.html#X871FD301820717A4"><b>4.9-3</b></a>)). If w is the weight distribution of a linear code <var class="Arg">C</var>, it must have the zero codeword, so w[1] = 1 (one word of weight 0).</p>

<p>Some codes, such as the Hamming codes, have precomputed weight distributions. For others, the program WeightDistribution calls the GAP program <code class="code">DistancesDistributionMatFFEVecFFE</code>, which is written in C. See also <code class="code">CodeWeightEnumerator</code>.</p>


<table class="example">
<tr><td><pre>
gap&gt; WeightDistribution( ConferenceCode(9) );
[ 1, 0, 0, 0, 0, 18, 0, 0, 0, 1 ]
gap&gt; WeightDistribution( RepetitionCode( 7, GF(4) ) );
[ 1, 0, 0, 0, 0, 0, 0, 3 ]
gap&gt; WeightDistribution( WholeSpaceCode( 5, GF(2) ) );
[ 1, 5, 10, 10, 5, 1 ] 
</pre></td></tr></table>

<p><a id="X871FD301820717A4" name="X871FD301820717A4"></a></p>

<h5>4.9-3 InnerDistribution</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; InnerDistribution</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">InnerDistribution</code> returns the inner distribution of <var class="Arg">C</var>. The i^th element of the vector contains the average number of elements of <var class="Arg">C</var> at distance i-1 to an element of <var class="Arg">C</var>. For linear codes, the inner distribution is equal to the weight distribution (see <code class="func">WeightDistribution</code> (<a href="chap4.html#X8728BCC9842A6E5D"><b>4.9-2</b></a>)).</p>

<p>Suppose w is the inner distribution of <var class="Arg">C</var>. Then w[1] = 1, because each element of <var class="Arg">C</var> has exactly one element at distance zero (the element itself). The minimum distance of <var class="Arg">C</var> is the smallest value d &gt; 0 with w[d+1] &lt;&gt; 0, because a distance between zero and d never occurs. See <code class="func">MinimumDistance</code> (<a href="chap4.html#X7B31613D8538BD29"><b>4.8-3</b></a>).</p>


<table class="example">
<tr><td><pre>
gap&gt; InnerDistribution( ConferenceCode(9) );
[ 1, 0, 0, 0, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]
gap&gt; InnerDistribution( RepetitionCode( 7, GF(4) ) );
[ 1, 0, 0, 0, 0, 0, 0, 3 ] 
</pre></td></tr></table>

<p><a id="X87AD54F87C5EE77E" name="X87AD54F87C5EE77E"></a></p>

<h5>4.9-4 DistancesDistribution</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; DistancesDistribution</code>( <var class="Arg">C, w</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">DistancesDistribution</code> returns the distribution of the distances of all elements of <var class="Arg">C</var> to a codeword <var class="Arg">w</var> in the same vector space. The i^th element of the distance distribution is the number of codewords of <var class="Arg">C</var> that have distance i-1 to <var class="Arg">w</var>. The smallest value d with w[d+1] &lt;&gt; 0, is defined as the <em>distance to</em> <var class="Arg">C</var> (see <code class="func">MinimumDistance</code> (<a href="chap4.html#X7B31613D8538BD29"><b>4.8-3</b></a>)).</p>


<table class="example">
<tr><td><pre>
gap&gt; H := HadamardCode(20);
a (20,40,10)6..8 Hadamard code of order 20 over GF(2)
gap&gt; c := Codeword("10110101101010010101", H);
[ 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 ]
gap&gt; DistancesDistribution(H, c);
[ 0, 0, 0, 0, 0, 1, 0, 7, 0, 12, 0, 12, 0, 7, 0, 1, 0, 0, 0, 0, 0 ]
gap&gt; MinimumDistance(H, c);
5                           # distance to H 
</pre></td></tr></table>

<p><a id="X8495870687195324" name="X8495870687195324"></a></p>

<h5>4.9-5 OuterDistribution</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; OuterDistribution</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">OuterDistribution</code> returns a list of length q^n, where q is the size of the base field of <var class="Arg">C</var> and n is the word length. The elements of the list consist of pairs, the first coordinate being an element of GF(q)^n (this is a codeword type) and the second coordinate being a distribution of distances to the code (a list of integers). This table is <em>very</em> large, and for n &gt; 20 it will not fit in the memory of most computers. The function <code class="code">DistancesDistribution</code> (see <code class="func">DistancesDistribution</code> (<a href="chap4.html#X87AD54F87C5EE77E"><b>4.9-4</b></a>)) can be used to calculate one entry of the list.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := RepetitionCode( 3, GF(2) );
a cyclic [3,1,3]1 repetition code over GF(2)
gap&gt; OD := OuterDistribution(C);
[ [ [ 0 0 0 ], [ 1, 0, 0, 1 ] ], [ [ 1 1 1 ], [ 1, 0, 0, 1 ] ],
  [ [ 0 0 1 ], [ 0, 1, 1, 0 ] ], [ [ 1 1 0 ], [ 0, 1, 1, 0 ] ],
  [ [ 1 0 0 ], [ 0, 1, 1, 0 ] ], [ [ 0 1 1 ], [ 0, 1, 1, 0 ] ],
  [ [ 0 1 0 ], [ 0, 1, 1, 0 ] ], [ [ 1 0 1 ], [ 0, 1, 1, 0 ] ] ]
gap&gt; WeightDistribution(C) = OD[1][2];
true
gap&gt; DistancesDistribution( C, Codeword("110") ) = OD[4][2];
true 
</pre></td></tr></table>

<p><a id="X7D9A39BF801948C8" name="X7D9A39BF801948C8"></a></p>

<h4>4.10 <span class="Heading">
Decoding Functions
</span></h4>

<p><a id="X7A42FF7D87FC34AC" name="X7A42FF7D87FC34AC"></a></p>

<h5>4.10-1 Decode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; Decode</code>( <var class="Arg">C, r</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Decode</code> decodes <var class="Arg">r</var> (a 'received word') with respect to code <var class="Arg">C</var> and returns the `message word' (i.e., the information digits associated to the codeword c in C closest to <var class="Arg">r</var>). Here <var class="Arg">r</var> can be a <strong class="pkg">GUAVA</strong> codeword or a list of codewords. First, possible errors in <var class="Arg">r</var> are corrected, then the codeword is decoded to an <em>information codeword</em> m (and not an element of <var class="Arg">C</var>). If the code record has a field `specialDecoder', this special algorithm is used to decode the vector. Hamming codes, BCH codes, cyclic codes, and generalized Reed-Solomon have such a special algorithm. (The algorithm used for BCH codes is the Sugiyama algorithm described, for example, in section 5.4.3 of <a href="chapBib.html#biBHP03">[HP03]</a>. A special decoder has also being written for the generalized Reed-Solomon code using the interpolation algorithm. For cyclic codes, the error-trapping algorithm is used.) If <var class="Arg">C</var> is linear and no special decoder field has been set then syndrome decoding is used. Otherwise (when <var class="Arg">C</var> is non-linear), the nearest neighbor decoding algorithm is used (which is very slow).</p>

<p>A special decoder can be created by defining a function</p>


<pre class="normal">

C!.SpecialDecoder := function(C, r) ... end;

</pre>

<p>The function uses the arguments <var class="Arg">C</var> (the code record itself) and <var class="Arg">r</var> (a vector of the codeword type) to decode <var class="Arg">r</var> to an information vector. A normal decoder would take a codeword <var class="Arg">r</var> of the same word length and field as <var class="Arg">C</var>, and would return an information vector of length k, the dimension of <var class="Arg">C</var>. The user is not restricted to these normal demands though, and can for instance define a decoder for non-linear codes.</p>

<p>Encoding is done by multiplying the information vector with the code (see <a href="chap4.html#X832DA51986A3882C"><b>4.2</b></a>).</p>


<table class="example">
<tr><td><pre>
gap&gt; C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap&gt; c := "1010"*C;                    # encoding
[ 1 0 1 1 0 1 0 ]
gap&gt; Decode(C, c);                     # decoding
[ 1 0 1 0 ]
gap&gt; Decode(C, Codeword("0010101"));
[ 1 1 0 1 ]                            # one error corrected
gap&gt; C!.SpecialDecoder := function(C, c)
&gt; return NullWord(Dimension(C));
&gt; end;
function ( C, c ) ... end
gap&gt; Decode(C, c);
[ 0 0 0 0 ]           # new decoder always returns null word 
</pre></td></tr></table>

<p><a id="X7D870C9387C47D9F" name="X7D870C9387C47D9F"></a></p>

<h5>4.10-2 Decodeword</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; Decodeword</code>( <var class="Arg">C, r</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Decodeword</code> decodes <var class="Arg">r</var> (a 'received word') with respect to code <var class="Arg">C</var> and returns the codeword c in C closest to <var class="Arg">r</var>. Here <var class="Arg">r</var> can be a <strong class="pkg">GUAVA</strong> codeword or a list of codewords. If the code record has a field `specialDecoder', this special algorithm is used to decode the vector. Hamming codes, generalized Reed-Solomon codes, and BCH codes have such a special algorithm. (The algorithm used for BCH codes is the Sugiyama algorithm described, for example, in section 5.4.3 of <a href="chapBib.html#biBHP03">[HP03]</a>. The algorithm used for generalized Reed-Solomon codes is the ``interpolation algorithm'' described for example in chapter 5 of <a href="chapBib.html#biBJH04">[JH04]</a>.) If <var class="Arg">C</var> is linear and no special decoder field has been set then syndrome decoding is used. Otherwise, when <var class="Arg">C</var> is non-linear, the nearest neighbor algorithm has been implemented (which should only be used for small-sized codes).</p>


<table class="example">
<tr><td><pre>
gap&gt; C := HammingCode(3);
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap&gt; c := "1010"*C;                    # encoding
[ 1 0 1 1 0 1 0 ]
gap&gt; Decodeword(C, c);                     # decoding
[ 1 0 1 1 0 1 0 ]
gap&gt;
gap&gt; R:=PolynomialRing(GF(11),["t"]);
GF(11)[t]
gap&gt; P:=List([1,3,4,5,7],i-&gt;Z(11)^i);
[ Z(11), Z(11)^3, Z(11)^4, Z(11)^5, Z(11)^7 ]
gap&gt; C:=GeneralizedReedSolomonCode(P,3,R);
a linear [5,3,1..3]2  generalized Reed-Solomon code over GF(11)
gap&gt; MinimumDistance(C);
3
gap&gt; c:=Random(C);
[ 0 9 6 2 1 ]
gap&gt; v:=Codeword("09620");
[ 0 9 6 2 0 ]
gap&gt; GeneralizedReedSolomonDecoderGao(C,v);
[ 0 9 6 2 1 ]
gap&gt; Decodeword(C,v); # calls the special interpolation decoder
[ 0 9 6 2 1 ]
gap&gt; G:=GeneratorMat(C);
[ [ Z(11)^0, 0*Z(11), 0*Z(11), Z(11)^8, Z(11)^9 ],
  [ 0*Z(11), Z(11)^0, 0*Z(11), Z(11)^0, Z(11)^8 ],
  [ 0*Z(11), 0*Z(11), Z(11)^0, Z(11)^3, Z(11)^8 ] ]
gap&gt; C1:=GeneratorMatCode(G,GF(11));
a linear [5,3,1..3]2 code defined by generator matrix over GF(11)
gap&gt; Decodeword(C,v); # calls syndrome decoding
[ 0 9 6 2 1 ]
</pre></td></tr></table>

<p><a id="X7D48DE2A84474C6A" name="X7D48DE2A84474C6A"></a></p>

<h5>4.10-3 GeneralizedReedSolomonDecoderGao</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; GeneralizedReedSolomonDecoderGao</code>( <var class="Arg">C, r</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralizedReedSolomonDecoderGao</code> decodes <var class="Arg">r</var> (a 'received word') to a codeword c in C in a generalized Reed-Solomon code <var class="Arg">C</var> (see <code class="func">GeneralizedReedSolomonCode</code> (<a href="chap5.html#X810AB3DB844FFCE9"><b>5.6-2</b></a>)), closest to <var class="Arg">r</var>. Here <var class="Arg">r</var> must be a <strong class="pkg">GUAVA</strong> codeword. If the code record does not have name `generalized Reed-Solomon code' then an error is returned. Otherwise, the Gao decoder <a href="chapBib.html#biBGao03">[Gao03]</a> is used to compute c.</p>

<p>For long codes, this method is faster in practice than the interpolation method used in <code class="code">Decodeword</code>.</p>


<table class="example">
<tr><td><pre>
gap&gt; R:=PolynomialRing(GF(11),["t"]);
GF(11)[t]
gap&gt; P:=List([1,3,4,5,7],i-&gt;Z(11)^i);
[ Z(11), Z(11)^3, Z(11)^4, Z(11)^5, Z(11)^7 ]
gap&gt; C:=GeneralizedReedSolomonCode(P,3,R);
a linear [5,3,1..3]2  generalized Reed-Solomon code over GF(11)
gap&gt; MinimumDistance(C);
3
gap&gt; c:=Random(C);
[ 0 9 6 2 1 ]
gap&gt; v:=Codeword("09620");
[ 0 9 6 2 0 ]
gap&gt; GeneralizedReedSolomonDecoderGao(C,v); 
[ 0 9 6 2 1 ]
</pre></td></tr></table>

<p><a id="X7CFF98D483502053" name="X7CFF98D483502053"></a></p>

<h5>4.10-4 GeneralizedReedSolomonListDecoder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; GeneralizedReedSolomonListDecoder</code>( <var class="Arg">C, r, tau</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralizedReedSolomonListDecoder</code> implements Sudans list-decoding algorithm (see section 12.1 of <a href="chapBib.html#biBJH04">[JH04]</a>) for ``low rate'' Reed-Solomon codes. It returns the list of all codewords in C which are a distance of at most <var class="Arg">tau</var> from <var class="Arg">r</var> (a 'received word'). <var class="Arg">C</var> must be a generalized Reed-Solomon code <var class="Arg">C</var> (see <code class="func">GeneralizedReedSolomonCode</code> (<a href="chap5.html#X810AB3DB844FFCE9"><b>5.6-2</b></a>)) and <var class="Arg">r</var> must be a <strong class="pkg">GUAVA</strong> codeword.</p>


<table class="example">
<tr><td><pre>
gap&gt; F:=GF(16);
GF(2^4)
gap&gt;
gap&gt; a:=PrimitiveRoot(F);; b:=a^7;; b^4+b^3+1; 
0*Z(2)
gap&gt; Pts:=List([0..14],i-&gt;b^i);
[ Z(2)^0, Z(2^4)^7, Z(2^4)^14, Z(2^4)^6, Z(2^4)^13, Z(2^2), Z(2^4)^12, Z(2^4)^4,
  Z(2^4)^11, Z(2^4)^3, Z(2^2)^2, Z(2^4)^2, Z(2^4)^9, Z(2^4), Z(2^4)^8 ]
gap&gt; x:=X(F);;
gap&gt; R1:=PolynomialRing(F,[x]);;
gap&gt; vars:=IndeterminatesOfPolynomialRing(R1);;
gap&gt; y:=X(F,vars);;
gap&gt; R2:=PolynomialRing(F,[x,y]);;
gap&gt; C:=GeneralizedReedSolomonCode(Pts,3,R1); 
a linear [15,3,1..13]10..12  generalized Reed-Solomon code over GF(16)
gap&gt; MinimumDistance(C); ## 6 error correcting
13
gap&gt; z:=Zero(F);;
gap&gt; r:=[z,z,z,z,z,z,z,z,b^6,b^2,b^5,b^14,b,b^7,b^11];; 
gap&gt; r:=Codeword(r);
[ 0 0 0 0 0 0 0 0 a^12 a^14 a^5 a^8 a^7 a^4 a^2 ]
gap&gt; cs:=GeneralizedReedSolomonListDecoder(C,r,2); time;
[ [ 0 a^9 a^3 a^13 a^6 a^10 a^11 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ],
  [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ]
250
gap&gt; c1:=cs[1]; c1 in C;
[ 0 a^9 a^3 a^13 a^6 a^10 a^11 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ]
true
gap&gt; c2:=cs[2]; c2 in C;
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
true
gap&gt; WeightCodeword(c1-r);
7
gap&gt; WeightCodeword(c2-r);
7
</pre></td></tr></table>

<p><a id="X80E17FA27DCAB676" name="X80E17FA27DCAB676"></a></p>

<h5>4.10-5 BitFlipDecoder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; BitFlipDecoder</code>( <var class="Arg">C, r</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The iterative decoding method <code class="code">BitFlipDecoder</code> must only be applied to LDPC codes. For more information on LDPC codes, refer to Section <a href="chap5.html#X84F3673D7BBF5956"><b>5.8</b></a>. For these codes, <code class="code">BitFlipDecoder</code> decodes very quickly. (Warning: it can give wildly wrong results for arbitrary binary linear codes.) The bit flipping algorithm is described for example in Chapter 13 of <a href="chapBib.html#biBJH04">[JH04]</a>.</p>


<table class="example">
<tr><td><pre>
gap&gt; C:=HammingCode(4,GF(2));
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap&gt; c:=Random(C);
[ 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 ]
gap&gt; v:=List(c);
[ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2),
  Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]
gap&gt; v[1]:=Z(2)+v[1]; # flip 1st bit of c to create an error
Z(2)^0
gap&gt; v:=Codeword(v);
[ 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 ]
gap&gt; BitFlipDecoder(C,v);
[ 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 ]


</pre></td></tr></table>

<p><a id="X7B88DEB37F28404A" name="X7B88DEB37F28404A"></a></p>

<h5>4.10-6 NearestNeighborGRSDecodewords</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; NearestNeighborGRSDecodewords</code>( <var class="Arg">C, v, dist</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">NearestNeighborGRSDecodewords</code> finds all generalized Reed-Solomon codewords within distance <var class="Arg">dist</var> from <var class="Arg">v</var> <em>and</em> the associated polynomial, using ``brute force''. Input: <var class="Arg">v</var> is a received vector (a <strong class="pkg">GUAVA</strong> codeword), <var class="Arg">C</var> is a GRS code, <var class="Arg">dist</var> &gt; 0 is the distance from <var class="Arg">v</var> to search in <var class="Arg">C</var>. Output: a list of pairs [c,f(x)], where wt(c-v)&lt;= dist-1 and c = (f(x_1),...,f(x_n)).</p>


<table class="example">
<tr><td><pre>
gap&gt; F:=GF(16);
GF(2^4)
gap&gt; a:=PrimitiveRoot(F);; b:=a^7; b^4+b^3+1;
Z(2^4)^7
0*Z(2)
gap&gt; Pts:=List([0..14],i-&gt;b^i);
[ Z(2)^0, Z(2^4)^7, Z(2^4)^14, Z(2^4)^6, Z(2^4)^13, Z(2^2), Z(2^4)^12,
  Z(2^4)^4, Z(2^4)^11, Z(2^4)^3, Z(2^2)^2, Z(2^4)^2, Z(2^4)^9, Z(2^4),
  Z(2^4)^8 ]
gap&gt; x:=X(F);;
gap&gt; R1:=PolynomialRing(F,[x]);;
gap&gt; vars:=IndeterminatesOfPolynomialRing(R1);;
gap&gt; y:=X(F,vars);;
gap&gt; R2:=PolynomialRing(F,[x,y]);;
gap&gt; C:=GeneralizedReedSolomonCode(Pts,3,R1);
a linear [15,3,1..13]10..12  generalized Reed-Solomon code over GF(16)
gap&gt; MinimumDistance(C); # 6 error correcting
13
gap&gt; z:=Zero(F);
0*Z(2)
gap&gt; r:=[z,z,z,z,z,z,z,z,b^6,b^2,b^5,b^14,b,b^7,b^11];; # 7 errors
gap&gt; r:=Codeword(r);
[ 0 0 0 0 0 0 0 0 a^12 a^14 a^5 a^8 a^7 a^4 a^2 ]
gap&gt; cs:=NearestNeighborGRSDecodewords(C,r,7);
[ [ [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ], 0*Z(2) ],
  [ [ 0 a^9 a^3 a^13 a^6 a^10 a^11 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ], x_1+Z(2)^0 ] ]
</pre></td></tr></table>

<p><a id="X825E35757D778787" name="X825E35757D778787"></a></p>

<h5>4.10-7 NearestNeighborDecodewords</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; NearestNeighborDecodewords</code>( <var class="Arg">C, v, dist</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">NearestNeighborDecodewords</code> finds all codewords in a linear code <var class="Arg">C</var> within distance <var class="Arg">dist</var> from <var class="Arg">v</var>, using ``brute force''. Input: <var class="Arg">v</var> is a received vector (a <strong class="pkg">GUAVA</strong> codeword), <var class="Arg">C</var> is a linear code, <var class="Arg">dist</var> &gt; 0 is the distance from <var class="Arg">v</var> to search in <var class="Arg">C</var>. Output: a list of c in C, where wt(c-v)&lt;= dist-1.</p>


<table class="example">
<tr><td><pre>
gap&gt; F:=GF(16);
GF(2^4)
gap&gt; a:=PrimitiveRoot(F);; b:=a^7; b^4+b^3+1;
Z(2^4)^7
0*Z(2)
gap&gt; Pts:=List([0..14],i-&gt;b^i);
[ Z(2)^0, Z(2^4)^7, Z(2^4)^14, Z(2^4)^6, Z(2^4)^13, Z(2^2), Z(2^4)^12,
  Z(2^4)^4, Z(2^4)^11, Z(2^4)^3, Z(2^2)^2, Z(2^4)^2, Z(2^4)^9, Z(2^4),
  Z(2^4)^8 ]
gap&gt; x:=X(F);;
gap&gt; R1:=PolynomialRing(F,[x]);;
gap&gt; vars:=IndeterminatesOfPolynomialRing(R1);;
gap&gt; y:=X(F,vars);;
gap&gt; R2:=PolynomialRing(F,[x,y]);;
gap&gt; C:=GeneralizedReedSolomonCode(Pts,3,R1);
a linear [15,3,1..13]10..12  generalized Reed-Solomon code over GF(16)
gap&gt; MinimumDistance(C);
13
gap&gt; z:=Zero(F);
0*Z(2)
gap&gt; r:=[z,z,z,z,z,z,z,z,b^6,b^2,b^5,b^14,b,b^7,b^11];;
gap&gt; r:=Codeword(r);
[ 0 0 0 0 0 0 0 0 a^12 a^14 a^5 a^8 a^7 a^4 a^2 ]
gap&gt; cs:=NearestNeighborDecodewords(C,r,7);
[ [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ], 
  [ 0 a^9 a^3 a^13 a^6 a^10 a^11 a a^12 a^14 a^5 a^8 a^7 a^4 a^2 ] ]

</pre></td></tr></table>

<p><a id="X7D02E0FE8735D3E6" name="X7D02E0FE8735D3E6"></a></p>

<h5>4.10-8 Syndrome</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; Syndrome</code>( <var class="Arg">C, v</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Syndrome</code> returns the syndrome of word <var class="Arg">v</var> with respect to a linear code <var class="Arg">C</var>. <var class="Arg">v</var> is a codeword in the ambient vector space of <var class="Arg">C</var>. If <var class="Arg">v</var> is an element of <var class="Arg">C</var>, the syndrome is a zero vector. The syndrome can be used for looking up an error vector in the syndrome table (see <code class="func">SyndromeTable</code> (<a href="chap4.html#X7B9E71987E4294A7"><b>4.10-9</b></a>)) that is needed to correct an error in v.</p>

<p>A syndrome is not defined for non-linear codes. <code class="code">Syndrome</code> then returns an error.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := HammingCode(4);
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap&gt; v := CodewordNr( C, 7 );
[ 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 ]
gap&gt; Syndrome( C, v );
[ 0 0 0 0 ]
gap&gt; Syndrome( C, Codeword( "000000001100111" ) );
[ 1 1 1 1 ]
gap&gt; Syndrome( C, Codeword( "000000000000001" ) );
[ 1 1 1 1 ]    # the same syndrome: both codewords are in the same
               # coset of C 
</pre></td></tr></table>

<p><a id="X7B9E71987E4294A7" name="X7B9E71987E4294A7"></a></p>

<h5>4.10-9 SyndromeTable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; SyndromeTable</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">SyndromeTable</code> returns a <em>syndrome table</em> of a linear code <var class="Arg">C</var>, consisting of two columns. The first column consists of the error vectors that correspond to the syndrome vectors in the second column. These vectors both are of the codeword type. After calculating the syndrome of a word <var class="Arg">v</var> with <code class="code">Syndrome</code> (see <code class="func">Syndrome</code> (<a href="chap4.html#X7D02E0FE8735D3E6"><b>4.10-8</b></a>)), the error vector needed to correct <var class="Arg">v</var> can be found in the syndrome table. Subtracting this vector from <var class="Arg">v</var> yields an element of <var class="Arg">C</var>. To make the search for the syndrome as fast as possible, the syndrome table is sorted according to the syndrome vectors.</p>


<table class="example">
<tr><td><pre>
gap&gt; H := HammingCode(2);
a linear [3,1,3]1 Hamming (2,2) code over GF(2)
gap&gt; SyndromeTable(H);
[ [ [ 0 0 0 ], [ 0 0 ] ], [ [ 1 0 0 ], [ 0 1 ] ],
  [ [ 0 1 0 ], [ 1 0 ] ], [ [ 0 0 1 ], [ 1 1 ] ] ]
gap&gt; c := Codeword("101");
[ 1 0 1 ]
gap&gt; c in H;
false          # c is not an element of H
gap&gt; Syndrome(H,c);
[ 1 0 ]        # according to the syndrome table,
               # the error vector [ 0 1 0 ] belongs to this syndrome
gap&gt; c - Codeword("010") in H;
true           # so the corrected codeword is
               # [ 1 0 1 ] - [ 0 1 0 ] = [ 1 1 1 ],
               # this is an element of H 
</pre></td></tr></table>

<p><a id="X8642D0BD789DA9B5" name="X8642D0BD789DA9B5"></a></p>

<h5>4.10-10 StandardArray</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; StandardArray</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">StandardArray</code> returns the standard array of a code <var class="Arg">C</var>. This is a matrix with elements of the codeword type. It has q^r rows and q^k columns, where q is the size of the base field of <var class="Arg">C</var>, r=n-k is the redundancy of <var class="Arg">C</var>, and k is the dimension of <var class="Arg">C</var>. The first row contains all the elements of <var class="Arg">C</var>. Each other row contains words that do not belong to the code, with in the first column their syndrome vector (see <code class="func">Syndrome</code> (<a href="chap4.html#X7D02E0FE8735D3E6"><b>4.10-8</b></a>)).</p>

<p>A non-linear code does not have a standard array. <code class="code">StandardArray</code> then returns an error.</p>

<p>Note that calculating a standard array can be very time- and memory- consuming.</p>


<table class="example">
<tr><td><pre>
gap&gt; StandardArray(RepetitionCode(3)); 
[ [ [ 0 0 0 ], [ 1 1 1 ] ], [ [ 0 0 1 ], [ 1 1 0 ] ], 
  [ [ 0 1 0 ], [ 1 0 1 ] ], [ [ 1 0 0 ], [ 0 1 1 ] ] ]
</pre></td></tr></table>

<p><a id="X83231E717CCB0247" name="X83231E717CCB0247"></a></p>

<h5>4.10-11 PermutationDecode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; PermutationDecode</code>( <var class="Arg">C, v</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PermutationDecode</code> performs permutation decoding when possible and returns original vector and prints 'fail' when not possible.</p>

<p>This uses <code class="code">AutomorphismGroup</code> in the binary case, and (the slower) <code class="code">PermutationAutomorphismGroup</code> otherwise, to compute the permutation automorphism group P of <var class="Arg">C</var>. The algorithm runs through the elements p of P checking if the weight of H(p* v) is less than (d-1)/2. If it is then the vector p* v is used to decode v: assuming <var class="Arg">C</var> is in standard form then c=p^-1Em is the decoded word, where m is the information digits part of p* v. If no such p exists then ``fail'' is returned. See, for example, section 10.2 of Huffman and Pless <a href="chapBib.html#biBHP03">[HP03]</a> for more details.</p>


<table class="example">
<tr><td><pre>
gap&gt; C0:=HammingCode(3,GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap&gt; G0:=GeneratorMat(C0);;
gap&gt; G := List(G0, ShallowCopy);;
gap&gt; PutStandardForm(G);
()
gap&gt; Display(G);
 1 . . . . 1 1
 . 1 . . 1 . 1
 . . 1 . 1 1 .
 . . . 1 1 1 1
gap&gt; H0:=CheckMat(C0);;
gap&gt; Display(H0);
 . . . 1 1 1 1
 . 1 1 . . 1 1
 1 . 1 . 1 . 1
gap&gt; c0:=Random(C0);
[ 0 0 0 1 1 1 1 ]
gap&gt; v01:=c0[1]+Z(2)^2;;
gap&gt; v1:=List(c0, ShallowCopy);;
gap&gt; v1[1]:=v01;;
gap&gt; v1:=Codeword(v1);
[ 1 0 0 1 1 1 1 ]
gap&gt; c1:=PermutationDecode(C0,v1);
[ 0 0 0 1 1 1 1 ]
gap&gt; c1=c0;
true
</pre></td></tr></table>

<p><a id="X85B692177E2A745D" name="X85B692177E2A745D"></a></p>

<h5>4.10-12 PermutationDecodeNC</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; PermutationDecodeNC</code>( <var class="Arg">C, v, P</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Same as <code class="code">PermutationDecode</code> except that one may enter the permutation automorphism group <var class="Arg">P</var> in as an argument, saving time. Here <var class="Arg">P</var> is a subgroup of the symmetric group on n letters, where n is the word length of <var class="Arg">C</var>.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">Top of Book</a>&nbsp;  &nbsp;<a href="chap3.html">Previous Chapter</a>&nbsp;  &nbsp;<a href="chap5.html">Next Chapter</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>