1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (guava) - Chapter 5: Generating Codes</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
</head>
<body>
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">Top of Book</a> <a href="chap4.html">Previous Chapter</a> <a href="chap6.html">Next Chapter</a> </div>
<p><a id="X87EB64ED831CCE99" name="X87EB64ED831CCE99"></a></p>
<div class="ChapSects"><a href="chap5.html#X87EB64ED831CCE99">5. <span class="Heading">Generating Codes</span></a>
<div class="ContSect"><span class="nocss"> </span><a href="chap5.html#X86A92CB184CBD3C7">5.1 <span class="Heading">
Generating Unrestricted Codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X81AACBDD86E89D7D">5.1-1 ElementsCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X86755AAC83A0AF4B">5.1-2 HadamardCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8122BA417F705997">5.1-3 ConferenceCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X81B7EE4279398F67">5.1-4 MOLSCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7D87DD6380B2CE69">5.1-5 RandomCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X816353397F25B62E">5.1-6 NordstromRobinsonCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7880D34485C60BAF">5.1-7 GreedyCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7C1B374583AFB923">5.1-8 LexiCode</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap5.html#X7A11F29F7BBF45BB">5.2 <span class="Heading">
Generating Linear Codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X83F400A681CFC0D6">5.2-1 GeneratorMatCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7CDDDFE47A10A008">5.2-2 CheckMatCodeMutable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X848D3F7B805DEB66">5.2-3 CheckMatCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7DECB0A57C798583">5.2-4 HammingCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X801C88D578DA6ACA">5.2-5 ReedMullerCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X851592C7811D3D2A">5.2-6 AlternantCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7EE808BB7D1E487A">5.2-7 GoppaCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F9C0A727EE075B7">5.2-8 GeneralizedSrivastavaCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7A38EB3178961F3E">5.2-9 SrivastavaCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X87F7CB8B7A8BE624">5.2-10 CordaroWagnerCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X865534267C8E902A">5.2-11 FerreroDesignCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7BCA10CE8660357F">5.2-12 RandomLinearCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X839CFE4C7A567D4D">5.2-13 OptimalityCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X871508567CB34D96">5.2-14 BestKnownLinearCode</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap5.html#X858721967BE44000">5.3 <span class="Heading">
Gabidulin Codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79BE5D497CB2E59E">5.3-1 GabidulinCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X873950F67D4A9184">5.3-2 EnlargedGabidulinCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F5BE77B7F343182">5.3-3 DavydovCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X845B4DBE83288D2D">5.3-4 TombakCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7D6583347C0D4292">5.3-5 EnlargedTombakCode</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap5.html#X81F6E4A785F368B0">5.4 <span class="Heading">
Golay Codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X80ED89C079CD0D09">5.4-1 BinaryGolayCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X84520C7983538806">5.4-2 ExtendedBinaryGolayCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7E0CCCD7866ADB94">5.4-3 TernaryGolayCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X81088A66816BCAE4">5.4-4 ExtendedTernaryGolayCode</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap5.html#X8366CC3685F0BC85">5.5 <span class="Heading">
Generating Cyclic Codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X853D34A5796CEB73">5.5-1 GeneratorPolCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X82440B78845F7F6E">5.5-2 CheckPolCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X818F0E6583E01D4B">5.5-3 RootsCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7C6BB07C87853C00">5.5-4 BCHCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X838F3CB3872CEF95">5.5-5 ReedSolomonCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8730B90A862A3B3E">5.5-6 ExtendedReedSolomonCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X825F42F68179D2AB">5.5-7 QRCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8764ABCF854C695E">5.5-8 QQRCodeNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F4C3AD2795A8D7A">5.5-9 QQRCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F3B8CC8831DA0E4">5.5-10 FireCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7BC245E37EB7B23F">5.5-11 WholeSpaceCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7B4EF2017B2C61AD">5.5-12 NullCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X83C5F8FE7827EAA7">5.5-13 RepetitionCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X82FA9F65854D98A6">5.5-14 CyclicCodes</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8263CE4A790D294A">5.5-15 NrCyclicCodes</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79826B16785E8BD3">5.5-16 QuasiCyclicCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7BFEDA52835A601D">5.5-17 CyclicMDSCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7F40AF3B81C252DC">5.5-18 FourNegacirculantSelfDualCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X87137A257E761291">5.5-19 FourNegacirculantSelfDualCodeNC</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap5.html#X850A28C579137220">5.6 <span class="Heading">
Evaluation Codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X78E078567D19D433">5.6-1 EvaluationCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X810AB3DB844FFCE9">5.6-2 GeneralizedReedSolomonCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X85B8699680B9D786">5.6-3 GeneralizedReedMullerCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7EE68B58872D7E82">5.6-4 ToricPoints</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7B24BE418010F596">5.6-5 ToricCode</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap5.html#X7AE2B2CD7C647990">5.7 <span class="Heading">
Algebraic geometric codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X802DD9FB79A9ACA7">5.7-1 AffineCurve</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X857EFE567C05C981">5.7-2 AffinePointsOnCurve</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X857E36ED814A40B8">5.7-3 GenusCurve</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8572A3037DA66F88">5.7-4 GOrbitPoint </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79742B7183051D99">5.7-5 DivisorOnAffineCurve</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8626E2B57D01F2DC">5.7-6 DivisorAddition </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X865FE28D828C1EAD">5.7-7 DivisorDegree </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X789DC358819A8F54">5.7-8 DivisorNegate </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8688C0E187B5C7DB">5.7-9 DivisorIsZero </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X816A07997D9A7075">5.7-10 DivisorsEqual </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X857B89847A649A26">5.7-11 DivisorGCD </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X82231CF08073695F">5.7-12 DivisorLCM </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79C878697F99A10F">5.7-13 RiemannRochSpaceBasisFunctionP1 </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X856DDA207EDDF256">5.7-14 DivisorOfRationalFunctionP1 </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X878970A17E580224">5.7-15 RiemannRochSpaceBasisP1 </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X807C52E67A440DEB">5.7-16 MoebiusTransformation </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X85A0419580ED0391">5.7-17 ActionMoebiusTransformationOnFunction </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7E48F9C67E7FB7B5">5.7-18 ActionMoebiusTransformationOnDivisorP1 </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X79FD980E7B24DB9C">5.7-19 IsActionMoebiusTransformationOnDivisorDefinedP1 </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X823386037F450B0E">5.7-20 DivisorAutomorphismGroupP1 </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X80EDF3D682E7EF3F">5.7-21 MatrixRepresentationOnRiemannRochSpaceP1 </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8777388C7885E335">5.7-22 GoppaCodeClassical</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8422A310854C09B0">5.7-23 EvaluationBivariateCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7B6C2BED8319C811">5.7-24 EvaluationBivariateCodeNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X842E227E8785168E">5.7-25 OnePointAGCode</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap5.html#X84F3673D7BBF5956">5.8 <span class="Heading">
Low-Density Parity-Check Codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8020A9357AD0BA92">5.8-1 QCLDPCCodeFromGroup</a></span>
</div>
</div>
<h3>5. <span class="Heading">Generating Codes</span></h3>
<p>In this chapter we describe functions for generating codes.</p>
<p>Section <a href="chap5.html#X86A92CB184CBD3C7"><b>5.1</b></a> describes functions for generating unrestricted codes.</p>
<p>Section <a href="chap5.html#X7A11F29F7BBF45BB"><b>5.2</b></a> describes functions for generating linear codes.</p>
<p>Section <a href="chap5.html#X858721967BE44000"><b>5.3</b></a> describes functions for constructing certain covering codes, such as the Gabidulin codes.</p>
<p>Section <a href="chap5.html#X81F6E4A785F368B0"><b>5.4</b></a> describes functions for constructing the Golay codes.</p>
<p>Section <a href="chap5.html#X8366CC3685F0BC85"><b>5.5</b></a> describes functions for generating cyclic codes.</p>
<p>Section <a href="chap5.html#X850A28C579137220"><b>5.6</b></a> describes functions for generating codes as the image of an evaluation map applied to a space of functions. For example, generalized Reed-Solomon codes and toric codes are described there.</p>
<p>Section <a href="chap5.html#X7AE2B2CD7C647990"><b>5.7</b></a> describes functions for generating algebraic geometry codes.</p>
<p>Section <a href="chap5.html#X84F3673D7BBF5956"><b>5.8</b></a> describes functions for constructing low-density parity-check (LDPC) codes.</p>
<p><a id="X86A92CB184CBD3C7" name="X86A92CB184CBD3C7"></a></p>
<h4>5.1 <span class="Heading">
Generating Unrestricted Codes
</span></h4>
<p>In this section we start with functions that creating code from user defined matrices or special matrices (see <code class="func">ElementsCode</code> (<a href="chap5.html#X81AACBDD86E89D7D"><b>5.1-1</b></a>), <code class="func">HadamardCode</code> (<a href="chap5.html#X86755AAC83A0AF4B"><b>5.1-2</b></a>), <code class="func">ConferenceCode</code> (<a href="chap5.html#X8122BA417F705997"><b>5.1-3</b></a>) and <code class="func">MOLSCode</code> (<a href="chap5.html#X81B7EE4279398F67"><b>5.1-4</b></a>)). These codes are unrestricted codes; they may later be discovered to be linear or cyclic.</p>
<p>The next functions generate random codes (see <code class="func">RandomCode</code> (<a href="chap5.html#X7D87DD6380B2CE69"><b>5.1-5</b></a>)) and the Nordstrom-Robinson code (see <code class="func">NordstromRobinsonCode</code> (<a href="chap5.html#X816353397F25B62E"><b>5.1-6</b></a>)), respectively.</p>
<p>Finally, we describe two functions for generating Greedy codes. These are codes that contructed by gathering codewords from a space (see <code class="func">GreedyCode</code> (<a href="chap5.html#X7880D34485C60BAF"><b>5.1-7</b></a>) and <code class="func">LexiCode</code> (<a href="chap5.html#X7C1B374583AFB923"><b>5.1-8</b></a>)).</p>
<p><a id="X81AACBDD86E89D7D" name="X81AACBDD86E89D7D"></a></p>
<h5>5.1-1 ElementsCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ElementsCode</code>( <var class="Arg">L[, name], F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ElementsCode</code> creates an unrestricted code of the list of elements <var class="Arg">L</var>, in the field <var class="Arg">F</var>. <var class="Arg">L</var> must be a list of vectors, strings, polynomials or codewords. <var class="Arg">name</var> can contain a short description of the code.</p>
<p>If <var class="Arg">L</var> contains a codeword more than once, it is removed from the list and a GAP set is returned.</p>
<table class="example">
<tr><td><pre>
gap> M := Z(3)^0 * [ [1, 0, 1, 1], [2, 2, 0, 0], [0, 1, 2, 2] ];;
gap> C := ElementsCode( M, "example code", GF(3) );
a (4,3,1..4)2 example code over GF(3)
gap> MinimumDistance( C );
4
gap> AsSSortedList( C );
[ [ 0 1 2 2 ], [ 1 0 1 1 ], [ 2 2 0 0 ] ]
</pre></td></tr></table>
<p><a id="X86755AAC83A0AF4B" name="X86755AAC83A0AF4B"></a></p>
<h5>5.1-2 HadamardCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> HadamardCode</code>( <var class="Arg">H[, t]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The four forms this command can take are <code class="code">HadamardCode(H,t)</code>, <code class="code">HadamardCode(H)</code>, <code class="code">HadamardCode(n,t)</code>, and <code class="code">HadamardCode(n)</code>.</p>
<p>In the case when the arguments <var class="Arg">H</var> and <var class="Arg">t</var> are both given, <code class="code">HadamardCode</code> returns a Hadamard code of the t^th kind from the Hadamard matrix <var class="Arg">H</var> In case only <var class="Arg">H</var> is given, t = 3 is used.</p>
<p>By definition, a Hadamard matrix is a square matrix <var class="Arg">H</var> with H* H^T = -n* I_n, where n is the size of <var class="Arg">H</var>. The entries of <var class="Arg">H</var> are either 1 or -1.</p>
<p>The matrix <var class="Arg">H</var> is first transformed into a binary matrix A_n by replacing the 1's by 0's and the -1's by 1s).</p>
<p>The Hadamard matrix of the <em>first kind</em> (t=1) is created by using the rows of A_n as elements, after deleting the first column. This is a (n-1, n, n/2) code. We use this code for creating the Hadamard code of the <em>second kind</em> (t=2), by adding all the complements of the already existing codewords. This results in a (n-1, 2n, n/2 -1) code. The <em>third kind</em> (t=3) is created by using the rows of A_n (without cutting a column) and their complements as elements. This way, we have an (n, 2n, n/2)-code. The returned code is generally an unrestricted code, but for n = 2^r, the code is linear.</p>
<p>The command <code class="code">HadamardCode(n,t)</code> returns a Hadamard code with parameter <var class="Arg">n</var> of the t^th kind. For the command <code class="code">HadamardCode(n)</code>, t=3 is used.</p>
<p>When called in these forms, <code class="code">HadamardCode</code> first creates a Hadamard matrix (see <code class="func">HadamardMat</code> (<a href="chap7.html#X8014A1F181ECD8AA"><b>7.3-4</b></a>)), of size <var class="Arg">n</var> and then follows the same procedure as described above. Therefore the same restrictions with respect to <var class="Arg">n</var> as for Hadamard matrices hold.</p>
<table class="example">
<tr><td><pre>
gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
gap> HadamardCode( H4, 1 );
a (3,4,2)1 Hadamard code of order 4 over GF(2)
gap> HadamardCode( H4, 2 );
a (3,8,1)0 Hadamard code of order 4 over GF(2)
gap> HadamardCode( H4 );
a (4,8,2)1 Hadamard code of order 4 over GF(2)
gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
gap> C := HadamardCode( 4 );
a (4,8,2)1 Hadamard code of order 4 over GF(2)
gap> C = HadamardCode( H4 );
true
</pre></td></tr></table>
<p><a id="X8122BA417F705997" name="X8122BA417F705997"></a></p>
<h5>5.1-3 ConferenceCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ConferenceCode</code>( <var class="Arg">H</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ConferenceCode</code> returns a code of length n-1 constructed from a symmetric 'conference matrix' <var class="Arg">H</var>. A <em>conference matrix</em> <var class="Arg">H</var> is a symmetric matrix of order n, which satisfies H* H^T = ((n-1)* I, with n = 2 mod 4. The rows of frac12(H+I+J), frac12(-H+I+J), plus the zero and all-ones vectors form the elements of a binary non-linear (n-1, 2n, (n-2)/2) code.</p>
<p><strong class="pkg">GUAVA</strong> constructs a symmetric conference matrix of order n+1 (n= 1 mod 4) and uses the rows of that matrix, plus the zero and all-ones vectors, to construct a binary non-linear (n, 2(n+1), (n-1)/2)-code.</p>
<table class="example">
<tr><td><pre>
gap> H6 := [[0,1,1,1,1,1],[1,0,1,-1,-1,1],[1,1,0,1,-1,-1],
> [1,-1,1,0,1,-1],[1,-1,-1,1,0,1],[1,1,-1,-1,1,0]];;
gap> C1 := ConferenceCode( H6 );
a (5,12,2)1..4 conference code over GF(2)
gap> IsLinearCode( C1 );
false
gap> C2 := ConferenceCode( 5 );
a (5,12,2)1..4 conference code over GF(2)
gap> AsSSortedList( C2 );
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 1 1 ], [ 0 1 1 0 1 ], [ 0 1 1 1 0 ],
[ 1 0 0 1 1 ], [ 1 0 1 0 1 ], [ 1 0 1 1 0 ], [ 1 1 0 0 1 ], [ 1 1 0 1 0 ],
[ 1 1 1 0 0 ], [ 1 1 1 1 1 ] ]
</pre></td></tr></table>
<p><a id="X81B7EE4279398F67" name="X81B7EE4279398F67"></a></p>
<h5>5.1-4 MOLSCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> MOLSCode</code>( <var class="Arg">[n][,]q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">MOLSCode</code> returns an (n, q^2, n-1) code over GF(q). The code is created from n-2 'Mutually Orthogonal Latin Squares' (MOLS) of size q x q. The default for <var class="Arg">n</var> is 4. <strong class="pkg">GUAVA</strong> can construct a MOLS code for n-2 <= q. Here <var class="Arg">q</var> must be a prime power, q > 2. If there are no n-2 MOLS, an error is signalled.</p>
<p>Since each of the n-2 MOLS is a qx q matrix, we can create a code of size q^2 by listing in each code element the entries that are in the same position in each of the MOLS. We precede each of these lists with the two coordinates that specify this position, making the word length become n.</p>
<p>The MOLS codes are MDS codes (see <code class="func">IsMDSCode</code> (<a href="chap4.html#X789380D28018EC3F"><b>4.3-7</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> C1 := MOLSCode( 6, 5 );
a (6,25,5)3..4 code generated by 4 MOLS of order 5 over GF(5)
gap> mols := List( [1 .. WordLength(C1) - 2 ], function( nr )
> local ls, el;
> ls := NullMat( Size(LeftActingDomain(C1)), Size(LeftActingDomain(C1)) );
> for el in VectorCodeword( AsSSortedList( C1 ) ) do
> ls[IntFFE(el[1])+1][IntFFE(el[2])+1] := el[nr + 2];
> od;
> return ls;
> end );;
gap> AreMOLS( mols );
true
gap> C2 := MOLSCode( 11 );
a (4,121,3)2 code generated by 2 MOLS of order 11 over GF(11)
</pre></td></tr></table>
<p><a id="X7D87DD6380B2CE69" name="X7D87DD6380B2CE69"></a></p>
<h5>5.1-5 RandomCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> RandomCode</code>( <var class="Arg">n, M, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">RandomCode</code> returns a random unrestricted code of size <var class="Arg">M</var> with word length <var class="Arg">n</var> over <var class="Arg">F</var>. <var class="Arg">M</var> must be less than or equal to the number of elements in the space GF(q)^n.</p>
<p>The function <code class="code">RandomLinearCode</code> returns a random linear code (see <code class="func">RandomLinearCode</code> (<a href="chap5.html#X7BCA10CE8660357F"><b>5.2-12</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> C1 := RandomCode( 6, 10, GF(8) );
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> MinimumDistance(C1);
3
gap> C2 := RandomCode( 6, 10, GF(8) );
a (6,10,1..6)4..6 random unrestricted code over GF(8)
gap> C1 = C2;
false
</pre></td></tr></table>
<p><a id="X816353397F25B62E" name="X816353397F25B62E"></a></p>
<h5>5.1-6 NordstromRobinsonCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> NordstromRobinsonCode</code>( <var class="Arg"></var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">NordstromRobinsonCode</code> returns a Nordstrom-Robinson code, the best code with word length n=16 and minimum distance d=6 over GF(2). This is a non-linear (16, 256, 6) code.</p>
<table class="example">
<tr><td><pre>
gap> C := NordstromRobinsonCode();
a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> OptimalityCode( C );
0
</pre></td></tr></table>
<p><a id="X7880D34485C60BAF" name="X7880D34485C60BAF"></a></p>
<h5>5.1-7 GreedyCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GreedyCode</code>( <var class="Arg">L, d, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GreedyCode</code> returns a Greedy code with design distance <var class="Arg">d</var> over the finite field <var class="Arg">F</var>. The code is constructed using the greedy algorithm on the list of vectors <var class="Arg">L</var>. (The greedy algorithm checks each vector in <var class="Arg">L</var> and adds it to the code if its distance to the current code is greater than or equal to <var class="Arg">d</var>. It is obvious that the resulting code has a minimum distance of at least <var class="Arg">d</var>.</p>
<p>Greedy codes are often linear codes.</p>
<p>The function <code class="code">LexiCode</code> creates a greedy code from a basis instead of an enumerated list (see <code class="func">LexiCode</code> (<a href="chap5.html#X7C1B374583AFB923"><b>5.1-8</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> C1 := GreedyCode( Tuples( AsSSortedList( GF(2) ), 5 ), 3, GF(2) );
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C2 := GreedyCode( Permuted( Tuples( AsSSortedList( GF(2) ), 5 ),
> (1,4) ), 3, GF(2) );
a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
gap> C1 = C2;
false
</pre></td></tr></table>
<p><a id="X7C1B374583AFB923" name="X7C1B374583AFB923"></a></p>
<h5>5.1-8 LexiCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LexiCode</code>( <var class="Arg">n, d, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In this format, <code class="code">Lexicode</code> returns a lexicode with word length <var class="Arg">n</var>, design distance <var class="Arg">d</var> over <var class="Arg">F</var>. The code is constructed using the greedy algorithm on the lexicographically ordered list of all vectors of length <var class="Arg">n</var> over <var class="Arg">F</var>. Every time a vector is found that has a distance to the current code of at least <var class="Arg">d</var>, it is added to the code. This results, obviously, in a code with minimum distance greater than or equal to <var class="Arg">d</var>.</p>
<p>Another syntax which one can use is <code class="code">LexiCode( B, d, F )</code>. When called in this format, <code class="code">LexiCode</code> uses the basis <var class="Arg">B</var> instead of the standard basis. <var class="Arg">B</var> is a matrix of vectors over <var class="Arg">F</var>. The code is constructed using the greedy algorithm on the list of vectors spanned by <var class="Arg">B</var>, ordered lexicographically with respect to <var class="Arg">B</var>.</p>
<p>Note that binary lexicodes are always linear.</p>
<table class="example">
<tr><td><pre>
gap> C := LexiCode( 4, 3, GF(5) );
a (4,17,3..4)2..4 lexicode over GF(5)
gap> B := [ [Z(2)^0, 0*Z(2), 0*Z(2)], [Z(2)^0, Z(2)^0, 0*Z(2)] ];;
gap> C := LexiCode( B, 2, GF(2) );
a linear [3,1,2]1..2 lexicode over GF(2)
</pre></td></tr></table>
<p>The function <code class="code">GreedyCode</code> creates a greedy code that is not restricted to a lexicographical order (see <code class="func">GreedyCode</code> (<a href="chap5.html#X7880D34485C60BAF"><b>5.1-7</b></a>)).</p>
<p><a id="X7A11F29F7BBF45BB" name="X7A11F29F7BBF45BB"></a></p>
<h4>5.2 <span class="Heading">
Generating Linear Codes
</span></h4>
<p>In this section we describe functions for constructing linear codes. A linear code always has a generator or check matrix.</p>
<p>The first two functions generate linear codes from the generator matrix (<code class="func">GeneratorMatCode</code> (<a href="chap5.html#X83F400A681CFC0D6"><b>5.2-1</b></a>)) or check matrix (<code class="func">CheckMatCode</code> (<a href="chap5.html#X848D3F7B805DEB66"><b>5.2-3</b></a>)). All linear codes can be constructed with these functions.</p>
<p>The next functions we describe generate some well-known codes, like Hamming codes (<code class="func">HammingCode</code> (<a href="chap5.html#X7DECB0A57C798583"><b>5.2-4</b></a>)), Reed-Muller codes (<code class="func">ReedMullerCode</code> (<a href="chap5.html#X801C88D578DA6ACA"><b>5.2-5</b></a>)) and the extended Golay codes (<code class="func">ExtendedBinaryGolayCode</code> (<a href="chap5.html#X84520C7983538806"><b>5.4-2</b></a>) and <code class="func">ExtendedTernaryGolayCode</code> (<a href="chap5.html#X81088A66816BCAE4"><b>5.4-4</b></a>)).</p>
<p>A large and powerful family of codes are alternant codes. They are obtained by a small modification of the parity check matrix of a BCH code (see <code class="func">AlternantCode</code> (<a href="chap5.html#X851592C7811D3D2A"><b>5.2-6</b></a>), <code class="func">GoppaCode</code> (<a href="chap5.html#X7EE808BB7D1E487A"><b>5.2-7</b></a>), <code class="func">GeneralizedSrivastavaCode</code> (<a href="chap5.html#X7F9C0A727EE075B7"><b>5.2-8</b></a>) and <code class="func">SrivastavaCode</code> (<a href="chap5.html#X7A38EB3178961F3E"><b>5.2-9</b></a>)).</p>
<p>Finally, we describe a function for generating random linear codes (see <code class="func">RandomLinearCode</code> (<a href="chap5.html#X7BCA10CE8660357F"><b>5.2-12</b></a>)).</p>
<p><a id="X83F400A681CFC0D6" name="X83F400A681CFC0D6"></a></p>
<h5>5.2-1 GeneratorMatCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GeneratorMatCode</code>( <var class="Arg">G[, name], F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneratorMatCode</code> returns a linear code with generator matrix <var class="Arg">G</var>. <var class="Arg">G</var> must be a matrix over finite field <var class="Arg">F</var>. <var class="Arg">name</var> can contain a short description of the code. The generator matrix is the basis of the elements of the code. The resulting code has word length n, dimension k if <var class="Arg">G</var> is a k x n-matrix. If GF(q) is the field of the code, the size of the code will be q^k.</p>
<p>If the generator matrix does not have full row rank, the linearly dependent rows are removed. This is done by the GAP function <code class="code">BaseMat</code> and results in an equal code. The generator matrix can be retrieved with the function <code class="code">GeneratorMat</code> (see <code class="func">GeneratorMat</code> (<a href="chap4.html#X817224657C9829C4"><b>4.7-1</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> G := Z(3)^0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := GeneratorMatCode( G, GF(3) );
a linear [5,3,1..2]1..2 code defined by generator matrix over GF(3)
gap> C2 := GeneratorMatCode( IdentityMat( 5, GF(2) ), GF(2) );
a linear [5,5,1]0 code defined by generator matrix over GF(2)
gap> GeneratorMatCode( List( AsSSortedList( NordstromRobinsonCode() ),
> x -> VectorCodeword( x ) ), GF( 2 ) );
a linear [16,11,1..4]2 code defined by generator matrix over GF(2)
# This is the smallest linear code that contains the N-R code
</pre></td></tr></table>
<p><a id="X7CDDDFE47A10A008" name="X7CDDDFE47A10A008"></a></p>
<h5>5.2-2 CheckMatCodeMutable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CheckMatCodeMutable</code>( <var class="Arg">H[, name], F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CheckMatCodeMutable</code> is the same as <code class="code">CheckMatCode</code> except that the check matrix and generator matrix are mutable.</p>
<p><a id="X848D3F7B805DEB66" name="X848D3F7B805DEB66"></a></p>
<h5>5.2-3 CheckMatCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CheckMatCode</code>( <var class="Arg">H[, name], F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CheckMatCode</code> returns a linear code with check matrix <var class="Arg">H</var>. <var class="Arg">H</var> must be a matrix over Galois field <var class="Arg">F</var>. <var class="Arg">[name.</var> can contain a short description of the code. The parity check matrix is the transposed of the nullmatrix of the generator matrix of the code. Therefore, c* H^T = 0 where c is an element of the code. If <var class="Arg">H</var> is a rx n-matrix, the code has word length n, redundancy r and dimension n-r.</p>
<p>If the check matrix does not have full row rank, the linearly dependent rows are removed. This is done by the GAP function <code class="code">BaseMat</code>. and results in an equal code. The check matrix can be retrieved with the function <code class="code">CheckMat</code> (see <code class="func">CheckMat</code> (<a href="chap4.html#X85D4B26E7FB38D57"><b>4.7-2</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> G := Z(3)^0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
gap> C1 := CheckMatCode( G, GF(3) );
a linear [5,2,1..2]2..3 code defined by check matrix over GF(3)
gap> CheckMat(C1);
[ [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ],
[ 0*Z(3), Z(3)^0, Z(3), Z(3)^0, Z(3)^0 ],
[ 0*Z(3), 0*Z(3), Z(3)^0, Z(3), Z(3)^0 ] ]
gap> C2 := CheckMatCode( IdentityMat( 5, GF(2) ), GF(2) );
a cyclic [5,0,5]5 code defined by check matrix over GF(2)
</pre></td></tr></table>
<p><a id="X7DECB0A57C798583" name="X7DECB0A57C798583"></a></p>
<h5>5.2-4 HammingCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> HammingCode</code>( <var class="Arg">r, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">HammingCode</code> returns a Hamming code with redundancy <var class="Arg">r</var> over <var class="Arg">F</var>. A Hamming code is a single-error-correcting code. The parity check matrix of a Hamming code has all nonzero vectors of length <var class="Arg">r</var> in its columns, except for a multiplication factor. The decoding algorithm of the Hamming code (see <code class="func">Decode</code> (<a href="chap4.html#X7A42FF7D87FC34AC"><b>4.10-1</b></a>)) makes use of this property.</p>
<p>If q is the size of its field <var class="Arg">F</var>, the returned Hamming code is a linear [(q^r-1)/(q-1), (q^r-1)/(q-1) - r, 3] code.</p>
<table class="example">
<tr><td><pre>
gap> C1 := HammingCode( 4, GF(2) );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> C2 := HammingCode( 3, GF(9) );
a linear [91,88,3]1 Hamming (3,9) code over GF(9)
</pre></td></tr></table>
<p><a id="X801C88D578DA6ACA" name="X801C88D578DA6ACA"></a></p>
<h5>5.2-5 ReedMullerCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ReedMullerCode</code>( <var class="Arg">r, k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ReedMullerCode</code> returns a binary 'Reed-Muller code' <var class="Arg">R(r, k)</var> with dimension <var class="Arg">k</var> and order <var class="Arg">r</var>. This is a code with length 2^k and minimum distance 2^k-r (see for example, section 1.10 in <a href="chapBib.html#biBHP03">[HP03]</a>). By definition, the r^th order binary Reed-Muller code of length n=2^m, for 0 <= r <= m, is the set of all vectors f, where f is a Boolean function which is a polynomial of degree at most r.</p>
<table class="example">
<tr><td><pre>
gap> ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
</pre></td></tr></table>
<p>See <code class="func">GeneralizedReedMullerCode</code> (<a href="chap5.html#X85B8699680B9D786"><b>5.6-3</b></a>) for a more general construction.</p>
<p><a id="X851592C7811D3D2A" name="X851592C7811D3D2A"></a></p>
<h5>5.2-6 AlternantCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> AlternantCode</code>( <var class="Arg">r, Y[, alpha], F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AlternantCode</code> returns an 'alternant code', with parameters <var class="Arg">r</var>, <var class="Arg">Y</var> and <var class="Arg">alpha</var> (optional). <var class="Arg">F</var> denotes the (finite) base field. Here, <var class="Arg">r</var> is the design redundancy of the code. <var class="Arg">Y</var> and <var class="Arg">alpha</var> are both vectors of length <var class="Arg">n</var> from which the parity check matrix is constructed. The check matrix has the form H=([a_i^j y_i]), where 0 <= j<= r-1, 1 <= i<= n, and where [...] is as in <code class="func">VerticalConversionFieldMat</code> (<a href="chap7.html#X7B68119F85E9EC6D"><b>7.3-9</b></a>)). If no <var class="Arg">alpha</var> is specified, the vector [1, a, a^2, .., a^n-1] is used, where a is a primitive element of a Galois field <var class="Arg">F</var>.</p>
<table class="example">
<tr><td><pre>
gap> Y := [ 1, 1, 1, 1, 1, 1, 1];; a := PrimitiveUnityRoot( 2, 7 );;
gap> alpha := List( [0..6], i -> a^i );;
gap> C := AlternantCode( 2, Y, alpha, GF(8) );
a linear [7,3,3..4]3..4 alternant code over GF(8)
</pre></td></tr></table>
<p><a id="X7EE808BB7D1E487A" name="X7EE808BB7D1E487A"></a></p>
<h5>5.2-7 GoppaCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GoppaCode</code>( <var class="Arg">G, L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GoppaCode</code> returns a Goppa code <var class="Arg">C</var> from Goppa polynomial <var class="Arg">g</var>, having coefficients in a Galois Field GF(q). <var class="Arg">L</var> must be a list of elements in GF(q), that are not roots of <var class="Arg">g</var>. The word length of the code is equal to the length of <var class="Arg">L</var>. The parity check matrix has the form H=([a_i^j / G(a_i)])_0 <= j <= deg(g)-1, a_i in L, where a_iin L and [...] is as in <code class="func">VerticalConversionFieldMat</code> (<a href="chap7.html#X7B68119F85E9EC6D"><b>7.3-9</b></a>), so H has entries in GF(q), q=p^m. It is known that d(C)>= deg(g)+1, with a better bound in the binary case provided g has no multiple roots. See Huffman and Pless <a href="chapBib.html#biBHP03">[HP03]</a> section 13.2.2, and MacWilliams and Sloane <a href="chapBib.html#biBMS83">[MS83]</a> section 12.3, for more details.</p>
<p>One can also call <code class="code">GoppaCode</code> using the syntax <code class="code">GoppaCode(g,n)</code>. When called with parameter <var class="Arg">n</var>, <strong class="pkg">GUAVA</strong> constructs a list L of length <var class="Arg">n</var>, such that no element of <var class="Arg">L</var> is a root of <var class="Arg">g</var>.</p>
<p>This is a special case of an alternant code.</p>
<table class="example">
<tr><td><pre>
gap> x:=Indeterminate(GF(8),"x");
x
gap> L:=Elements(GF(8));
[ 0*Z(2), Z(2)^0, Z(2^3), Z(2^3)^2, Z(2^3)^3, Z(2^3)^4, Z(2^3)^5, Z(2^3)^6 ]
gap> g:=x^2+x+1;
x^2+x+Z(2)^0
gap> C:=GoppaCode(g,L);
a linear [8,2,5]3 Goppa code over GF(2)
gap> xx := Indeterminate( GF(2), "xx" );;
gap> gg := xx^2 + xx + 1;; L := AsSSortedList( GF(8) );;
gap> C1 := GoppaCode( gg, L );
a linear [8,2,5]3 Goppa code over GF(2)
gap> y := Indeterminate( GF(2), "y" );;
gap> h := y^2 + y + 1;;
gap> C2 := GoppaCode( h, 8 );
a linear [8,2,5]3 Goppa code over GF(2)
gap> C1=C2;
true
gap> C=C1;
true
</pre></td></tr></table>
<p><a id="X7F9C0A727EE075B7" name="X7F9C0A727EE075B7"></a></p>
<h5>5.2-8 GeneralizedSrivastavaCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GeneralizedSrivastavaCode</code>( <var class="Arg">a, w, z[, t], F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralizedSrivastavaCode</code> returns a generalized Srivastava code with parameters <var class="Arg">a</var>, <var class="Arg">w</var>, <var class="Arg">z</var>, <var class="Arg">t</var>. a = a_1, ..., a_n and w = w_1, ..., w_s are lists of n+s distinct elements of F=GF(q^m), z is a list of length n of nonzero elements of GF(q^m). The parameter <var class="Arg">t</var> determines the designed distance: d >= st + 1. The check matrix of this code is the form</p>
<p class="pcenter">
H=([\frac{z_i}{(a_i - w_j)^k}]),
</p>
<p>1<= k<= t, where [...] is as in <code class="func">VerticalConversionFieldMat</code> (<a href="chap7.html#X7B68119F85E9EC6D"><b>7.3-9</b></a>). We use this definition of H to define the code. The default for <var class="Arg">t</var> is 1. The original Srivastava codes (see <code class="func">SrivastavaCode</code> (<a href="chap5.html#X7A38EB3178961F3E"><b>5.2-9</b></a>)) are a special case t=1, z_i=a_i^mu, for some mu.</p>
<table class="example">
<tr><td><pre>
gap> a := Filtered( AsSSortedList( GF(2^6) ), e -> e in GF(2^3) );;
gap> w := [ Z(2^6) ];; z := List( [1..8], e -> 1 );;
gap> C := GeneralizedSrivastavaCode( a, w, z, 1, GF(64) );
a linear [8,2,2..5]3..4 generalized Srivastava code over GF(2)
</pre></td></tr></table>
<p><a id="X7A38EB3178961F3E" name="X7A38EB3178961F3E"></a></p>
<h5>5.2-9 SrivastavaCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> SrivastavaCode</code>( <var class="Arg">a, w[, mu], F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>SrivastavaCode returns a Srivastava code with parameters <var class="Arg">a</var>, <var class="Arg">w</var> (and optionally <var class="Arg">mu</var>). a = a_1, ..., a_n and w = w_1, ..., w_s are lists of n+s distinct elements of F=GF(q^m). The default for <var class="Arg">mu</var> is 1. The Srivastava code is a generalized Srivastava code, in which z_i = a_i^mu for some <var class="Arg">mu</var> and t=1.</p>
<p>J. N. Srivastava introduced this code in 1967, though his work was not published. See Helgert <a href="chapBib.html#biBHe72">[Hel72]</a> for more details on the properties of this code. Related reference: G. Roelofsen, <strong class="button">On Goppa and Generalized Srivastava Codes</strong> PhD thesis, Dept. Math. and Comp. Sci., Eindhoven Univ. of Technology, the Netherlands, 1982.</p>
<table class="example">
<tr><td><pre>
gap> a := AsSSortedList( GF(11) ){[2..8]};;
gap> w := AsSSortedList( GF(11) ){[9..10]};;
gap> C := SrivastavaCode( a, w, 2, GF(11) );
a linear [7,5,3]2 Srivastava code over GF(11)
gap> IsMDSCode( C );
true # Always true if F is a prime field
</pre></td></tr></table>
<p><a id="X87F7CB8B7A8BE624" name="X87F7CB8B7A8BE624"></a></p>
<h5>5.2-10 CordaroWagnerCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CordaroWagnerCode</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CordaroWagnerCode</code> returns a binary Cordaro-Wagner code. This is a code of length <var class="Arg">n</var> and dimension 2 having the best possible minimum distance d. This code is just a little bit less trivial than <code class="code">RepetitionCode</code> (see <code class="func">RepetitionCode</code> (<a href="chap5.html#X83C5F8FE7827EAA7"><b>5.5-13</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> C := CordaroWagnerCode( 11 );
a linear [11,2,7]5 Cordaro-Wagner code over GF(2)
gap> AsSSortedList(C);
[ [ 0 0 0 0 0 0 0 0 0 0 0 ], [ 0 0 0 0 1 1 1 1 1 1 1 ],
[ 1 1 1 1 0 0 0 1 1 1 1 ], [ 1 1 1 1 1 1 1 0 0 0 0 ] ]
</pre></td></tr></table>
<p><a id="X865534267C8E902A" name="X865534267C8E902A"></a></p>
<h5>5.2-11 FerreroDesignCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> FerreroDesignCode</code>( <var class="Arg">P, m</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><em>Requires the GAP package SONATA</em></p>
<p>A group K together with a group of automorphism H of K such that the semidirect product KH is a Frobenius group with complement H is called a Ferrero pair (K, H) in SONATA. Take a Frobenius (G,+) group with kernel K and complement H. Consider the design D with point set K and block set a^H + b | a, b in K, a not= 0. Here a^H denotes the orbit of a under conjugation by elements of H. Every planar near-ring design of type "*" can be obtained in this way from groups. These designs (from a Frobenius kernel of order v and a Frobenius complement of order k) have v(v-1)/k distinct blocks and they are all of size k. Moreover each of the v points occurs in exactly v-1 distinct blocks. Hence the rows and the columns of the incidence matrix M of the design are always of constant weight.</p>
<p><code class="code">FerreroDesignCode</code> constructs binary linear code arising from the incdence matrix of a design associated to a "Ferrero pair" arising from a fixed-point-free (fpf) automorphism groups and Frobenius group.</p>
<p>INPUT: P is a list of prime powers describing an abelian group G. m > 0 is an integer such that G admits a cyclic fpf automorphism group of size m. This means that for all q = p^k in P, OrderMod(p, m) must divide q (see the SONATA documentation for <code class="code">FpfAutomorphismGroupsCyclic</code>).</p>
<p>OUTPUT: The binary linear code whose generator matrix is the incidence matrix of a design associated to a "Ferrero pair" arising from the fixed-point-free (fpf) automorphism group of G. The pair (H,K) is called a Ferraro pair and the semidirect product KH is a Frobenius group with complement H.</p>
<p>AUTHORS: Peter Mayr and David Joyner</p>
<table class="example">
<tr><td><pre>
gap> G:=AbelianGroup([5,5] );
[ pc group of size 25 with 2 generators ]
gap> FpfAutomorphismGroupsMaxSize( G );
[ 24, 2 ]
gap> L:=FpfAutomorphismGroupsCyclic( [5,5], 3 );
[ [ [ f1, f2 ] -> [ f1*f2^2, f1*f2^3 ] ],
[ pc group of size 25 with 2 generators ] ]
gap> D := DesignFromFerreroPair( L[2], Group(L[1][1]), "*" );
[ a 2 - ( 25, 3, 2 ) nearring generated design ]
gap> M:=IncidenceMat( D );; Length(M); Length(TransposedMat(M));
25
200
gap> C1:=GeneratorMatCode(M*Z(2),GF(2));
a linear [200,25,1..24]62..100 code defined by generator matrix over GF(2)
gap> MinimumDistance(C1);
24
gap> C2:=FerreroDesignCode( [5,5],3);
a linear [200,25,1..24]62..100 code defined by generator matrix over GF(2)
gap> C1=C2;
true
</pre></td></tr></table>
<p><a id="X7BCA10CE8660357F" name="X7BCA10CE8660357F"></a></p>
<h5>5.2-12 RandomLinearCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> RandomLinearCode</code>( <var class="Arg">n, k, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">RandomLinearCode</code> returns a random linear code with word length <var class="Arg">n</var>, dimension <var class="Arg">k</var> over field <var class="Arg">F</var>. The method used is to first construct a kx n matrix of the block form (I,A), where I is a kx k identity matrix and A is a kx (n-k) matrix constructed using <code class="code">Random(F)</code> repeatedly. Then the columns are permuted using a randomly selected element of <code class="code">SymmetricGroup(n)</code>.</p>
<p>To create a random unrestricted code, use <code class="code">RandomCode</code> (see <code class="func">RandomCode</code> (<a href="chap5.html#X7D87DD6380B2CE69"><b>5.1-5</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> C := RandomLinearCode( 15, 4, GF(3) );
a [15,4,?] randomly generated code over GF(3)
gap> Display(C);
a linear [15,4,1..6]6..10 random linear code over GF(3)
</pre></td></tr></table>
<p>The method <strong class="pkg">GUAVA</strong> chooses to output the result of a <code class="code">RandomLinearCode</code> command is different than other codes. For example, the bounds on the minimum distance is not displayed. Howeer, you can use the <code class="code">Display</code> command to print this information. This new display method was added in version 1.9 to speed up the command (if n is about 80 and k about 40, for example, the time it took to look up and/or calculate the bounds on the minimum distance was too long).</p>
<p><a id="X839CFE4C7A567D4D" name="X839CFE4C7A567D4D"></a></p>
<h5>5.2-13 OptimalityCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> OptimalityCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">OptimalityCode</code> returns the difference between the smallest known upper bound and the actual size of the code. Note that the value of the function <code class="code">UpperBound</code> is not always equal to the actual upper bound A(n,d) thus the result may not be equal to 0 even if the code is optimal!</p>
<p><code class="code">OptimalityLinearCode</code> is similar but applies only to linear codes.</p>
<p><a id="X871508567CB34D96" name="X871508567CB34D96"></a></p>
<h5>5.2-14 BestKnownLinearCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> BestKnownLinearCode</code>( <var class="Arg">n, k, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">BestKnownLinearCode</code> returns the best known (as of 11 May 2006) linear code of length <var class="Arg">n</var>, dimension <var class="Arg">k</var> over field <var class="Arg">F</var>. The function uses the tables described in section <code class="func">BoundsMinimumDistance</code> (<a href="chap7.html#X7B3858B27A9E509A"><b>7.1-13</b></a>) to construct this code.</p>
<p>This command can also be called using the syntax <code class="code">BestKnownLinearCode( rec )</code>, where <var class="Arg">rec</var> must be a record containing the fields `lowerBound', `upperBound' and `construction'. It uses the information in this field to construct a code. This form is meant to be used together with the function <code class="code">BoundsMinimumDistance</code> (see <code class="func">BoundsMinimumDistance</code> (<a href="chap7.html#X7B3858B27A9E509A"><b>7.1-13</b></a>)), if the bounds are already calculated.</p>
<table class="example">
<tr><td><pre>
gap> C1 := BestKnownLinearCode( 23, 12, GF(2) );
a linear [23,12,7]3 punctured code
gap> C1 = BinaryGolayCode();
false # it's constructed differently
gap> C1 := BestKnownLinearCode( 23, 12, GF(2) );
a linear [23,12,7]3 punctured code
gap> G1 := MutableCopyMat(GeneratorMat(C1));;
gap> PutStandardForm(G1);
()
gap> Display(G1);
1 . . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1
. 1 . . . . . . . . . . 1 1 1 1 1 . . 1 . . .
. . 1 . . . . . . . . . 1 1 . 1 . . 1 . 1 . 1
. . . 1 . . . . . . . . 1 1 . . . 1 1 1 . 1 .
. . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 . 1
. . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 1
. . . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1
. . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 . .
. . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 .
. . . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 .
. . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1 1
. . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1
gap> C2 := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> G2 := MutableCopyMat(GeneratorMat(C2));;
gap> PutStandardForm(G2);
()
gap> Display(G2);
1 . . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1
. 1 . . . . . . . . . . 1 1 1 1 1 . . 1 . . 1
. . 1 . . . . . . . . . 1 1 . 1 . . 1 . 1 . 1
. . . 1 . . . . . . . . 1 1 . . . 1 1 1 . 1 1
. . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 . .
. . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 .
. . . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1
. . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 . .
. . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 .
. . . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1
. . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1 .
. . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1
## Despite their generator matrices are different, they are equivalent codes, see below.
gap> IsEquivalent(C1,C2);
true
gap> CodeIsomorphism(C1,C2);
(4,14,6,12,5)(7,17,18,11,19)(8,22,13,21,16)(10,23,15,20)
gap> Display( BestKnownLinearCode( 81, 77, GF(4) ) );
a linear [81,77,3]2..3 shortened code of
a linear [85,81,3]1 Hamming (4,4) code over GF(4)
gap> C:=BestKnownLinearCode(174,72);
a linear [174,72,31..36]26..87 code defined by generator matrix over GF(2)
gap> bounds := BoundsMinimumDistance( 81, 77, GF(4) );
rec( n := 81, k := 77, q := 4,
references := rec( Ham := [ "%T this reference is unknown, for more info",
"%T contact A.E. Brouwer (aeb@cwi.nl)" ],
cap := [ "%T this reference is unknown, for more info",
"%T contact A.E. Brouwer (aeb@cwi.nl)" ] ),
construction := [ (Operation "ShortenedCode"),
[ [ (Operation "HammingCode"), [ 4, 4 ] ], [ 1, 2, 3, 4 ] ] ],
lowerBound := 3,
lowerBoundExplanation := [ "Lb(81,77)=3, by shortening of:",
"Lb(85,81)=3, reference: Ham" ], upperBound := 3,
upperBoundExplanation := [ "Ub(81,77)=3, by considering shortening to:",
"Ub(18,14)=3, reference: cap" ] )
gap> C := BestKnownLinearCode( bounds );
a linear [81,77,3]2..3 shortened code
gap> C = BestKnownLinearCode(81, 77, GF(4) );
true
</pre></td></tr></table>
<p><a id="X858721967BE44000" name="X858721967BE44000"></a></p>
<h4>5.3 <span class="Heading">
Gabidulin Codes
</span></h4>
<p>These five binary, linear codes are derived from an article by Gabidulin, Davydov and Tombak <a href="chapBib.html#biBGDT91">[GDT91]</a>. All these codes are defined by check matrices. Exact definitions can be found in the article. The Gabidulin code, the enlarged Gabidulin code, the Davydov code, the Tombak code, and the enlarged Tombak code, correspond with theorem 1, 2, 3, 4, and 5, respectively in the article.</p>
<p>Like the Hamming codes, these codes have fixed minimum distance and covering radius, but can be arbitrarily long.</p>
<p><a id="X79BE5D497CB2E59E" name="X79BE5D497CB2E59E"></a></p>
<h5>5.3-1 GabidulinCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GabidulinCode</code>( <var class="Arg">m, w1, w2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GabidulinCode</code> yields a code of length 5 . 2^m-2-1, redundancy 2m-1, minimum distance 3 and covering radius 2. <var class="Arg">w1</var> and <var class="Arg">w2</var> should be elements of GF(2^m-2).</p>
<p><a id="X873950F67D4A9184" name="X873950F67D4A9184"></a></p>
<h5>5.3-2 EnlargedGabidulinCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> EnlargedGabidulinCode</code>( <var class="Arg">m, w1, w2, e</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">EnlargedGabidulinCode</code> yields a code of length 7. 2^m-2-2, redundancy 2m, minimum distance 3 and covering radius 2. <var class="Arg">w1</var> and <var class="Arg">w2</var> are elements of GF(2^m-2). <var class="Arg">e</var> is an element of GF(2^m).</p>
<p><a id="X7F5BE77B7F343182" name="X7F5BE77B7F343182"></a></p>
<h5>5.3-3 DavydovCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DavydovCode</code>( <var class="Arg">r, v, ei, ej</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">DavydovCode</code> yields a code of length 2^v + 2^r-v - 3, redundancy <var class="Arg">r</var>, minimum distance 4 and covering radius 2. <var class="Arg">v</var> is an integer between 2 and r-2. <var class="Arg">ei</var> and <var class="Arg">ej</var> are elements of GF(2^v) and GF(2^r-v), respectively.</p>
<p><a id="X845B4DBE83288D2D" name="X845B4DBE83288D2D"></a></p>
<h5>5.3-4 TombakCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> TombakCode</code>( <var class="Arg">m, e, beta, gamma, w1, w2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">TombakCode</code> yields a code of length 15 * 2^m-3 - 3, redundancy 2m, minimum distance 4 and covering radius 2. <var class="Arg">e</var> is an element of GF(2^m). <var class="Arg">beta</var> and <var class="Arg">gamma</var> are elements of GF(2^m-1). <var class="Arg">w1</var> and <var class="Arg">w2</var> are elements of GF(2^m-3).</p>
<p><a id="X7D6583347C0D4292" name="X7D6583347C0D4292"></a></p>
<h5>5.3-5 EnlargedTombakCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> EnlargedTombakCode</code>( <var class="Arg">m, e, beta, gamma, w1, w2, u</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">EnlargedTombakCode</code> yields a code of length 23 * 2^m-4 - 3, redundancy 2m-1, minimum distance 4 and covering radius 2. The parameters <var class="Arg">m</var>, <var class="Arg">e</var>, <var class="Arg">beta</var>, <var class="Arg">gamma</var>, <var class="Arg">w1</var> and <var class="Arg">w2</var> are defined as in <code class="code">TombakCode</code>. <var class="Arg">u</var> is an element of GF(2^m-1).</p>
<table class="example">
<tr><td><pre>
gap> GabidulinCode( 4, Z(4)^0, Z(4)^1 );
a linear [19,12,3]2 Gabidulin code (m=4) over GF(2)
gap> EnlargedGabidulinCode( 4, Z(4)^0, Z(4)^1, Z(16)^11 );
a linear [26,18,3]2 enlarged Gabidulin code (m=4) over GF(2)
gap> DavydovCode( 6, 3, Z(8)^1, Z(8)^5 );
a linear [13,7,4]2 Davydov code (r=6, v=3) over GF(2)
gap> TombakCode( 5, Z(32)^6, Z(16)^14, Z(16)^10, Z(4)^0, Z(4)^1 );
a linear [57,47,4]2 Tombak code (m=5) over GF(2)
gap> EnlargedTombakCode( 6, Z(32)^6, Z(16)^14, Z(16)^10,
> Z(4)^0, Z(4)^0, Z(32)^23 );
a linear [89,78,4]2 enlarged Tombak code (m=6) over GF(2)
</pre></td></tr></table>
<p><a id="X81F6E4A785F368B0" name="X81F6E4A785F368B0"></a></p>
<h4>5.4 <span class="Heading">
Golay Codes
</span></h4>
<p>" The Golay code is probably the most important of all codes for both practical and theoretical reasons. " (<a href="chapBib.html#biBMS83">[MS83]</a>, pg. 64). Though born in Switzerland, M. J. E. Golay (1902-1989) worked for the US Army Labs for most of his career. For more information on his life, see his obit in the June 1990 IEEE Information Society Newsletter.</p>
<p><a id="X80ED89C079CD0D09" name="X80ED89C079CD0D09"></a></p>
<h5>5.4-1 BinaryGolayCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> BinaryGolayCode</code>( <var class="Arg"></var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">BinaryGolayCode</code> returns a binary Golay code. This is a perfect [23,12,7] code. It is also cyclic, and has generator polynomial g(x)=1+x^2+x^4+x^5+x^6+x^10+x^11. Extending it results in an extended Golay code (see <code class="func">ExtendedBinaryGolayCode</code> (<a href="chap5.html#X84520C7983538806"><b>5.4-2</b></a>)). There's also the ternary Golay code (see <code class="func">TernaryGolayCode</code> (<a href="chap5.html#X7E0CCCD7866ADB94"><b>5.4-3</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> C:=BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> ExtendedBinaryGolayCode() = ExtendedCode(BinaryGolayCode());
true
gap> IsPerfectCode(C);
true
gap> IsCyclicCode(C);
true
</pre></td></tr></table>
<p><a id="X84520C7983538806" name="X84520C7983538806"></a></p>
<h5>5.4-2 ExtendedBinaryGolayCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ExtendedBinaryGolayCode</code>( <var class="Arg"></var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ExtendedBinaryGolayCode</code> returns an extended binary Golay code. This is a [24,12,8] code. Puncturing in the last position results in a perfect binary Golay code (see <code class="func">BinaryGolayCode</code> (<a href="chap5.html#X80ED89C079CD0D09"><b>5.4-1</b></a>)). The code is self-dual.</p>
<table class="example">
<tr><td><pre>
gap> C := ExtendedBinaryGolayCode();
a linear [24,12,8]4 extended binary Golay code over GF(2)
gap> IsSelfDualCode(C);
true
gap> P := PuncturedCode(C);
a linear [23,12,7]3 punctured code
gap> P = BinaryGolayCode();
true
gap> IsCyclicCode(C);
false
</pre></td></tr></table>
<p><a id="X7E0CCCD7866ADB94" name="X7E0CCCD7866ADB94"></a></p>
<h5>5.4-3 TernaryGolayCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> TernaryGolayCode</code>( <var class="Arg"></var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">TernaryGolayCode</code> returns a ternary Golay code. This is a perfect [11,6,5] code. It is also cyclic, and has generator polynomial g(x)=2+x^2+2x^3+x^4+x^5. Extending it results in an extended Golay code (see <code class="func">ExtendedTernaryGolayCode</code> (<a href="chap5.html#X81088A66816BCAE4"><b>5.4-4</b></a>)). There's also the binary Golay code (see <code class="func">BinaryGolayCode</code> (<a href="chap5.html#X80ED89C079CD0D09"><b>5.4-1</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> C:=TernaryGolayCode();
a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap> ExtendedTernaryGolayCode() = ExtendedCode(TernaryGolayCode());
true
gap> IsCyclicCode(C);
true
</pre></td></tr></table>
<p><a id="X81088A66816BCAE4" name="X81088A66816BCAE4"></a></p>
<h5>5.4-4 ExtendedTernaryGolayCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ExtendedTernaryGolayCode</code>( <var class="Arg"></var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ExtendedTernaryGolayCode</code> returns an extended ternary Golay code. This is a [12,6,6] code. Puncturing this code results in a perfect ternary Golay code (see <code class="func">TernaryGolayCode</code> (<a href="chap5.html#X7E0CCCD7866ADB94"><b>5.4-3</b></a>)). The code is self-dual.</p>
<table class="example">
<tr><td><pre>
gap> C := ExtendedTernaryGolayCode();
a linear [12,6,6]3 extended ternary Golay code over GF(3)
gap> IsSelfDualCode(C);
true
gap> P := PuncturedCode(C);
a linear [11,6,5]2 punctured code
gap> P = TernaryGolayCode();
true
gap> IsCyclicCode(C);
false
</pre></td></tr></table>
<p><a id="X8366CC3685F0BC85" name="X8366CC3685F0BC85"></a></p>
<h4>5.5 <span class="Heading">
Generating Cyclic Codes
</span></h4>
<p>The elements of a cyclic code C are all multiples of a ('generator') polynomial g(x), where calculations are carried out modulo x^n-1. Therefore, as polynomials in x, the elements always have degree less than n. A cyclic code is an ideal in the ring F[x]/(x^n-1) of polynomials modulo x^n - 1. The unique monic polynomial of least degree that generates C is called the <em>generator polynomial</em> of C. It is a divisor of the polynomial x^n-1.</p>
<p>The <em>check polynomial</em> is the polynomial h(x) with g(x)h(x)=x^n-1. Therefore it is also a divisor of x^n-1. The check polynomial has the property that</p>
<p class="pcenter">
c(x)h(x) \equiv 0 \pmod{x^n-1},
</p>
<p>for every codeword c(x)in C.</p>
<p>The first two functions described below generate cyclic codes from a given generator or check polynomial. All cyclic codes can be constructed using these functions.</p>
<p>Two of the Golay codes already described are cyclic (see <code class="func">BinaryGolayCode</code> (<a href="chap5.html#X80ED89C079CD0D09"><b>5.4-1</b></a>) and <code class="func">TernaryGolayCode</code> (<a href="chap5.html#X7E0CCCD7866ADB94"><b>5.4-3</b></a>)). For example, the <strong class="pkg">GUAVA</strong> record for a binary Golay code contains the generator polynomial:</p>
<table class="example">
<tr><td><pre>
gap> C := BinaryGolayCode();
a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> NamesOfComponents(C);
[ "LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "WordLength",
"GeneratorMat", "GeneratorPol", "Dimension", "Redundancy", "Size", "name",
"lowerBoundMinimumDistance", "upperBoundMinimumDistance", "WeightDistribution",
"boundsCoveringRadius", "MinimumWeightOfGenerators",
"UpperBoundOptimalMinimumDistance" ]
gap> C!.GeneratorPol;
x_1^11+x_1^10+x_1^6+x_1^5+x_1^4+x_1^2+Z(2)^0
</pre></td></tr></table>
<p>Then functions that generate cyclic codes from a prescribed set of roots of the generator polynomial are described, including the BCH codes (see <code class="func">RootsCode</code> (<a href="chap5.html#X818F0E6583E01D4B"><b>5.5-3</b></a>), <code class="func">BCHCode</code> (<a href="chap5.html#X7C6BB07C87853C00"><b>5.5-4</b></a>), <code class="func">ReedSolomonCode</code> (<a href="chap5.html#X838F3CB3872CEF95"><b>5.5-5</b></a>) and <code class="func">QRCode</code> (<a href="chap5.html#X825F42F68179D2AB"><b>5.5-7</b></a>)).</p>
<p>Finally we describe the trivial codes (see <code class="func">WholeSpaceCode</code> (<a href="chap5.html#X7BC245E37EB7B23F"><b>5.5-11</b></a>), <code class="func">NullCode</code> (<a href="chap5.html#X7B4EF2017B2C61AD"><b>5.5-12</b></a>), <code class="func">RepetitionCode</code> (<a href="chap5.html#X83C5F8FE7827EAA7"><b>5.5-13</b></a>)), and the command <code class="code">CyclicCodes</code> which lists all cyclic codes (<code class="func">CyclicCodes</code> (<a href="chap5.html#X82FA9F65854D98A6"><b>5.5-14</b></a>)).</p>
<p><a id="X853D34A5796CEB73" name="X853D34A5796CEB73"></a></p>
<h5>5.5-1 GeneratorPolCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GeneratorPolCode</code>( <var class="Arg">g, n[, name], F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneratorPolCode</code> creates a cyclic code with a generator polynomial <var class="Arg">g</var>, word length <var class="Arg">n</var>, over <var class="Arg">F</var>. <var class="Arg">name</var> can contain a short description of the code.</p>
<p>If <var class="Arg">g</var> is not a divisor of x^n-1, it cannot be a generator polynomial. In that case, a code is created with generator polynomial gcd( g, x^n-1 ), i.e. the greatest common divisor of <var class="Arg">g</var> and x^n-1. This is a valid generator polynomial that generates the ideal (g). See <code class="func">Generating Cyclic Codes</code> (<a href="chap5.html#X8366CC3685F0BC85"><b>5.5</b></a>).</p>
<table class="example">
<tr><td><pre>
gap> x:= Indeterminate( GF(2) );; P:= x^2+1;
Z(2)^0+x^2
gap> C1 := GeneratorPolCode(P, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( C1 );
Z(2)^0+x
gap> C2 := GeneratorPolCode( x+1, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( C2 );
Z(2)^0+x
</pre></td></tr></table>
<p><a id="X82440B78845F7F6E" name="X82440B78845F7F6E"></a></p>
<h5>5.5-2 CheckPolCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CheckPolCode</code>( <var class="Arg">h, n[, name], F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CheckPolCode</code> creates a cyclic code with a check polynomial <var class="Arg">h</var>, word length <var class="Arg">n</var>, over <var class="Arg">F</var>. <var class="Arg">name</var> can contain a short description of the code (as a string).</p>
<p>If <var class="Arg">h</var> is not a divisor of x^n-1, it cannot be a check polynomial. In that case, a code is created with check polynomial gcd( h, x^n-1 ), i.e. the greatest common divisor of <var class="Arg">h</var> and x^n-1. This is a valid check polynomial that yields the same elements as the ideal (h). See <a href="chap5.html#X8366CC3685F0BC85"><b>5.5</b></a>.</p>
<table class="example">
<tr><td><pre>
gap> x:= Indeterminate( GF(3) );; P:= x^2+2;
-Z(3)^0+x_1^2
gap> H := CheckPolCode(P, 7, GF(3));
a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
gap> CheckPol(H);
-Z(3)^0+x_1
gap> Gcd(P, X(GF(3))^7-1);
-Z(3)^0+x_1
</pre></td></tr></table>
<p><a id="X818F0E6583E01D4B" name="X818F0E6583E01D4B"></a></p>
<h5>5.5-3 RootsCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> RootsCode</code>( <var class="Arg">n, list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This is the generalization of the BCH, Reed-Solomon and quadratic residue codes (see <code class="func">BCHCode</code> (<a href="chap5.html#X7C6BB07C87853C00"><b>5.5-4</b></a>), <code class="func">ReedSolomonCode</code> (<a href="chap5.html#X838F3CB3872CEF95"><b>5.5-5</b></a>) and <code class="func">QRCode</code> (<a href="chap5.html#X825F42F68179D2AB"><b>5.5-7</b></a>)). The user can give a length of the code <var class="Arg">n</var> and a prescribed set of zeros. The argument <var class="Arg">list</var> must be a valid list of primitive n^th roots of unity in a splitting field GF(q^m). The resulting code will be over the field GF(q). The function will return the largest possible cyclic code for which the list <var class="Arg">list</var> is a subset of the roots of the code. From this list, <strong class="pkg">GUAVA</strong> calculates the entire set of roots.</p>
<p>This command can also be called with the syntax <code class="code">RootsCode( n, list, q )</code>. In this second form, the second argument is a list of integers, ranging from 0 to n-1. The resulting code will be over a field GF(q). <strong class="pkg">GUAVA</strong> calculates a primitive n^th root of unity, alpha, in the extension field of GF(q). It uses the set of the powers of alpha in the list as a prescribed set of zeros.</p>
<table class="example">
<tr><td><pre>
gap> a := PrimitiveUnityRoot( 3, 14 );
Z(3^6)^52
gap> C1 := RootsCode( 14, [ a^0, a, a^3 ] );
a cyclic [14,7,3..6]3..7 code defined by roots over GF(3)
gap> MinimumDistance( C1 );
4
gap> b := PrimitiveUnityRoot( 2, 15 );
Z(2^4)
gap> C2 := RootsCode( 15, [ b, b^2, b^3, b^4 ] );
a cyclic [15,7,5]3..5 code defined by roots over GF(2)
gap> C2 = BCHCode( 15, 5, GF(2) );
true
C3 := RootsCode( 4, [ 1, 2 ], 5 );
RootsOfCode( C3 );
C3 = ReedSolomonCode( 4, 3 );
</pre></td></tr></table>
<p><a id="X7C6BB07C87853C00" name="X7C6BB07C87853C00"></a></p>
<h5>5.5-4 BCHCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> BCHCode</code>( <var class="Arg">n[, b], delta, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">BCHCode</code> returns a 'Bose-Chaudhuri-Hockenghem code' (or <em>BCH code</em> for short). This is the largest possible cyclic code of length <var class="Arg">n</var> over field <var class="Arg">F</var>, whose generator polynomial has zeros</p>
<p class="pcenter">
a^{b},a^{b+1}, ..., a^{b+delta-2},
</p>
<p>where a is a primitive n^th root of unity in the splitting field GF(q^m), <var class="Arg">b</var> is an integer 0<= b<= n-delta+1 and m is the multiplicative order of q modulo <var class="Arg">n</var>. (The integers b,...,b+delta-2 typically lie in the range 1,...,n-1.) Default value for <var class="Arg">b</var> is 1, though the algorithm allows b=0. The length <var class="Arg">n</var> of the code and the size q of the field must be relatively prime. The generator polynomial is equal to the least common multiple of the minimal polynomials of</p>
<p class="pcenter">
a^{b}, a^{b+1}, ..., a^{b+delta-2}.
</p>
<p>The set of zeroes of the generator polynomial is equal to the union of the sets</p>
<p class="pcenter">
\{a^x\ |\ x \in C_k\},
</p>
<p>where C_k is the k^th cyclotomic coset of q modulo n and b<= k<= b+delta-2 (see <code class="func">CyclotomicCosets</code> (<a href="chap7.html#X7AEA9F807E6FFEFF"><b>7.5-12</b></a>)).</p>
<p>Special cases are b=1 (resulting codes are called 'narrow-sense' BCH codes), and n=q^m-1 (known as 'primitive' BCH codes). <strong class="pkg">GUAVA</strong> calculates the largest value of d for which the BCH code with designed distance d coincides with the BCH code with designed distance <var class="Arg">delta</var>. This distance d is called the <em>Bose distance</em> of the code. The true minimum distance of the code is greater than or equal to the Bose distance.</p>
<p>Printed are the designed distance (to be precise, the Bose distance) d, and the starting power b.</p>
<p>The Sugiyama decoding algorithm has been implemented for this code (see <code class="func">Decode</code> (<a href="chap4.html#X7A42FF7D87FC34AC"><b>4.10-1</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> C1 := BCHCode( 15, 3, 5, GF(2) );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> DesignedDistance( C1 );
7
gap> C2 := BCHCode( 23, 2, GF(2) );
a cyclic [23,12,5..7]3 BCH code, delta=5, b=1 over GF(2)
gap> DesignedDistance( C2 );
5
gap> MinimumDistance(C2);
7
</pre></td></tr></table>
<p>See <code class="func">RootsCode</code> (<a href="chap5.html#X818F0E6583E01D4B"><b>5.5-3</b></a>) for a more general construction.</p>
<p><a id="X838F3CB3872CEF95" name="X838F3CB3872CEF95"></a></p>
<h5>5.5-5 ReedSolomonCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ReedSolomonCode</code>( <var class="Arg">n, d</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ReedSolomonCode</code> returns a 'Reed-Solomon code' of length <var class="Arg">n</var>, designed distance <var class="Arg">d</var>. This code is a primitive narrow-sense BCH code over the field GF(q), where q=n+1. The dimension of an RS code is n-d+1. According to the Singleton bound (see <code class="func">UpperBoundSingleton</code> (<a href="chap7.html#X8673277C7F6C04C3"><b>7.1-1</b></a>)) the dimension cannot be greater than this, so the true minimum distance of an RS code is equal to <var class="Arg">d</var> and the code is maximum distance separable (see <code class="func">IsMDSCode</code> (<a href="chap4.html#X789380D28018EC3F"><b>4.3-7</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> C1 := ReedSolomonCode( 3, 2 );
a cyclic [3,2,2]1 Reed-Solomon code over GF(4)
gap> IsCyclicCode(C1);
true
gap> C2 := ReedSolomonCode( 4, 3 );
a cyclic [4,2,3]2 Reed-Solomon code over GF(5)
gap> RootsOfCode( C2 );
[ Z(5), Z(5)^2 ]
gap> IsMDSCode(C2);
true
</pre></td></tr></table>
<p>See <code class="func">GeneralizedReedSolomonCode</code> (<a href="chap5.html#X810AB3DB844FFCE9"><b>5.6-2</b></a>) for a more general construction.</p>
<p><a id="X8730B90A862A3B3E" name="X8730B90A862A3B3E"></a></p>
<h5>5.5-6 ExtendedReedSolomonCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ExtendedReedSolomonCode</code>( <var class="Arg">n, d</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ExtendedReedSolomonCode</code> creates a Reed-Solomon code of length n-1 with designed distance d-1 and then returns the code which is extended by adding an overall parity-check symbol. The motivation for creating this function is calling <code class="func">ExtendedCode</code> (<a href="chap6.html#X794679BE7F9EB5C1"><b>6.1-1</b></a>) function over a Reed-Solomon code will take considerably long time.</p>
<table class="example">
<tr><td><pre>
gap> C := ExtendedReedSolomonCode(17, 13);
a linear [17,5,13]9..12 extended Reed Solomon code over GF(17)
gap> IsMDSCode(C);
true
</pre></td></tr></table>
<p><a id="X825F42F68179D2AB" name="X825F42F68179D2AB"></a></p>
<h5>5.5-7 QRCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> QRCode</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">QRCode</code> returns a quadratic residue code. If <var class="Arg">F</var> is a field GF(q), then q must be a quadratic residue modulo <var class="Arg">n</var>. That is, an x exists with x^2 = q mod n. Both <var class="Arg">n</var> and q must be primes. Its generator polynomial is the product of the polynomials x-a^i. a is a primitive n^th root of unity, and i is an integer in the set of quadratic residues modulo <var class="Arg">n</var>.</p>
<table class="example">
<tr><td><pre>
gap> C1 := QRCode( 7, GF(2) );
a cyclic [7,4,3]1 quadratic residue code over GF(2)
gap> IsEquivalent( C1, HammingCode( 3, GF(2) ) );
true
gap> IsCyclicCode(C1);
true
gap> IsCyclicCode(HammingCode( 3, GF(2) ));
false
gap> C2 := QRCode( 11, GF(3) );
a cyclic [11,6,4..5]2 quadratic residue code over GF(3)
gap> C2 = TernaryGolayCode();
true
gap> Q1 := QRCode( 7, GF(2));
a cyclic [7,4,3]1 quadratic residue code over GF(2)
gap> P1:=AutomorphismGroup(Q1); IdGroup(P1);
Group([ (1,2)(5,7), (2,3)(4,7), (2,4)(5,6), (3,5)(6,7), (3,7)(5,6) ])
[ 168, 42 ]
</pre></td></tr></table>
<p><a id="X8764ABCF854C695E" name="X8764ABCF854C695E"></a></p>
<h5>5.5-8 QQRCodeNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> QQRCodeNC</code>( <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">QQRCodeNC</code> is the same as <code class="code">QQRCode</code>, except that it uses <code class="code">GeneratorMatCodeNC</code> instead of <code class="code">GeneratorMatCode</code>.</p>
<p><a id="X7F4C3AD2795A8D7A" name="X7F4C3AD2795A8D7A"></a></p>
<h5>5.5-9 QQRCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> QQRCode</code>( <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">QQRCode</code> returns a quasi-quadratic residue code, as defined by Proposition 2.2 in Bazzi-Mittel <a href="chapBib.html#biBBM03">[BMd)]</a>. The parameter <var class="Arg">p</var> must be a prime. Its generator matrix has the block form G=(Q,N). Here Q is a px circulant matrix whose top row is (0,x_1,...,x_p-1), where x_i=1 if and only if i is a quadratic residue mod p, and N is a px circulant matrix whose top row is (0,y_1,...,y_p-1), where x_i+y_i=1 for all i. (In fact, this matrix can be recovered as the component <code class="code">DoublyCirculant</code> of the code.)</p>
<table class="example">
<tr><td><pre>
gap> C1 := QQRCode( 7);
a linear [14,7,1..4]3..5 code defined by generator matrix over GF(2)
gap> G1:=GeneratorMat(C1);;
gap> Display(G1);
. 1 1 . 1 . . . . . 1 . 1 1
1 . 1 1 1 . . . . 1 1 1 . 1
. . . 1 1 . 1 . 1 1 . . . 1
. . 1 . 1 1 1 1 . 1 . . 1 1
. . . . . . . 1 . . 1 1 1 .
. . . . . . . . . 1 1 1 . 1
. . . . . . . . 1 . . 1 1 1
gap> Display(C1!.DoublyCirculant);
. 1 1 . 1 . . . . . 1 . 1 1
1 1 . 1 . . . . . 1 . 1 1 .
1 . 1 . . . 1 . 1 . 1 1 . .
. 1 . . . 1 1 1 . 1 1 . . .
1 . . . 1 1 . . 1 1 . . . 1
. . . 1 1 . 1 1 1 . . . 1 .
. . 1 1 . 1 . 1 . . . 1 . 1
gap> MinimumDistance(C1);
4
gap> C2 := QQRCode( 29); MinimumDistance(C2);
a linear [58,28,1..14]8..29 code defined by generator matrix over GF(2)
12
gap> Aut2:=AutomorphismGroup(C2); IdGroup(Aut2);
[ permutation group of size 812 with 4 generators ]
[ 812, 7 ]
</pre></td></tr></table>
<p><a id="X7F3B8CC8831DA0E4" name="X7F3B8CC8831DA0E4"></a></p>
<h5>5.5-10 FireCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> FireCode</code>( <var class="Arg">g, b</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">FireCode</code> constructs a (binary) Fire code. <var class="Arg">g</var> is a primitive polynomial of degree m, and a factor of x^r-1. <var class="Arg">b</var> an integer 0 <= b <= m not divisible by r, that determines the burst length of a single error burst that can be corrected. The argument <var class="Arg">g</var> can be a polynomial with base ring GF(2), or a list of coefficients in GF(2). The generator polynomial of the code is defined as the product of <var class="Arg">g</var> and x^2b-1+1.</p>
<p>Here is the general definition of 'Fire code', named after P. Fire, who introduced these codes in 1959 in order to correct burst errors. First, a definition. If F=GF(q) and fin F[x] then we say f has <em>order</em> e if f(x)|(x^e-1). A <em>Fire code</em> is a cyclic code over F with generator polynomial g(x)= (x^2t-1-1)p(x), where p(x) does not divide x^2t-1-1 and satisfies deg(p(x))>= t. The length of such a code is the order of g(x). Non-binary Fire codes have not been implemented.</p>
<p>.</p>
<table class="example">
<tr><td><pre>
gap> x:= Indeterminate( GF(2) );; G:= x^3+x^2+1;
Z(2)^0+x^2+x^3
gap> Factors( G );
[ Z(2)^0+x^2+x^3 ]
gap> C := FireCode( G, 3 );
a cyclic [35,27,1..4]2..6 3 burst error correcting fire code over GF(2)
gap> MinimumDistance( C );
4 # Still it can correct bursts of length 3
</pre></td></tr></table>
<p><a id="X7BC245E37EB7B23F" name="X7BC245E37EB7B23F"></a></p>
<h5>5.5-11 WholeSpaceCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> WholeSpaceCode</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">WholeSpaceCode</code> returns the cyclic whole space code of length <var class="Arg">n</var> over <var class="Arg">F</var>. This code consists of all polynomials of degree less than <var class="Arg">n</var> and coefficients in <var class="Arg">F</var>.</p>
<table class="example">
<tr><td><pre>
gap> C := WholeSpaceCode( 5, GF(3) );
a cyclic [5,5,1]0 whole space code over GF(3)
</pre></td></tr></table>
<p><a id="X7B4EF2017B2C61AD" name="X7B4EF2017B2C61AD"></a></p>
<h5>5.5-12 NullCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> NullCode</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">NullCode</code> returns the zero-dimensional nullcode with length <var class="Arg">n</var> over <var class="Arg">F</var>. This code has only one word: the all zero word. It is cyclic though!</p>
<table class="example">
<tr><td><pre>
gap> C := NullCode( 5, GF(3) );
a cyclic [5,0,5]5 nullcode over GF(3)
gap> AsSSortedList( C );
[ [ 0 0 0 0 0 ] ]
</pre></td></tr></table>
<p><a id="X83C5F8FE7827EAA7" name="X83C5F8FE7827EAA7"></a></p>
<h5>5.5-13 RepetitionCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> RepetitionCode</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">RepetitionCode</code> returns the cyclic repetition code of length <var class="Arg">n</var> over <var class="Arg">F</var>. The code has as many elements as <var class="Arg">F</var>, because each codeword consists of a repetition of one of these elements.</p>
<table class="example">
<tr><td><pre>
gap> C := RepetitionCode( 3, GF(5) );
a cyclic [3,1,3]2 repetition code over GF(5)
gap> AsSSortedList( C );
[ [ 0 0 0 ], [ 1 1 1 ], [ 2 2 2 ], [ 4 4 4 ], [ 3 3 3 ] ]
gap> IsPerfectCode( C );
false
gap> IsMDSCode( C );
true
</pre></td></tr></table>
<p><a id="X82FA9F65854D98A6" name="X82FA9F65854D98A6"></a></p>
<h5>5.5-14 CyclicCodes</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CyclicCodes</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CyclicCodes</code> returns a list of all cyclic codes of length <var class="Arg">n</var> over <var class="Arg">F</var>. It constructs all possible generator polynomials from the factors of x^n-1. Each combination of these factors yields a generator polynomial after multiplication.</p>
<table class="example">
<tr><td><pre>
gap> CyclicCodes(3,GF(3));
[ a cyclic [3,3,1]0 enumerated code over GF(3),
a cyclic [3,2,1..2]1 enumerated code over GF(3),
a cyclic [3,1,3]2 enumerated code over GF(3),
a cyclic [3,0,3]3 enumerated code over GF(3) ]
</pre></td></tr></table>
<p><a id="X8263CE4A790D294A" name="X8263CE4A790D294A"></a></p>
<h5>5.5-15 NrCyclicCodes</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> NrCyclicCodes</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">NrCyclicCodes</code> calculates the number of cyclic codes of length <var class="Arg">n</var> over field <var class="Arg">F</var>.</p>
<table class="example">
<tr><td><pre>
gap> NrCyclicCodes( 23, GF(2) );
8
gap> codelist := CyclicCodes( 23, GF(2) );
[ a cyclic [23,23,1]0 enumerated code over GF(2),
a cyclic [23,22,1..2]1 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,0,23]23 enumerated code over GF(2),
a cyclic [23,11,1..8]4..7 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2),
a cyclic [23,1,23]11 enumerated code over GF(2),
a cyclic [23,12,1..7]3 enumerated code over GF(2) ]
gap> BinaryGolayCode() in codelist;
true
gap> RepetitionCode( 23, GF(2) ) in codelist;
true
gap> CordaroWagnerCode( 23 ) in codelist;
false # This code is not cyclic
</pre></td></tr></table>
<p><a id="X79826B16785E8BD3" name="X79826B16785E8BD3"></a></p>
<h5>5.5-16 QuasiCyclicCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> QuasiCyclicCode</code>( <var class="Arg">G, s, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">QuasiCyclicCode( G, k, F )</code> generates a rate 1/m quasi-cyclic code over field <var class="Arg">F</var>. The input <var class="Arg">G</var> is a list of univariate polynomials and m is the cardinality of this list. Note that m must be at least 2. The input <var class="Arg">s</var> is the size of each circulant and it may not necessarily be the same as the code dimension k, i.e. k le s.</p>
<p>There also exists another version, <code class="code">QuasiCyclicCode( G, s )</code> which produces quasi-cyclic codes over F_2 only. Here the parameter <var class="Arg">s</var> holds the same definition and the input <var class="Arg">G</var> is a list of integers, where each integer is an octal representation of a binary univariate polynomial.</p>
<table class="example">
<tr><td><pre>
gap> #
gap> # This example show the case for k = s
gap> #
gap> L1 := PolyCodeword( Codeword("10000000000", GF(4)) );
Z(2)^0
gap> L2 := PolyCodeword( Codeword("12223201000", GF(4)) );
x^7+Z(2^2)*x^5+Z(2^2)^2*x^4+Z(2^2)*x^3+Z(2^2)*x^2+Z(2^2)*x+Z(2)^0
gap> L3 := PolyCodeword( Codeword("31111220110", GF(4)) );
x^9+x^8+Z(2^2)*x^6+Z(2^2)*x^5+x^4+x^3+x^2+x+Z(2^2)^2
gap> L4 := PolyCodeword( Codeword("13320333010", GF(4)) );
x^9+Z(2^2)^2*x^7+Z(2^2)^2*x^6+Z(2^2)^2*x^5+Z(2^2)*x^3+Z(2^2)^2*x^2+Z(2^2)^2*x+\
Z(2)^0
gap> L5 := PolyCodeword( Codeword("20102211100", GF(4)) );
x^8+x^7+x^6+Z(2^2)*x^5+Z(2^2)*x^4+x^2+Z(2^2)
gap> C := QuasiCyclicCode( [L1, L2, L3, L4, L5], 11, GF(4) );
a linear [55,11,1..32]24..41 quasi-cyclic code over GF(4)
gap> MinimumDistance(C);
29
gap> Display(C);
a linear [55,11,29]24..41 quasi-cyclic code over GF(4)
gap> #
gap> # This example show the case for k < s
gap> #
gap> L1 := PolyCodeword( Codeword("02212201220120211002000",GF(3)) );
-x^19+x^16+x^15-x^14-x^12+x^11-x^9-x^8+x^7-x^5-x^4+x^3-x^2-x
gap> L2 := PolyCodeword( Codeword("00221100200120220001110",GF(3)) );
x^21+x^20+x^19-x^15-x^14-x^12+x^11-x^8+x^5+x^4-x^3-x^2
gap> L3 := PolyCodeword( Codeword("22021011202221111020021",GF(3)) );
x^22-x^21-x^18+x^16+x^15+x^14+x^13-x^12-x^11-x^10-x^8+x^7+x^6+x^4-x^3-x-Z(3)^0
gap> C := QuasiCyclicCode( [L1, L2, L3], 23, GF(3) );
a linear [69,12,1..37]27..46 quasi-cyclic code over GF(3)
gap> MinimumDistance(C);
34
gap> Display(C);
a linear [69,12,34]27..46 quasi-cyclic code over GF(3)
gap> #
gap> # This example show the binary case using octal representation
gap> #
gap> L1 := 001;; # 0 000 001
gap> L2 := 013;; # 0 001 011
gap> L3 := 015;; # 0 001 101
gap> L4 := 077;; # 0 111 111
gap> C := QuasiCyclicCode( [L1, L2, L3, L4], 7 );
a linear [28,7,1..12]8..14 quasi-cyclic code over GF(2)
gap> MinimumDistance(C);
12
gap> Display(C);
a linear [28,7,12]8..14 quasi-cyclic code over GF(2)
</pre></td></tr></table>
<p><a id="X7BFEDA52835A601D" name="X7BFEDA52835A601D"></a></p>
<h5>5.5-17 CyclicMDSCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CyclicMDSCode</code>( <var class="Arg">q, m, k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Given the input parameters <var class="Arg">q</var>, <var class="Arg">m</var> and <var class="Arg">k</var>, this function returns a [q^m + 1, k, q^m - k + 2] cyclic MDS code over GF(q^m). If q^m is even, any value of k can be used, otherwise only odd value of k is accepted.</p>
<table class="example">
<tr><td><pre>
gap> C:=CyclicMDSCode(2,6,24);
a cyclic [65,24,42]31..41 MDS code over GF(64)
gap> IsMDSCode(C);
true
gap> C:=CyclicMDSCode(5,3,77);
a cyclic [126,77,50]35..49 MDS code over GF(125)
gap> IsMDSCode(C);
true
gap> C:=CyclicMDSCode(3,3,25);
a cyclic [28,25,4]2..3 MDS code over GF(27)
gap> GeneratorPol(C);
x^3+Z(3^3)^7*x^2+Z(3^3)^20*x-Z(3)^0
gap>
</pre></td></tr></table>
<p><a id="X7F40AF3B81C252DC" name="X7F40AF3B81C252DC"></a></p>
<h5>5.5-18 FourNegacirculantSelfDualCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> FourNegacirculantSelfDualCode</code>( <var class="Arg">ax, bx, k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>A four-negacirculant self-dual code has a generator matrix G of the the following form</p>
<pre class="normal">
- -
| | A | B |
G = | I_2k |-----+-----|
| | -B^T| A^T |
- -
</pre>
<p>where AA^T + BB^T = -I_k and A, B and their transposed are all k x k negacirculant matrices. The generator matrix G returns a [2k, k, d]_q self-dual code over GF(q). For discussion on four-negacirculant self-dual codes, refer to <a href="chapBib.html#biBHHKK07">[HHKK07]</a>.</p>
<p>The input parameters <var class="Arg">ax</var> and <var class="Arg">bx</var> are the defining polynomials over GF(q) of negacirculant matrices A and B respectively. The last parameter <var class="Arg">k</var> is the dimension of the code.</p>
<table class="example">
<tr><td><pre>
gap> ax:=PolyCodeword(Codeword("1200200", GF(3)));
-x_1^4-x_1+Z(3)^0
gap> bx:=PolyCodeword(Codeword("2020221", GF(3)));
x_1^6-x_1^5-x_1^4-x_1^2-Z(3)^0
gap> C:=FourNegacirculantSelfDualCode(ax, bx, 14);;
gap> MinimumDistance(C);;
gap> CoveringRadius(C);;
gap> IsSelfDualCode(C);
true
gap> Display(C);
a linear [28,14,9]7 four-negacirculant self-dual code over GF(3)
gap> Display( GeneratorMat(C) );
1 . . . . . . . . . . . . . 1 2 . . 2 . . 2 . 2 . 2 2 1
. 1 . . . . . . . . . . . . . 1 2 . . 2 . 2 2 . 2 . 2 2
. . 1 . . . . . . . . . . . . . 1 2 . . 2 1 2 2 . 2 . 2
. . . 1 . . . . . . . . . . 1 . . 1 2 . . 1 1 2 2 . 2 .
. . . . 1 . . . . . . . . . . 1 . . 1 2 . . 1 1 2 2 . 2
. . . . . 1 . . . . . . . . . . 1 . . 1 2 1 . 1 1 2 2 .
. . . . . . 1 . . . . . . . 1 . . 1 . . 1 . 1 . 1 1 2 2
. . . . . . . 1 . . . . . . 1 1 2 2 . 2 . 1 . . 1 . . 1
. . . . . . . . 1 . . . . . . 1 1 2 2 . 2 2 1 . . 1 . .
. . . . . . . . . 1 . . . . 1 . 1 1 2 2 . . 2 1 . . 1 .
. . . . . . . . . . 1 . . . . 1 . 1 1 2 2 . . 2 1 . . 1
. . . . . . . . . . . 1 . . 1 . 1 . 1 1 2 2 . . 2 1 . .
. . . . . . . . . . . . 1 . 1 1 . 1 . 1 1 . 2 . . 2 1 .
. . . . . . . . . . . . . 1 2 1 1 . 1 . 1 . . 2 . . 2 1
gap> ax:=PolyCodeword(Codeword("013131000", GF(7)));
x_1^5+Z(7)*x_1^4+x_1^3+Z(7)*x_1^2+x_1
gap> bx:=PolyCodeword(Codeword("425435030", GF(7)));
Z(7)*x_1^7+Z(7)^5*x_1^5+Z(7)*x_1^4+Z(7)^4*x_1^3+Z(7)^5*x_1^2+Z(7)^2*x_1+Z(7)^4
gap> C:=FourNegacirculantSelfDualCodeNC(ax, bx, 18);
a linear [36,18,1..13]0..36 four-negacirculant self-dual code over GF(7)
gap> IsSelfDualCode(C);
true
</pre></td></tr></table>
<p><a id="X87137A257E761291" name="X87137A257E761291"></a></p>
<h5>5.5-19 FourNegacirculantSelfDualCodeNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> FourNegacirculantSelfDualCodeNC</code>( <var class="Arg">ax, bx, k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function is the same as <code class="code">FourNegacirculantSelfDualCode</code>, except this version is faster as it does not estimate the minimum distance and covering radius of the code.</p>
<p><a id="X850A28C579137220" name="X850A28C579137220"></a></p>
<h4>5.6 <span class="Heading">
Evaluation Codes
</span></h4>
<p><a id="X78E078567D19D433" name="X78E078567D19D433"></a></p>
<h5>5.6-1 EvaluationCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> EvaluationCode</code>( <var class="Arg">P, L, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: <var class="Arg">F</var> is a finite field, <var class="Arg">L</var> is a list of rational functions in R=F[x_1,...,x_r], <var class="Arg">P</var> is a list of n points in F^r at which all of the functions in <var class="Arg">L</var> are defined. <br /> Output: The 'evaluation code' C, which is the image of the evalation map</p>
<p class="pcenter">
Eval_P:span(L)\rightarrow F^n,
</p>
<p>given by flongmapsto (f(p_1),...,f(p_n)), where P=p_1,...,p_n and f in L. The generator matrix of C is G=(f_i(p_j))_f_iin L,p_jin P.</p>
<p>This command returns a "record" object <code class="code">C</code> with several extra components (type <code class="code">NamesOfComponents(C)</code> to see them all): <code class="code">C!.EvaluationMat</code> (not the same as the generator matrix in general), <code class="code">C!.points</code> (namely <var class="Arg">P</var>), <code class="code">C!.basis</code> (namely <var class="Arg">L</var>), and <code class="code">C!.ring</code> (namely <var class="Arg">R</var>).</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R := PolynomialRing(F,2);;
gap> indets := IndeterminatesOfPolynomialRing(R);;
gap> x:=indets[1];; y:=indets[2];;
gap> L:=[x^2*y,x*y,x^5,x^4,x^3,x^2,x,x^0];;
gap> Pts:=[ [ Z(11)^9, Z(11) ], [ Z(11)^8, Z(11) ], [ Z(11)^7, 0*Z(11) ],
[ Z(11)^6, 0*Z(11) ], [ Z(11)^5, 0*Z(11) ], [ Z(11)^4, 0*Z(11) ],
[ Z(11)^3, Z(11) ], [ Z(11)^2, 0*Z(11) ], [ Z(11), 0*Z(11) ],
[ Z(11)^0, 0*Z(11) ], [ 0*Z(11), Z(11) ] ];;
gap> C:=EvaluationCode(Pts,L,R);
a linear [11,8,1..3]2..3 evaluation code over GF(11)
gap> MinimumDistance(C);
3
</pre></td></tr></table>
<p><a id="X810AB3DB844FFCE9" name="X810AB3DB844FFCE9"></a></p>
<h5>5.6-2 GeneralizedReedSolomonCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GeneralizedReedSolomonCode</code>( <var class="Arg">P, k, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: R=F[x], where <var class="Arg">F</var> is a finite field, <var class="Arg">k</var> is a positive integer, <var class="Arg">P</var> is a list of n points in F. <br /> Output: The C which is the image of the evaluation map</p>
<p class="pcenter">
Eval_P:F[x]_k\rightarrow F^n,
</p>
<p>given by flongmapsto (f(p_1),...,f(p_n)), where P=p_1,...,p_nsubset F and f ranges over the space F[x]_k of all polynomials of degree less than k.</p>
<p>This command returns a "record" object <code class="code">C</code> with several extra components (type <code class="code">NamesOfComponents(C)</code> to see them all): <code class="code">C!.points</code> (namely <var class="Arg">P</var>), <code class="code">C!.degree</code> (namely <var class="Arg">k</var>), and <code class="code">C!.ring</code> (namely <var class="Arg">R</var>).</p>
<p>This code can be decoded using <code class="code">Decodeword</code>, which applies the special decoder method (the interpolation method), or using <code class="code">GeneralizedReedSolomonDecoderGao</code> which applies an algorithm of S. Gao (see <code class="func">GeneralizedReedSolomonDecoderGao</code> (<a href="chap4.html#X7D48DE2A84474C6A"><b>4.10-3</b></a>)). This code has a special decoder record which implements the interpolation algorithm described in section 5.2 of Justesen and Hoholdt <a href="chapBib.html#biBJH04">[JH04]</a>. See <code class="func">Decode</code> (<a href="chap4.html#X7A42FF7D87FC34AC"><b>4.10-1</b></a>) and <code class="func">Decodeword</code> (<a href="chap4.html#X7D870C9387C47D9F"><b>4.10-2</b></a>) for more details.</p>
<p>The weighted version has implemented with the option <code class="code">GeneralizedReedSolomonCode(P,k,R,wts)</code>, where wts = [v_1, ..., v_n] is a sequence of n non-zero elements from the base field F of <var class="Arg">R</var>. See also the generalized Reed--Solomon code GRS_k(P, V) described in <a href="chapBib.html#biBMS83">[MS83]</a>, p.303.</p>
<p>The list-decoding algorithm of Sudan-Guraswami (described in section 12.1 of <a href="chapBib.html#biBJH04">[JH04]</a>) has been implemented for generalized Reed-Solomon codes. See <code class="func">GeneralizedReedSolomonListDecoder</code> (<a href="chap4.html#X7CFF98D483502053"><b>4.10-4</b></a>).</p>
<table class="example">
<tr><td><pre>
gap> R:=PolynomialRing(GF(11),["t"]);
GF(11)[t]
gap> P:=List([1,3,4,5,7],i->Z(11)^i);
[ Z(11), Z(11)^3, Z(11)^4, Z(11)^5, Z(11)^7 ]
gap> C:=GeneralizedReedSolomonCode(P,3,R);
a linear [5,3,1..3]2 generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3
gap> V:=[Z(11)^0,Z(11)^0,Z(11)^0,Z(11)^0,Z(11)];
[ Z(11)^0, Z(11)^0, Z(11)^0, Z(11)^0, Z(11) ]
gap> C:=GeneralizedReedSolomonCode(P,3,R,V);
a linear [5,3,1..3]2 weighted generalized Reed-Solomon code over GF(11)
gap> MinimumDistance(C);
3
</pre></td></tr></table>
<p>See <code class="func">EvaluationCode</code> (<a href="chap5.html#X78E078567D19D433"><b>5.6-1</b></a>) for a more general construction.</p>
<p><a id="X85B8699680B9D786" name="X85B8699680B9D786"></a></p>
<h5>5.6-3 GeneralizedReedMullerCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GeneralizedReedMullerCode</code>( <var class="Arg">Pts, r, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralizedReedMullerCode</code> returns a 'Reed-Muller code' C with length |Pts| and order r. One considers (a) a basis of monomials for the vector space over F=GF(q) of all polynomials in F[x_1,...,x_d] of degree at most r, and (b) a set Pts of points in F^d. The generator matrix of the associated <em>Reed-Muller code</em> C is G=(f(p))_fin B,p in Pts. This code C is constructed using the command <code class="code">GeneralizedReedMullerCode(Pts,r,F)</code>. When Pts is the set of all q^d points in F^d then the command <code class="code">GeneralizedReedMuller(d,r,F)</code> yields the code. When Pts is the set of all (q-1)^d points with no coordinate equal to 0 then this is can be constructed using the <code class="code">ToricCode</code> command (as a special case).</p>
<p>This command returns a "record" object <code class="code">C</code> with several extra components (type <code class="code">NamesOfComponents(C)</code> to see them all): <code class="code">C!.points</code> (namely <var class="Arg">Pts</var>) and <code class="code">C!.degree</code> (namely <var class="Arg">r</var>).</p>
<table class="example">
<tr><td><pre>
gap> Pts:=ToricPoints(2,GF(5));
[ [ Z(5)^0, Z(5)^0 ], [ Z(5)^0, Z(5) ], [ Z(5)^0, Z(5)^2 ], [ Z(5)^0, Z(5)^3 ],
[ Z(5), Z(5)^0 ], [ Z(5), Z(5) ], [ Z(5), Z(5)^2 ], [ Z(5), Z(5)^3 ],
[ Z(5)^2, Z(5)^0 ], [ Z(5)^2, Z(5) ], [ Z(5)^2, Z(5)^2 ], [ Z(5)^2, Z(5)^3 ],
[ Z(5)^3, Z(5)^0 ], [ Z(5)^3, Z(5) ], [ Z(5)^3, Z(5)^2 ], [ Z(5)^3, Z(5)^3 ] ]
gap> C:=GeneralizedReedMullerCode(Pts,2,GF(5));
a linear [16,6,1..11]6..10 generalized Reed-Muller code over GF(5)
</pre></td></tr></table>
<p>See <code class="func">EvaluationCode</code> (<a href="chap5.html#X78E078567D19D433"><b>5.6-1</b></a>) for a more general construction.</p>
<p><a id="X7EE68B58872D7E82" name="X7EE68B58872D7E82"></a></p>
<h5>5.6-4 ToricPoints</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ToricPoints</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ToricPoints(n,F)</code> returns the points in (F^x)^n.</p>
<table class="example">
<tr><td><pre>
gap> ToricPoints(2,GF(5));
[ [ Z(5)^0, Z(5)^0 ], [ Z(5)^0, Z(5) ], [ Z(5)^0, Z(5)^2 ],
[ Z(5)^0, Z(5)^3 ], [ Z(5), Z(5)^0 ], [ Z(5), Z(5) ], [ Z(5), Z(5)^2 ],
[ Z(5), Z(5)^3 ], [ Z(5)^2, Z(5)^0 ], [ Z(5)^2, Z(5) ], [ Z(5)^2, Z(5)^2 ],
[ Z(5)^2, Z(5)^3 ], [ Z(5)^3, Z(5)^0 ], [ Z(5)^3, Z(5) ],
[ Z(5)^3, Z(5)^2 ], [ Z(5)^3, Z(5)^3 ] ]
</pre></td></tr></table>
<p><a id="X7B24BE418010F596" name="X7B24BE418010F596"></a></p>
<h5>5.6-5 ToricCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ToricCode</code>( <var class="Arg">L, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns the toric codes as in D. Joyner <a href="chapBib.html#biBJo04">[Joy04]</a> (see also J. P. Hansen <a href="chapBib.html#biBHan99">[Han99]</a>). This is a truncated (generalized) Reed-Muller code. Here <var class="Arg">L</var> is a list of integral vectors and <var class="Arg">F</var> is the finite field. The size of <var class="Arg">F</var> must be different from 2.</p>
<p>This command returns a record object <code class="code">C</code> with an extra component (type <code class="code">NamesOfComponents(C)</code> to see them all): <code class="code">C!.exponents</code> (namely <var class="Arg">L</var>).</p>
<table class="example">
<tr><td><pre>
gap> C:=ToricCode([[1,0],[3,4]],GF(3));
a linear [4,1,4]2 toric code over GF(3)
gap> Display(GeneratorMat(C));
1 1 2 2
gap> Elements(C);
[ [ 0 0 0 0 ], [ 1 1 2 2 ], [ 2 2 1 1 ] ]
</pre></td></tr></table>
<p>See <code class="func">EvaluationCode</code> (<a href="chap5.html#X78E078567D19D433"><b>5.6-1</b></a>) for a more general construction.</p>
<p><a id="X7AE2B2CD7C647990" name="X7AE2B2CD7C647990"></a></p>
<h4>5.7 <span class="Heading">
Algebraic geometric codes
</span></h4>
<p>Certain <strong class="pkg">GUAVA</strong> functions related to algebraic geometric codes are described in this section.</p>
<p><a id="X802DD9FB79A9ACA7" name="X802DD9FB79A9ACA7"></a></p>
<h5>5.7-1 AffineCurve</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> AffineCurve</code>( <var class="Arg">poly, ring</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function simply defines the data structure of an affine plane curve. In <strong class="pkg">GUAVA</strong>, an affine curve is a record <var class="Arg">crv</var> having two components: a polynomial <var class="Arg">poly</var>, accessed in <strong class="pkg">GUAVA</strong> by <var class="Arg">crv.polynomial</var>, and a polynomial ring over a field F in two variables <var class="Arg">ring</var>, accessed in <strong class="pkg">GUAVA</strong> by <var class="Arg">crv.ring</var>, containing <var class="Arg">poly</var>. You use this function to define a curve in <strong class="pkg">GUAVA</strong>.</p>
<p>For example, for the ring, one could take Q}[x,y], and for the polynomial one could take f(x,y)=x^2+y^2-1. For the affine line, simply taking Q}[x,y] for the ring and f(x,y)=y for the polynomial.</p>
<p>(Not sure if F neeeds to be a field in fact ...)</p>
<p>To compute its degree, simply use the <code class="func">DegreeMultivariatePolynomial</code> (<a href="chap7.html#X80433A4B792880EF"><b>7.6-2</b></a>) command.</p>
<table class="example">
<tr><td><pre>
gap>
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [ x_1, x_2 ])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;
gap> poly:=y;; crvP1:=AffineCurve(poly,R2);
rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := x_2 )
gap> degree_crv:=DegreeMultivariatePolynomial(poly,R2);
1
gap> poly:=y^2-x*(x^2-1);; ell_crv:=AffineCurve(poly,R2);
rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := -x_1^3+x_2^2+x_1 )
gap> degree_crv:=DegreeMultivariatePolynomial(poly,R2);
3
gap> poly:=x^2+y^2-1;; circle:=AffineCurve(poly,R2);
rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := x_1^2+x_2^2-Z(11)^0 )
gap> degree_crv:=DegreeMultivariatePolynomial(poly,R2);
2
gap> q:=3;;
gap> F:=GF(q^2);;
gap> R:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R);
[ x_1, x_2 ]
gap> x:=vars[1];
x_1
gap> y:=vars[2];
x_2
gap> crv:=AffineCurve(y^q+y-x^(q+1),R);
rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := -x_1^4+x_2^3+x_2 )
gap>
</pre></td></tr></table>
<p>In GAP, a <em>point</em> on a curve defined by f(x,y)=0 is simply a list <var class="Arg">[a,b]</var> of elements of F satisfying this polynomial equation.</p>
<p><a id="X857EFE567C05C981" name="X857EFE567C05C981"></a></p>
<h5>5.7-2 AffinePointsOnCurve</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> AffinePointsOnCurve</code>( <var class="Arg">f, R, E</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AffinePointsOnCurve(f,R,E)</code> returns the points (x,y) in E^2 satisying f(x,y)=0, where <var class="Arg">f</var> is an element of R=F[x,y].</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);;
gap> R := PolynomialRing(F,["x","y"]);
PolynomialRing(..., [ x, y ])
gap> indets := IndeterminatesOfPolynomialRing(R);;
gap> x:=indets[1];; y:=indets[2];;
gap> P:=AffinePointsOnCurve(y^2-x^11+x,R,F);
[ [ Z(11)^9, 0*Z(11) ], [ Z(11)^8, 0*Z(11) ], [ Z(11)^7, 0*Z(11) ],
[ Z(11)^6, 0*Z(11) ], [ Z(11)^5, 0*Z(11) ], [ Z(11)^4, 0*Z(11) ],
[ Z(11)^3, 0*Z(11) ], [ Z(11)^2, 0*Z(11) ], [ Z(11), 0*Z(11) ],
[ Z(11)^0, 0*Z(11) ], [ 0*Z(11), 0*Z(11) ] ]
</pre></td></tr></table>
<p><a id="X857E36ED814A40B8" name="X857E36ED814A40B8"></a></p>
<h5>5.7-3 GenusCurve</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GenusCurve</code>( <var class="Arg">crv</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>If <var class="Arg">crv</var> represents f(x,y)=0, where f is a polynomial of degree d, then this function simply returns (d-1)(d-2)/2. At the present, the function does not check if the curve is singular (in which case the result may be false).</p>
<table class="example">
<tr><td><pre>
gap> q:=4;;
gap> F:=GF(q^2);;
gap> a:=X(F);;
gap> R1:=PolynomialRing(F,[a]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);;
gap> b:=X(F);;
gap> R2:=PolynomialRing(F,[a,b]);;
gap> var2:=IndeterminatesOfPolynomialRing(R2);;
gap> crv:=AffineCurve(b^q+b-a^(q+1),R2);;
gap> crv:=AffineCurve(b^q+b-a^(q+1),R2);
rec( ring := PolynomialRing(..., [ x_1, x_1 ]), polynomial := x_1^5+x_1^4+x_1 )
gap> GenusCurve(crv);
36
</pre></td></tr></table>
<p><a id="X8572A3037DA66F88" name="X8572A3037DA66F88"></a></p>
<h5>5.7-4 GOrbitPoint </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GOrbitPoint </code>( <var class="Arg">GP</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><var class="Arg">P</var> must be a point in projective space P^n(F), <var class="Arg">G</var> must be a finite subgroup of GL(n+1,F), This function returns all (representatives of projective) points in the orbit G* P.</p>
<p>The example below computes the orbit of the automorphism group on the Klein quartic over the field GF(43) on the ``point at infinity''.</p>
<table class="example">
<tr><td><pre>
gap> R:= PolynomialRing( GF(43), 3 );;
gap> vars:= IndeterminatesOfPolynomialRing(R);;
gap> x:= vars[1];; y:= vars[2];; z:= vars[3];;
gap> zz:=Z(43)^6;
Z(43)^6
gap> zzz:=Z(43);
Z(43)
gap> rho1:=zz^0*[[zz^4,0,0],[0,zz^2,0],[0,0,zz]];
[ [ Z(43)^24, 0*Z(43), 0*Z(43) ],
[ 0*Z(43), Z(43)^12, 0*Z(43) ],
[ 0*Z(43), 0*Z(43), Z(43)^6 ] ]
gap> rho2:=zz^0*[[0,1,0],[0,0,1],[1,0,0]];
[ [ 0*Z(43), Z(43)^0, 0*Z(43) ],
[ 0*Z(43), 0*Z(43), Z(43)^0 ],
[ Z(43)^0, 0*Z(43), 0*Z(43) ] ]
gap> rho3:=(-1)*[[(zz-zz^6 )/zzz^7,( zz^2-zz^5 )/ zzz^7, ( zz^4-zz^3 )/ zzz^7],
> [( zz^2-zz^5 )/ zzz^7, ( zz^4-zz^3 )/ zzz^7, ( zz-zz^6 )/ zzz^7],
> [( zz^4-zz^3 )/ zzz^7, ( zz-zz^6 )/ zzz^7, ( zz^2-zz^5 )/ zzz^7]];
[ [ Z(43)^9, Z(43)^28, Z(43)^12 ],
[ Z(43)^28, Z(43)^12, Z(43)^9 ],
[ Z(43)^12, Z(43)^9, Z(43)^28 ] ]
gap> G:=Group([rho1,rho2,rho3]);; #PSL(2,7)
gap> Size(G);
168
gap> P:=[1,0,0]*zzz^0;
[ Z(43)^0, 0*Z(43), 0*Z(43) ]
gap> O:=GOrbitPoint(G,P);
[ [ Z(43)^0, 0*Z(43), 0*Z(43) ], [ 0*Z(43), Z(43)^0, 0*Z(43) ],
[ 0*Z(43), 0*Z(43), Z(43)^0 ], [ Z(43)^0, Z(43)^39, Z(43)^16 ],
[ Z(43)^0, Z(43)^33, Z(43)^28 ], [ Z(43)^0, Z(43)^27, Z(43)^40 ],
[ Z(43)^0, Z(43)^21, Z(43)^10 ], [ Z(43)^0, Z(43)^15, Z(43)^22 ],
[ Z(43)^0, Z(43)^9, Z(43)^34 ], [ Z(43)^0, Z(43)^3, Z(43)^4 ],
[ Z(43)^3, Z(43)^22, Z(43)^6 ], [ Z(43)^3, Z(43)^16, Z(43)^18 ],
[ Z(43)^3, Z(43)^10, Z(43)^30 ], [ Z(43)^3, Z(43)^4, Z(43)^0 ],
[ Z(43)^3, Z(43)^40, Z(43)^12 ], [ Z(43)^3, Z(43)^34, Z(43)^24 ],
[ Z(43)^3, Z(43)^28, Z(43)^36 ], [ Z(43)^4, Z(43)^30, Z(43)^27 ],
[ Z(43)^4, Z(43)^24, Z(43)^39 ], [ Z(43)^4, Z(43)^18, Z(43)^9 ],
[ Z(43)^4, Z(43)^12, Z(43)^21 ], [ Z(43)^4, Z(43)^6, Z(43)^33 ],
[ Z(43)^4, Z(43)^0, Z(43)^3 ], [ Z(43)^4, Z(43)^36, Z(43)^15 ] ]
gap> Length(O);
24
</pre></td></tr></table>
<p>Informally, a <em>divisor</em> on a curve is a formal integer linear combination of points on the curve, D=m_1P_1+...+m_kP_k, where the m_i are integers (the ``multiplicity'' of P_i in D) and P_i are (F-rational) points on the affine plane curve. In other words, a divisor is an element of the free abelian group generated by the F-rational affine points on the curve. The <em>support</em> of a divisor D is simply the set of points which occurs in the sum defining D with non-zero ``multiplicity''. The data structure for a divisor on an affine plane curve is a record having the following components:</p>
<ul>
<li><p>the coefficients (the integer weights of the points in the support),</p>
</li>
<li><p>the support,</p>
</li>
<li><p>the curve, itself a record which has components: polynomial and polynomial ring.</p>
</li>
</ul>
<p><a id="X79742B7183051D99" name="X79742B7183051D99"></a></p>
<h5>5.7-5 DivisorOnAffineCurve</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorOnAffineCurve</code>( <var class="Arg">cdivsdivcrv</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This is the command you use to define a divisor in <strong class="pkg">GUAVA</strong>. Of course, <var class="Arg">crv</var> is the curve on which the divisor lives, <var class="Arg">cdiv</var> is the list of coefficients (or ``multiplicities''), <var class="Arg">sdiv</var> is the list of points on <var class="Arg">crv</var> in the support.</p>
<table class="example">
<tr><td><pre>
gap> q:=5;
5
gap> F:=GF(q);
GF(5)
gap> R:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R);
[ x_1, x_2 ]
gap> x:=vars[1];
x_1
gap> y:=vars[2];
x_2
gap> crv:=AffineCurve(y^3-x^3-x-1,R);
rec( ring := PolynomialRing(..., [ x_1, x_2 ]),
polynomial := -x_1^3+x_2^3-x_1-Z(5)^0 )
gap> Pts:=AffinePointsOnCurve(crv,R,F);;
gap> supp:=[Pts[1],Pts[2]];
[ [ 0*Z(5), Z(5)^0 ], [ Z(5)^0, Z(5) ] ]
gap> D:=DivisorOnAffineCurve([1,-1],supp,crv);
rec( coeffs := [ 1, -1 ],
support := [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^0, Z(5) ] ],
curve := rec( ring := PolynomialRing(..., [ x_1, x_2 ]),
polynomial := -x_1^3+x_2^3-x_1-Z(5)^0 ) )
</pre></td></tr></table>
<p><a id="X8626E2B57D01F2DC" name="X8626E2B57D01F2DC"></a></p>
<h5>5.7-6 DivisorAddition </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorAddition </code>( <var class="Arg">D1D2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>If D_1=m_1P_1+...+m_kP_k and D_2=n_1P_1+...+n_kP_k are divisors then D_1+D_2=(m_1+n_1)P_1+...+(m_k+n_k)P_k.</p>
<p><a id="X865FE28D828C1EAD" name="X865FE28D828C1EAD"></a></p>
<h5>5.7-7 DivisorDegree </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorDegree </code>( <var class="Arg">D</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>If D=m_1P_1+...+m_kP_k is a divisor then the <em>degree</em> is m_1+...+m_k.</p>
<p><a id="X789DC358819A8F54" name="X789DC358819A8F54"></a></p>
<h5>5.7-8 DivisorNegate </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorNegate </code>( <var class="Arg">D</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Self-explanatory.</p>
<p><a id="X8688C0E187B5C7DB" name="X8688C0E187B5C7DB"></a></p>
<h5>5.7-9 DivisorIsZero </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorIsZero </code>( <var class="Arg">D</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Self-explanatory.</p>
<p><a id="X816A07997D9A7075" name="X816A07997D9A7075"></a></p>
<h5>5.7-10 DivisorsEqual </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorsEqual </code>( <var class="Arg">D1D2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Self-explanatory.</p>
<p><a id="X857B89847A649A26" name="X857B89847A649A26"></a></p>
<h5>5.7-11 DivisorGCD </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorGCD </code>( <var class="Arg">D1D2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>If m=p_1^e_1...p_k^e_k and n=p_1^f_1...p_k^f_k are two integers then their greatest common divisor is GCD(m,n)=p_1^min(e_1,f_1)...p_k^min(e_k,f_k). A similar definition works for two divisors on a curve. If D_1=e_1P_1+...+e_kP_k and D_2n=f_1P_1+...+f_kP_k are two divisors on a curve then their <em>greatest common divisor</em> is GCD(m,n)=min(e_1,f_1)P_1+...+min(e_k,f_k)P_k. This function computes this quantity.</p>
<p><a id="X82231CF08073695F" name="X82231CF08073695F"></a></p>
<h5>5.7-12 DivisorLCM </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorLCM </code>( <var class="Arg">D1D2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>If m=p_1^e_1...p_k^e_k and n=p_1^f_1...p_k^f_k are two integers then their least common multiple is LCM(m,n)=p_1^max(e_1,f_1)...p_k^max(e_k,f_k). A similar definition works for two divisors on a curve. If D_1=e_1P_1+...+e_kP_k and D_2=f_1P_1+...+f_kP_k are two divisors on a curve then their <em>least common multiple</em> is LCM(m,n)=max(e_1,f_1)P_1+...+max(e_k,f_k)P_k. This function computes this quantity.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[ a, b ]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [ a, b ])
gap> crvP1:=AffineCurve(b,R2);
rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
gap> div1:=DivisorOnAffineCurve([1,2,3,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
rec( coeffs := [ 1, 2, 3, 4 ],
support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> DivisorDegree(div1);
10
gap> div2:=DivisorOnAffineCurve([1,2,3,4],[Z(11),Z(11)^2,Z(11)^3,Z(11)^4],crvP1);
rec( coeffs := [ 1, 2, 3, 4 ],
support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^4 ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> DivisorDegree(div2);
10
gap> div3:=DivisorAddition(div1,div2);
rec( coeffs := [ 5, 3, 5, 4, 3 ],
support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^4, Z(11)^7 ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> DivisorDegree(div3);
20
gap> DivisorIsEffective(div1);
true
gap> DivisorIsEffective(div2);
true
gap>
gap> ndiv1:=DivisorNegate(div1);
rec( coeffs := [ -1, -2, -3, -4 ],
support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> zdiv:=DivisorAddition(div1,ndiv1);
rec( coeffs := [ 0, 0, 0, 0 ],
support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^7 ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> DivisorIsZero(zdiv);
true
gap> div_gcd:=DivisorGCD(div1,div2);
rec( coeffs := [ 1, 1, 2, 0, 0 ],
support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^4, Z(11)^7 ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> div_lcm:=DivisorLCM(div1,div2);
rec( coeffs := [ 4, 2, 3, 4, 3 ],
support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^4, Z(11)^7 ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> DivisorDegree(div_gcd);
4
gap> DivisorDegree(div_lcm);
16
gap> DivisorEqual(div3,DivisorAddition(div_gcd,div_lcm));
true
</pre></td></tr></table>
<p>Let G denote a finite subgroup of PGL(2,F) and let D denote a divisor on the projective line P^1(F). If G leaves D unchanged (it may permute the points in the support of D but must preserve their sum in D) then the Riemann-Roch space L(D) is a G-module. The commands in this section help explore the G-module structure of L(D) in the case then the ground field F is finite.</p>
<p><a id="X79C878697F99A10F" name="X79C878697F99A10F"></a></p>
<h5>5.7-13 RiemannRochSpaceBasisFunctionP1 </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> RiemannRochSpaceBasisFunctionP1 </code>( <var class="Arg">PkR2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: <var class="Arg">R2</var> is a polynomial ring in two variables, say F[x,y]; <var class="Arg">P</var> is an element of the base field, say F; <var class="Arg">k</var> is an integer. Output: 1/(x-P)^k</p>
<p><a id="X856DDA207EDDF256" name="X856DDA207EDDF256"></a></p>
<h5>5.7-14 DivisorOfRationalFunctionP1 </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorOfRationalFunctionP1 </code>( <var class="Arg">f, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Here R = F[x,y] is a polynomial ring in the variables x,y and f is a rational function of x. Simply returns the principal divisor on P}^1 associated to f.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[ a, b ]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [ a, b ])
gap> pt:=Z(11);
Z(11)
gap> f:=RiemannRochSpaceBasisFunctionP1(pt,2,R2);
(Z(11)^0)/(a^2+Z(11)^7*a+Z(11)^2)
gap> Df:=DivisorOfRationalFunctionP1(f,R2);
rec( coeffs := [ -2 ], support := [ Z(11) ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := a )
)
gap> Df.support;
[ Z(11) ]
gap> F:=GF(11);;
gap> R:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R);;
gap> a:=vars[1];;
gap> b:=vars[2];;
gap> f:=(a^4+Z(11)^6*a^3-a^2+Z(11)^7*a+Z(11)^0)/(a^4+Z(11)*a^2+Z(11)^7*a+Z(11));;
gap> divf:=DivisorOfRationalFunctionP1(f,R);
rec( coeffs := [ 3, 1 ], support := [ Z(11), Z(11)^7 ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := a ) )
gap> denf:=DenominatorOfRationalFunction(f); RootsOfUPol(denf);
a^4+Z(11)*a^2+Z(11)^7*a+Z(11)
[ ]
gap> numf:=NumeratorOfRationalFunction(f); RootsOfUPol(numf);
a^4+Z(11)^6*a^3-a^2+Z(11)^7*a+Z(11)^0
[ Z(11)^7, Z(11), Z(11), Z(11) ]
</pre></td></tr></table>
<p><a id="X878970A17E580224" name="X878970A17E580224"></a></p>
<h5>5.7-15 RiemannRochSpaceBasisP1 </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> RiemannRochSpaceBasisP1 </code>( <var class="Arg">D</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This returns the basis of the Riemann-Roch space L(D) associated to the divisor <var class="Arg">D</var> on the projective line P}^1.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[ a, b ]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [ a, b ])
gap> crvP1:=AffineCurve(b,R2);
rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
rec( coeffs := [ 1, 2, 3, 4 ],
support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> B:=RiemannRochSpaceBasisP1(D);
[ Z(11)^0, (Z(11)^0)/(a+Z(11)^7), (Z(11)^0)/(a+Z(11)^8),
(Z(11)^0)/(a^2+Z(11)^9*a+Z(11)^6), (Z(11)^0)/(a+Z(11)^2),
(Z(11)^0)/(a^2+Z(11)^3*a+Z(11)^4), (Z(11)^0)/(a^3+a^2+Z(11)^2*a+Z(11)^6),
(Z(11)^0)/(a+Z(11)^6), (Z(11)^0)/(a^2+Z(11)^7*a+Z(11)^2),
(Z(11)^0)/(a^3+Z(11)^4*a^2+a+Z(11)^8),
(Z(11)^0)/(a^4+Z(11)^8*a^3+Z(11)*a^2+a+Z(11)^4) ]
gap> DivisorOfRationalFunctionP1(B[1],R2).support;
[ ]
gap> DivisorOfRationalFunctionP1(B[2],R2).support;
[ Z(11)^2 ]
gap> DivisorOfRationalFunctionP1(B[3],R2).support;
[ Z(11)^3 ]
gap> DivisorOfRationalFunctionP1(B[4],R2).support;
[ Z(11)^3 ]
gap> DivisorOfRationalFunctionP1(B[5],R2).support;
[ Z(11)^7 ]
gap> DivisorOfRationalFunctionP1(B[6],R2).support;
[ Z(11)^7 ]
gap> DivisorOfRationalFunctionP1(B[7],R2).support;
[ Z(11)^7 ]
gap> DivisorOfRationalFunctionP1(B[8],R2).support;
[ Z(11) ]
gap> DivisorOfRationalFunctionP1(B[9],R2).support;
[ Z(11) ]
gap> DivisorOfRationalFunctionP1(B[10],R2).support;
[ Z(11) ]
gap> DivisorOfRationalFunctionP1(B[11],R2).support;
[ Z(11) ]
</pre></td></tr></table>
<p><a id="X807C52E67A440DEB" name="X807C52E67A440DEB"></a></p>
<h5>5.7-16 MoebiusTransformation </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> MoebiusTransformation </code>( <var class="Arg">AR</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The arguments are a 2x 2 matrix A with entries in a field F and a polynomial ring <var class="Arg">R</var>of one variable, say F[x]. This function returns the linear fractional transformatio associated to <var class="Arg">A</var>. These transformations can be composed with each other using GAP's <code class="code">Value</code> command.</p>
<p><a id="X85A0419580ED0391" name="X85A0419580ED0391"></a></p>
<h5>5.7-17 ActionMoebiusTransformationOnFunction </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ActionMoebiusTransformationOnFunction </code>( <var class="Arg">AfR2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The arguments are a 2x 2 matrix A with entries in a field F, a rational function <var class="Arg">f</var> of one variable, say in F(x), and a polynomial ring <var class="Arg">R2</var>, say F[x,y]. This function simply returns the composition of the function <var class="Arg">f</var> with the Möbius transformation of <var class="Arg">A</var>.</p>
<p><a id="X7E48F9C67E7FB7B5" name="X7E48F9C67E7FB7B5"></a></p>
<h5>5.7-18 ActionMoebiusTransformationOnDivisorP1 </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ActionMoebiusTransformationOnDivisorP1 </code>( <var class="Arg">AD</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>A Möbius transformation may be regarded as an automorphism of the projective line P^1. This function simply returns the image of the divisor <var class="Arg">D</var> under the Möbius transformation defined by <var class="Arg">A</var>, provided that <code class="code">IsActionMoebiusTransformationOnDivisorDefinedP1(A,D)</code> returns true.</p>
<p><a id="X79FD980E7B24DB9C" name="X79FD980E7B24DB9C"></a></p>
<h5>5.7-19 IsActionMoebiusTransformationOnDivisorDefinedP1 </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> IsActionMoebiusTransformationOnDivisorDefinedP1 </code>( <var class="Arg">AD</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns true of none of the points in the support of the divisor <var class="Arg">D</var> is the pole of the Möbius transformation.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[ a, b ]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [ a, b ])
gap> crvP1:=AffineCurve(b,R2);
rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
rec( coeffs := [ 1, 2, 3, 4 ],
support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> A:=Z(11)^0*[[1,2],[1,4]];
[ [ Z(11)^0, Z(11) ], [ Z(11)^0, Z(11)^2 ] ]
gap> ActionMoebiusTransformationOnDivisorDefinedP1(A,D);
false
gap> A:=Z(11)^0*[[1,2],[3,4]];
[ [ Z(11)^0, Z(11) ], [ Z(11)^8, Z(11)^2 ] ]
gap> ActionMoebiusTransformationOnDivisorDefinedP1(A,D);
true
gap> ActionMoebiusTransformationOnDivisorP1(A,D);
rec( coeffs := [ 1, 2, 3, 4 ],
support := [ Z(11)^5, Z(11)^6, Z(11)^8, Z(11)^7 ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> f:=MoebiusTransformation(A,R1);
(a+Z(11))/(Z(11)^8*a+Z(11)^2)
gap> ActionMoebiusTransformationOnFunction(A,f,R1);
-Z(11)^0+Z(11)^3*a^-1
</pre></td></tr></table>
<p><a id="X823386037F450B0E" name="X823386037F450B0E"></a></p>
<h5>5.7-20 DivisorAutomorphismGroupP1 </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorAutomorphismGroupP1 </code>( <var class="Arg">D</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: A divisor <var class="Arg">D</var> on P^1(F), where F is a finite field. Output: A subgroup Aut(D)subset Aut(P^1) preserving <var class="Arg">D</var>.</p>
<p>Very slow.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[ a, b ]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [ a, b ])
gap> crvP1:=AffineCurve(b,R2);
rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
rec( coeffs := [ 1, 2, 3, 4 ],
support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> agp:=DivisorAutomorphismGroupP1(D);; time;
7305
gap> IdGroup(agp);
[ 10, 2 ]
</pre></td></tr></table>
<p><a id="X80EDF3D682E7EF3F" name="X80EDF3D682E7EF3F"></a></p>
<h5>5.7-21 MatrixRepresentationOnRiemannRochSpaceP1 </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> MatrixRepresentationOnRiemannRochSpaceP1 </code>( <var class="Arg">gD</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: An element <var class="Arg">g</var> in G, a subgroup of Aut(D)subset Aut(P^1), and a divisor <var class="Arg">D</var> on P^1(F), where F is a finite field. Output: a dx d matrix, where d = dim, L(D), representing the action of <var class="Arg">g</var> on L(D).</p>
<p>Note: <var class="Arg">g</var> sends L(D) to r* L(D), where r is a polynomial of degree 1 depending on <var class="Arg">g</var> and <var class="Arg">D</var>.</p>
<p>Also very slow.</p>
<p>The GAP command <code class="code">BrauerCharacterValue</code> can be used to ``lift'' the eigenvalues of this matrix to the complex numbers.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[ a, b ]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [ a, b ])
gap> crvP1:=AffineCurve(b,R2);
rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
gap> D:=DivisorOnAffineCurve([1,1,1,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
rec( coeffs := [ 1, 1, 1, 4 ],
support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ],
curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
gap> agp:=DivisorAutomorphismGroupP1(D);; time;
7198
gap> IdGroup(agp);
[ 20, 5 ]
gap> g:=Random(agp);
[ [ Z(11)^4, Z(11)^9 ], [ Z(11)^0, Z(11)^9 ] ]
gap> rho:=MatrixRepresentationOnRiemannRochSpaceP1(g,D);
[ [ Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ],
[ Z(11)^0, 0*Z(11), 0*Z(11), Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ],
[ Z(11)^7, 0*Z(11), Z(11)^5, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ],
[ Z(11)^4, Z(11)^9, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ],
[ Z(11)^2, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^5, 0*Z(11), 0*Z(11), 0*Z(11) ],
[ Z(11)^4, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8, Z(11)^0, 0*Z(11), 0*Z(11) ],
[ Z(11)^6, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^7, Z(11)^0, Z(11)^5, 0*Z(11) ],
[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3, Z(11)^3, Z(11)^9, Z(11)^0 ] ]
gap> Display(rho);
1 . . . . . . .
1 . . 2 . . . .
7 . 10 . . . . .
5 6 . . . . . .
4 . . . 10 . . .
5 . . . 3 1 . .
9 . . . 7 1 10 .
3 . . . 8 8 6 1
</pre></td></tr></table>
<p><a id="X8777388C7885E335" name="X8777388C7885E335"></a></p>
<h5>5.7-22 GoppaCodeClassical</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GoppaCodeClassical</code>( <var class="Arg">div, pts</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: A divisor <var class="Arg">div</var> on the projective line P}^1(F) over a finite field F and a list <var class="Arg">pts</var> of points P_1,...,P_nsubset F disjoint from the support of <var class="Arg">div</var>. <br /> Output: The classical (evaluation) Goppa code associated to this data. This is the code</p>
<p class="pcenter">
C=\{(f(P_1),...,f(P_n))\ |\ f\in L(D)_F\}.
</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> a:=vars[1];;b:=vars[2];;
gap> cdiv:=[ 1, 2, -1, -2 ];
[ 1, 2, -1, -2 ]
gap> sdiv:=[ Z(11)^2, Z(11)^3, Z(11)^6, Z(11)^9 ];
[ Z(11)^2, Z(11)^3, Z(11)^6, Z(11)^9 ]
gap> crv:=rec(polynomial:=b,ring:=R2);
rec( polynomial := x_2, ring := PolynomialRing(..., [ x_1, x_2 ]) )
gap> div:=DivisorOnAffineCurve(cdiv,sdiv,crv);
rec( coeffs := [ 1, 2, -1, -2 ], support := [ Z(11)^2, Z(11)^3, Z(11)^6, Z(11)^9 ],
curve := rec( polynomial := x_2, ring := PolynomialRing(..., [ x_1, x_2 ]) ) )
gap> pts:=Difference(Elements(GF(11)),div.support);
[ 0*Z(11), Z(11)^0, Z(11), Z(11)^4, Z(11)^5, Z(11)^7, Z(11)^8 ]
gap> C:=GoppaCodeClassical(div,pts);
a linear [7,2,1..6]4..5 code defined by generator matrix over GF(11)
gap> MinimumDistance(C);
6
</pre></td></tr></table>
<p><a id="X8422A310854C09B0" name="X8422A310854C09B0"></a></p>
<h5>5.7-23 EvaluationBivariateCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> EvaluationBivariateCode</code>( <var class="Arg">pts, L, crv</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: <code class="code">pts</code> is a set of affine points on <code class="code">crv</code>, <code class="code">L</code> is a list of rational functions on <code class="code">crv</code>. <br /> Output: The evaluation code associated to the points in <code class="code">pts</code> and functions in <code class="code">L</code>, but specifically for affine plane curves and this function checks if points are "bad" (if so removes them from the list <code class="code">pts</code> automatically). A point is ``bad'' if either it does not lie on the set of non-singular F-rational points (places of degree 1) on the curve.</p>
<p>Very similar to <code class="code">EvaluationCode</code> (see <code class="func">EvaluationCode</code> (<a href="chap5.html#X78E078567D19D433"><b>5.6-1</b></a>) for a more general construction).</p>
<p><a id="X7B6C2BED8319C811" name="X7B6C2BED8319C811"></a></p>
<h5>5.7-24 EvaluationBivariateCodeNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> EvaluationBivariateCodeNC</code>( <var class="Arg">pts, L, crv</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>As in <code class="code">EvaluationBivariateCode</code> but does not check if the points are ``bad''.</p>
<p>Input: <code class="code">pts</code> is a set of affine points on <code class="code">crv</code>, <code class="code">L</code> is a list of rational functions on <code class="code">crv</code>. <br /> Output: The evaluation code associated to the points in <code class="code">pts</code> and functions in <code class="code">L</code>.</p>
<table class="example">
<tr><td><pre>
gap> q:=4;;
gap> F:=GF(q^2);;
gap> R:=PolynomialRing(F,2);;
gap> vars:=IndeterminatesOfPolynomialRing(R);;
gap> x:=vars[1];;
gap> y:=vars[2];;
gap> crv:=AffineCurve(y^q+y-x^(q+1),R);
rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := x_1^5+x_2^4+x_2 )
gap> L:=[ x^0, x, x^2*y^-1 ];
[ Z(2)^0, x_1, x_1^2/x_2 ]
gap> Pts:=AffinePointsOnCurve(crv.polynomial,crv.ring,F);;
gap> C1:=EvaluationBivariateCode(Pts,L,crv); time;
Automatically removed the following 'bad' points (either a pole or not
on the curve):
[ [ 0*Z(2), 0*Z(2) ] ]
a linear [63,3,1..60]51..59 evaluation code over GF(16)
52
gap> P:=Difference(Pts,[[ 0*Z(2^4)^0, 0*Z(2)^0 ]]);;
gap> C2:=EvaluationBivariateCodeNC(P,L,crv); time;
a linear [63,3,1..60]51..59 evaluation code over GF(16)
48
gap> C3:=EvaluationCode(P,L,R); time;
a linear [63,3,1..56]51..59 evaluation code over GF(16)
58
gap> MinimumDistance(C1);
56
gap> MinimumDistance(C2);
56
gap> MinimumDistance(C3);
56
gap>
</pre></td></tr></table>
<p><a id="X842E227E8785168E" name="X842E227E8785168E"></a></p>
<h5>5.7-25 OnePointAGCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> OnePointAGCode</code>( <var class="Arg">f, P, m, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: <var class="Arg">f</var> is a polynomial in R=F[x,y], where <var class="Arg">F</var> is a finite field, <var class="Arg">m</var> is a positive integer (the multiplicity of the `point at infinity' infty on the curve f(x,y)=0), <var class="Arg">P</var> is a list of n points on the curve over F. <br /> Output: The C which is the image of the evaluation map</p>
<p class="pcenter">
Eval_P:L(m \cdot \infty)\rightarrow F^n,
</p>
<p>given by flongmapsto (f(p_1),...,f(p_n)), where p_i in P. Here L(m * infty) denotes the Riemann-Roch space of the divisor m * infty on the curve. This has a basis consisting of monomials x^iy^j, where (i,j) range over a polygon depending on m and f(x,y). For more details on the Riemann-Roch space of the divisor m * infty see Proposition III.10.5 in Stichtenoth <a href="chapBib.html#biBSt93">[Sti93]</a>.</p>
<p>This command returns a "record" object <code class="code">C</code> with several extra components (type <code class="code">NamesOfComponents(C)</code> to see them all): <code class="code">C!.points</code> (namely <var class="Arg">P</var>), <code class="code">C!.multiplicity</code> (namely <var class="Arg">m</var>), <code class="code">C!.curve</code> (namely <var class="Arg">f</var>) and <code class="code">C!.ring</code> (namely <var class="Arg">R</var>).</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R := PolynomialRing(F,["x","y"]);
PolynomialRing(..., [ x, y ])
gap> indets := IndeterminatesOfPolynomialRing(R);
[ x, y ]
gap> x:=indets[1]; y:=indets[2];
x
y
gap> P:=AffinePointsOnCurve(y^2-x^11+x,R,F);;
gap> C:=OnePointAGCode(y^2-x^11+x,P,15,R);
a linear [11,8,1..0]2..3 one-point AG code over GF(11)
gap> MinimumDistance(C);
4
gap> Pts:=List([1,2,4,6,7,8,9,10,11],i->P[i]);;
gap> C:=OnePointAGCode(y^2-x^11+x,PT,10,R);
a linear [9,6,1..4]2..3 one-point AG code over GF(11)
gap> MinimumDistance(C);
4
</pre></td></tr></table>
<p>See <code class="func">EvaluationCode</code> (<a href="chap5.html#X78E078567D19D433"><b>5.6-1</b></a>) for a more general construction.</p>
<p><a id="X84F3673D7BBF5956" name="X84F3673D7BBF5956"></a></p>
<h4>5.8 <span class="Heading">
Low-Density Parity-Check Codes
</span></h4>
<p>Low-density parity-check (LDPC) codes form a class of linear block codes whose parity-check matrix--as the name implies, is sparse. LDPC codes were introduced by Robert Gallager in 1962 <a href="chapBib.html#biBGallager.1962">[Gal62]</a> as his PhD work. Due to the decoding complexity for the technology back then, these codes were forgotten. Not until the late 1990s, these codes were rediscovered and research results have shown that LDPC codes can achieve near Shannon's capacity performance provided that their block length is long enough and soft-decision iterative decoder is employed. Note that the bit-flipping decoder (see <code class="code">BitFlipDecoder</code>) is a hard-decision decoder and hence capacity achieving performance cannot be achieved despite having a large block length.</p>
<p>Based on the structure of their parity-check matrix, LDPC codes may be categorised into two classes:</p>
<ul>
<li><p>Regular LDPC codes</p>
<p>This class of codes has a fixed number of non zeros per column and per row in their parity-check matrix. These codes are usually denoted as (n,j,k) codes where n is the block length, j is the number of non zeros per column in their parity-check matrix and k is the number of non zeros per row in their parity-check matrix.</p>
</li>
<li><p>Irregular LDPC codes</p>
<p>The irregular codes, on the other hand, do not have a fixed number of non zeros per column and row in their parity-check matrix. This class of codes are commonly represented by two polynomials which denote the distribution of the number of non zeros in the columns and rows respectively of their parity-check matrix.</p>
</li>
</ul>
<p><a id="X8020A9357AD0BA92" name="X8020A9357AD0BA92"></a></p>
<h5>5.8-1 QCLDPCCodeFromGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> QCLDPCCodeFromGroup</code>( <var class="Arg">m, j, k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">QCLDCCodeFromGroup</code> produces an (n,j,k) regular quasi-cyclic LDPC code over GF(2) of block length n = mk. The term quasi-cyclic in the context of LDPC codes typically refers to LDPC codes whose parity-check matrix H has the following form</p>
<pre class="normal">
- -
| I_P(0,0) | I_P(0,1) | ... | I_P(0,k-1) |
| I_P(1,0) | I_P(1,1) | ... | I_P(1,k-1) |
H = | . | . | . | . |,
| . | . | . | . |
| I_P(j-1,0) | I_P(j-1,1) | ... | I_P(j-1,k-1) |
- -
</pre>
<p>where I_P(s,t) is an identity matrix of size m x m which has been shifted so that the 1 on the first row starts at position P(s,t).</p>
<p>Let F be a multiplicative group of integers modulo m. If m is a prime, F=0,1,...,m-1, otherwise F contains a set of integers which are relatively prime to m. In both cases, the order of F is equal to phi(m). Let a and b be non zeros of F such that the orders of a and b are k and j respectively. Note that the integers a and b can always be found provided that k and j respectively divide phi(m). Having obtain integers a and b, construct the following j x k matrix P so that the element at row s and column t is given by P(s,t) = a^tb^s, i.e.</p>
<pre class="normal">
- -
| 1 | a | . . . | a^{k-1} |
| b | ab | . . . | a^{k-1}b |
P = | . | . | . | . |.
| . | . | . | . |
| b^{j-1} | ab^{j-1} | . . . | a^{k-1}b^{j-1} |
- -
</pre>
<p>The parity-check matrix H of the LDPC code can be obtained by expanding each element of matrix P, i.e. P(s,t), to an identity matrix I_P(s,t) of size m x m.</p>
<p>The code rate R of the constructed code is given by</p>
<p class="pcenter">
R \geq 1 - \frac{j}{k}
</p>
<p>where the sign >= is due to the possible existence of some non linearly independent rows in H. For more details to the paper by Tanner et al <a href="chapBib.html#biBTSSFC04">[S}04]</a>.</p>
<table class="example">
<tr><td><pre>
gap> C := QCLDPCCodeFromGroup(7,2,3);
a linear [21,8,1..6]5..10 low-density parity-check code over GF(2)
gap> MinimumWeight(C);
[21,8] linear code over GF(2) - minimum weight evaluation
Known lower-bound: 1
There are 3 generator matrices, ranks : 8 8 5
The weight of the minimum weight codeword satisfies 0 mod 2 congruence
Enumerating codewords with information weight 1 (w=1)
Found new minimum weight 6
Number of matrices required for codeword enumeration 2
Completed w= 1, 24 codewords enumerated, lower-bound 4, upper-bound 6
Termination expected with information weight 2 at matrix 1
-----------------------------------------------------------------------------
Enumerating codewords with information weight 2 (w=2) using 1 matrices
Completed w= 2, 28 codewords enumerated, lower-bound 6, upper-bound 6
-----------------------------------------------------------------------------
Minimum weight: 6
6
gap> # The quasi-cyclic structure is obvious from the check matrix
gap> Display( CheckMat(C) );
1 . . . . . . . 1 . . . . . . . . 1 . . .
. 1 . . . . . . . 1 . . . . . . . . 1 . .
. . 1 . . . . . . . 1 . . . . . . . . 1 .
. . . 1 . . . . . . . 1 . . . . . . . . 1
. . . . 1 . . . . . . . 1 . 1 . . . . . .
. . . . . 1 . . . . . . . 1 . 1 . . . . .
. . . . . . 1 1 . . . . . . . . 1 . . . .
. . . . . 1 . . . . . 1 . . . . 1 . . . .
. . . . . . 1 . . . . . 1 . . . . 1 . . .
1 . . . . . . . . . . . . 1 . . . . 1 . .
. 1 . . . . . 1 . . . . . . . . . . . 1 .
. . 1 . . . . . 1 . . . . . . . . . . . 1
. . . 1 . . . . . 1 . . . . 1 . . . . . .
. . . . 1 . . . . . 1 . . . . 1 . . . . .
gap> # This is the famous [155,64,20] quasi-cyclic LDPC codes
gap> C := QCLDPCCodeFromGroup(31,3,5);
a linear [155,64,1..24]24..77 low-density parity-check code over GF(2)
gap> # An example using non prime m, it may take a while to construct this code
gap> C := QCLDPCCodeFromGroup(356,4,8);
a linear [2848,1436,1..120]312..1412 low-density parity-check code over GF(2)
</pre></td></tr></table>
<div class="chlinkprevnextbot"> <a href="chap0.html">Top of Book</a> <a href="chap4.html">Previous Chapter</a> <a href="chap6.html">Next Chapter</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|