File: chap6.html

package info (click to toggle)
guava 3.6-2
  • links: PTS
  • area: main
  • in suites: lenny, squeeze, wheezy
  • size: 11,788 kB
  • ctags: 2,359
  • sloc: ansic: 20,846; xml: 10,043; sh: 2,855; makefile: 388
file content (983 lines) | stat: -rw-r--r-- 67,703 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (guava) - Chapter 6: Manipulating Codes</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
</head>
<body>


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">Top of Book</a>&nbsp;  &nbsp;<a href="chap5.html">Previous Chapter</a>&nbsp;  &nbsp;<a href="chap7.html">Next Chapter</a>&nbsp;  </div>

<p><a id="X866FC1117814B64D" name="X866FC1117814B64D"></a></p>
<div class="ChapSects"><a href="chap6.html#X866FC1117814B64D">6. <span class="Heading">Manipulating Codes</span></a>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap6.html#X8271A4697FDA97B2">6.1 <span class="Heading">
Functions that Generate a New Code from a Given Code
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X794679BE7F9EB5C1">6.1-1 ExtendedCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7E6E4DDA79574FDB">6.1-2 PuncturedCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X87691AB67FF5621B">6.1-3 EvenWeightSubcode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X79577EB27BE8524B">6.1-4 PermutedCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X87E5849784BC60D2">6.1-5 ExpurgatedCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X8134BE2B8478BE8A">6.1-6 AugmentedCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7B0A6E1F82686B43">6.1-7 RemovedElementsCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X784E1255874FCA8A">6.1-8 AddedElementsCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X81CBEAFF7B9DE6EF">6.1-9 ShortenedCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7A5D5419846FC867">6.1-10 LengthenedCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7982D699803ECD0F">6.1-11 SubCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X809376187C1525AA">6.1-12 ResidueCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7E92DC9581F96594">6.1-13 ConstructionBCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X799B12F085ACB609">6.1-14 DualCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X81FE1F387DFCCB22">6.1-15 ConversionFieldCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X82D18907800FE3D9">6.1-16 TraceCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X8799F4BF81B0842B">6.1-17 CosetCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X873EA5EE85699832">6.1-18 ConstantWeightSubcode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7AA203A380BC4C79">6.1-19 StandardFormCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7EF49A257D6DB53B">6.1-20 PiecewiseConstantCode</a></span>
</div>
<div class="ContSect"><span class="nocss">&nbsp;</span><a href="chap6.html#X7964BF0081CC8352">6.2 <span class="Heading">
Functions that Generate a New Code from Two or More Given Codes
</span></a>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X79E00D3A8367D65A">6.2-1 DirectSumCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X86E9D6DE7F1A07E6">6.2-2 UUVCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7BFBBA5784C293C1">6.2-3 DirectProductCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X78F0B1BC81FB109C">6.2-4 IntersectionCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X8228A1F57A29B8F4">6.2-5 UnionCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7A85F8AF8154D387">6.2-6 ExtendedDirectSumCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7E17107686A845DB">6.2-7 AmalgamatedDirectSumCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7D8981AF7DFE9814">6.2-8 BlockwiseDirectSumCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7C37D467791CE99B">6.2-9 ConstructionXCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X7B50943B8014134F">6.2-10 ConstructionXXCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X790C614985BFAE16">6.2-11 BZCode</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap6.html#X820327D6854A50B5">6.2-12 BZCodeNC</a></span>
</div>
</div>

<h3>6. <span class="Heading">Manipulating Codes</span></h3>

<p>In this chapter we describe several functions <strong class="pkg">GUAVA</strong> uses to manipulate codes. Some of the best codes are obtained by starting with for example a BCH code, and manipulating it.</p>

<p>In some cases, it is faster to perform calculations with a manipulated code than to use the original code. For example, if the dimension of the code is larger than half the word length, it is generally faster to compute the weight distribution by first calculating the weight distribution of the dual code than by directly calculating the weight distribution of the original code. The size of the dual code is smaller in these cases.</p>

<p>Because <strong class="pkg">GUAVA</strong> keeps all information in a code record, in some cases the information can be preserved after manipulations. Therefore, computations do not always have to start from scratch.</p>

<p>In Section <a href="chap6.html#X8271A4697FDA97B2"><b>6.1</b></a>, we describe functions that take a code with certain parameters, modify it in some way and return a different code (see <code class="func">ExtendedCode</code> (<a href="chap6.html#X794679BE7F9EB5C1"><b>6.1-1</b></a>), <code class="func">PuncturedCode</code> (<a href="chap6.html#X7E6E4DDA79574FDB"><b>6.1-2</b></a>), <code class="func">EvenWeightSubcode</code> (<a href="chap6.html#X87691AB67FF5621B"><b>6.1-3</b></a>), <code class="func">PermutedCode</code> (<a href="chap6.html#X79577EB27BE8524B"><b>6.1-4</b></a>), <code class="func">ExpurgatedCode</code> (<a href="chap6.html#X87E5849784BC60D2"><b>6.1-5</b></a>), <code class="func">AugmentedCode</code> (<a href="chap6.html#X8134BE2B8478BE8A"><b>6.1-6</b></a>), <code class="func">RemovedElementsCode</code> (<a href="chap6.html#X7B0A6E1F82686B43"><b>6.1-7</b></a>), <code class="func">AddedElementsCode</code> (<a href="chap6.html#X784E1255874FCA8A"><b>6.1-8</b></a>), <code class="func">ShortenedCode</code> (<a href="chap6.html#X81CBEAFF7B9DE6EF"><b>6.1-9</b></a>), <code class="func">LengthenedCode</code> (<a href="chap6.html#X7A5D5419846FC867"><b>6.1-10</b></a>), <code class="func">ResidueCode</code> (<a href="chap6.html#X809376187C1525AA"><b>6.1-12</b></a>), <code class="func">ConstructionBCode</code> (<a href="chap6.html#X7E92DC9581F96594"><b>6.1-13</b></a>), <code class="func">DualCode</code> (<a href="chap6.html#X799B12F085ACB609"><b>6.1-14</b></a>), <code class="func">ConversionFieldCode</code> (<a href="chap6.html#X81FE1F387DFCCB22"><b>6.1-15</b></a>), <code class="func">ConstantWeightSubcode</code> (<a href="chap6.html#X873EA5EE85699832"><b>6.1-18</b></a>), <code class="func">StandardFormCode</code> (<a href="chap6.html#X7AA203A380BC4C79"><b>6.1-19</b></a>) and <code class="func">CosetCode</code> (<a href="chap6.html#X8799F4BF81B0842B"><b>6.1-17</b></a>)). In Section <a href="chap6.html#X7964BF0081CC8352"><b>6.2</b></a>, we describe functions that generate a new code out of two codes (see <code class="func">DirectSumCode</code> (<a href="chap6.html#X79E00D3A8367D65A"><b>6.2-1</b></a>), <code class="func">UUVCode</code> (<a href="chap6.html#X86E9D6DE7F1A07E6"><b>6.2-2</b></a>), <code class="func">DirectProductCode</code> (<a href="chap6.html#X7BFBBA5784C293C1"><b>6.2-3</b></a>), <code class="func">IntersectionCode</code> (<a href="chap6.html#X78F0B1BC81FB109C"><b>6.2-4</b></a>) and <code class="func">UnionCode</code> (<a href="chap6.html#X8228A1F57A29B8F4"><b>6.2-5</b></a>)).</p>

<p><a id="X8271A4697FDA97B2" name="X8271A4697FDA97B2"></a></p>

<h4>6.1 <span class="Heading">
Functions that Generate a New Code from a Given Code
</span></h4>

<p><a id="X794679BE7F9EB5C1" name="X794679BE7F9EB5C1"></a></p>

<h5>6.1-1 ExtendedCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ExtendedCode</code>( <var class="Arg">C[, i]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ExtendedCode</code> extends the code <var class="Arg">C</var> <var class="Arg">i</var> times and returns the result. <var class="Arg">i</var> is equal to 1 by default. Extending is done by adding a parity check bit after the last coordinate. The coordinates of all codewords now add up to zero. In the binary case, each codeword has even weight.</p>

<p>The word length increases by <var class="Arg">i</var>. The size of the code remains the same. In the binary case, the minimum distance increases by one if it was odd. In other cases, that is not always true.</p>

<p>A cyclic code in general is no longer cyclic after extending.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap&gt; C2 := ExtendedCode( C1 );
a linear [8,4,4]2 extended code
gap&gt; IsEquivalent( C2, ReedMullerCode( 1, 3 ) );
true
gap&gt; List( AsSSortedList( C2 ), WeightCodeword );
[ 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8 ]
gap&gt; C3 := EvenWeightSubcode( C1 );
a linear [7,3,4]2..3 even weight subcode 
</pre></td></tr></table>

<p>To undo extending, call <code class="code">PuncturedCode</code> (see <code class="func">PuncturedCode</code> (<a href="chap6.html#X7E6E4DDA79574FDB"><b>6.1-2</b></a>)). The function <code class="code">EvenWeightSubcode</code> (see <code class="func">EvenWeightSubcode</code> (<a href="chap6.html#X87691AB67FF5621B"><b>6.1-3</b></a>)) also returns a related code with only even weights, but without changing its word length.</p>

<p><a id="X7E6E4DDA79574FDB" name="X7E6E4DDA79574FDB"></a></p>

<h5>6.1-2 PuncturedCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; PuncturedCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PuncturedCode</code> punctures <var class="Arg">C</var> in the last column, and returns the result. Puncturing is done simply by cutting off the last column from each codeword. This means the word length decreases by one. The minimum distance in general also decrease by one.</p>

<p>This command can also be called with the syntax <code class="code">PuncturedCode( C, L )</code>. In this case, <code class="code">PuncturedCode</code> punctures <var class="Arg">C</var> in the columns specified by <var class="Arg">L</var>, a list of integers. All columns specified by <var class="Arg">L</var> are omitted from each codeword. If l is the length of <var class="Arg">L</var> (so the number of removed columns), the word length decreases by l. The minimum distance can also decrease by l or less.</p>

<p>Puncturing a cyclic code in general results in a non-cyclic code. If the code is punctured in all the columns where a word of minimal weight is unequal to zero, the dimension of the resulting code decreases.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := BCHCode( 15, 5, GF(2) );
a cyclic [15,7,5]3..5 BCH code, delta=5, b=1 over GF(2)
gap&gt; C2 := PuncturedCode( C1 );
a linear [14,7,4]3..5 punctured code
gap&gt; ExtendedCode( C2 ) = C1;
false
gap&gt; PuncturedCode( C1, [1,2,3,4,5,6,7] );
a linear [8,7,1]1 punctured code
gap&gt; PuncturedCode( WholeSpaceCode( 4, GF(5) ) );
a linear [3,3,1]0 punctured code  # The dimension decreased from 4 to 3 
</pre></td></tr></table>

<p><code class="code">ExtendedCode</code> extends the code again (see <code class="func">ExtendedCode</code> (<a href="chap6.html#X794679BE7F9EB5C1"><b>6.1-1</b></a>)), although in general this does not result in the old code.</p>

<p><a id="X87691AB67FF5621B" name="X87691AB67FF5621B"></a></p>

<h5>6.1-3 EvenWeightSubcode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; EvenWeightSubcode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">EvenWeightSubcode</code> returns the even weight subcode of <var class="Arg">C</var>, consisting of all codewords of <var class="Arg">C</var> with even weight. If <var class="Arg">C</var> is a linear code and contains words of odd weight, the resulting code has a dimension of one less. The minimum distance always increases with one if it was odd. If <var class="Arg">C</var> is a binary cyclic code, and g(x) is its generator polynomial, the even weight subcode either has generator polynomial g(x) (if g(x) is divisible by x-1) or g(x)* (x-1) (if no factor x-1 was present in g(x)). So the even weight subcode is again cyclic.</p>

<p>Of course, if all codewords of <var class="Arg">C</var> are already of even weight, the returned code is equal to <var class="Arg">C</var>.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := EvenWeightSubcode( BCHCode( 8, 4, GF(3) ) );
an (8,33,4..8)3..8 even weight subcode
gap&gt; List( AsSSortedList( C1 ), WeightCodeword );
[ 0, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4, 6, 4, 4, 8, 6, 4, 6, 8, 4, 4, 
  4, 6, 4, 6, 8, 4, 6, 8 ]
gap&gt; EvenWeightSubcode( ReedMullerCode( 1, 3 ) );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2) 
</pre></td></tr></table>

<p><code class="code">ExtendedCode</code> also returns a related code of only even weights, but without reducing its dimension (see <code class="func">ExtendedCode</code> (<a href="chap6.html#X794679BE7F9EB5C1"><b>6.1-1</b></a>)).</p>

<p><a id="X79577EB27BE8524B" name="X79577EB27BE8524B"></a></p>

<h5>6.1-4 PermutedCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; PermutedCode</code>( <var class="Arg">C, L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PermutedCode</code> returns <var class="Arg">C</var> after column permutations. <var class="Arg">L</var> (in GAP disjoint cycle notation) is the permutation to be executed on the columns of <var class="Arg">C</var>. If <var class="Arg">C</var> is cyclic, the result in general is no longer cyclic. If a permutation results in the same code as <var class="Arg">C</var>, this permutation belongs to the automorphism group of <var class="Arg">C</var> (see <code class="func">AutomorphismGroup</code> (<a href="chap4.html#X87677B0787B4461A"><b>4.4-3</b></a>)). In any case, the returned code is equivalent to <var class="Arg">C</var> (see <code class="func">IsEquivalent</code> (<a href="chap4.html#X843034687D9C75B0"><b>4.4-1</b></a>)).</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := PuncturedCode( ReedMullerCode( 1, 4 ) );
a linear [15,5,7]5 punctured code
gap&gt; C2 := BCHCode( 15, 7, GF(2) );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap&gt; C2 = C1;
false
gap&gt; p := CodeIsomorphism( C1, C2 );
( 2, 4,14, 9,13, 7,11,10, 6, 8,12, 5)
gap&gt; C3 := PermutedCode( C1, p );
a linear [15,5,7]5 permuted code
gap&gt; C2 = C3;
true 
</pre></td></tr></table>

<p><a id="X87E5849784BC60D2" name="X87E5849784BC60D2"></a></p>

<h5>6.1-5 ExpurgatedCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ExpurgatedCode</code>( <var class="Arg">C, L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ExpurgatedCode</code> expurgates the code <var class="Arg">C</var>&gt; by throwing away codewords in list <var class="Arg">L</var>. <var class="Arg">C</var> must be a linear code. <var class="Arg">L</var> must be a list of codeword input. The generator matrix of the new code no longer is a basis for the codewords specified by <var class="Arg">L</var>. Since the returned code is still linear, it is very likely that, besides the words of <var class="Arg">L</var>, more codewords of <var class="Arg">C</var> are no longer in the new code.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := HammingCode( 4 );; WeightDistribution( C1 );
[ 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap&gt; L := Filtered( AsSSortedList(C1), i -&gt; WeightCodeword(i) = 3 );;
gap&gt; C2 := ExpurgatedCode( C1, L );
a linear [15,4,3..4]5..11 code, expurgated with 7 word(s)
gap&gt; WeightDistribution( C2 );
[ 1, 0, 0, 0, 14, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] 
</pre></td></tr></table>

<p>This function does not work on non-linear codes. For removing words from a non-linear code, use <code class="code">RemovedElementsCode</code> (see <code class="func">RemovedElementsCode</code> (<a href="chap6.html#X7B0A6E1F82686B43"><b>6.1-7</b></a>)). For expurgating a code of all words of odd weight, use `EvenWeightSubcode' (see <code class="func">EvenWeightSubcode</code> (<a href="chap6.html#X87691AB67FF5621B"><b>6.1-3</b></a>)).</p>

<p><a id="X8134BE2B8478BE8A" name="X8134BE2B8478BE8A"></a></p>

<h5>6.1-6 AugmentedCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; AugmentedCode</code>( <var class="Arg">C, L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AugmentedCode</code> returns <var class="Arg">C</var> after augmenting. <var class="Arg">C</var> must be a linear code, <var class="Arg">L</var> must be a list of codeword inputs. The generator matrix of the new code is a basis for the codewords specified by <var class="Arg">L</var> as well as the words that were already in code <var class="Arg">C</var>. Note that the new code in general will consist of more words than only the codewords of <var class="Arg">C</var> and the words <var class="Arg">L</var>. The returned code is also a linear code.</p>

<p>This command can also be called with the syntax <code class="code">AugmentedCode(C)</code>. When called without a list of codewords, <code class="code">AugmentedCode</code> returns <var class="Arg">C</var> after adding the all-ones vector to the generator matrix. <var class="Arg">C</var> must be a linear code. If the all-ones vector was already in the code, nothing happens and a copy of the argument is returned. If <var class="Arg">C</var> is a binary code which does not contain the all-ones vector, the complement of all codewords is added.</p>


<table class="example">
<tr><td><pre>
gap&gt; C31 := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap&gt; C32 := AugmentedCode(C31,["00000011","00000101","00010001"]);
a linear [8,7,1..2]1 code, augmented with 3 word(s)
gap&gt; C32 = ReedMullerCode( 2, 3 );
true 
gap&gt; C1 := CordaroWagnerCode(6);
a linear [6,2,4]2..3 Cordaro-Wagner code over GF(2)
gap&gt; Codeword( [0,0,1,1,1,1] ) in C1;
true
gap&gt; C2 := AugmentedCode( C1 );
a linear [6,3,1..2]2..3 code, augmented with 1 word(s)
gap&gt; Codeword( [1,1,0,0,0,0] ) in C2;
true
</pre></td></tr></table>

<p>The function <code class="code">AddedElementsCode</code> adds elements to the codewords instead of adding them to the basis (see <code class="func">AddedElementsCode</code> (<a href="chap6.html#X784E1255874FCA8A"><b>6.1-8</b></a>)).</p>

<p><a id="X7B0A6E1F82686B43" name="X7B0A6E1F82686B43"></a></p>

<h5>6.1-7 RemovedElementsCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; RemovedElementsCode</code>( <var class="Arg">C, L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">RemovedElementsCode</code> returns code <var class="Arg">C</var> after removing a list of codewords <var class="Arg">L</var> from its elements. <var class="Arg">L</var> must be a list of codeword input. The result is an unrestricted code.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := HammingCode( 4 );; WeightDistribution( C1 );
[ 1, 0, 0, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap&gt; L := Filtered( AsSSortedList(C1), i -&gt; WeightCodeword(i) = 3 );;
gap&gt; C2 := RemovedElementsCode( C1, L );
a (15,2013,3..15)2..15 code with 35 word(s) removed
gap&gt; WeightDistribution( C2 );
[ 1, 0, 0, 0, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1 ]
gap&gt; MinimumDistance( C2 );
3        # C2 is not linear, so the minimum weight does not have to
         # be equal to the minimum distance 
</pre></td></tr></table>

<p>Adding elements to a code is done by the function <code class="code">AddedElementsCode</code> (see <code class="func">AddedElementsCode</code> (<a href="chap6.html#X784E1255874FCA8A"><b>6.1-8</b></a>)). To remove codewords from the base of a linear code, use <code class="code">ExpurgatedCode</code> (see <code class="func">ExpurgatedCode</code> (<a href="chap6.html#X87E5849784BC60D2"><b>6.1-5</b></a>)).</p>

<p><a id="X784E1255874FCA8A" name="X784E1255874FCA8A"></a></p>

<h5>6.1-8 AddedElementsCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; AddedElementsCode</code>( <var class="Arg">C, L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AddedElementsCode</code> returns code <var class="Arg">C</var> after adding a list of codewords <var class="Arg">L</var> to its elements. <var class="Arg">L</var> must be a list of codeword input. The result is an unrestricted code.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := NullCode( 6, GF(2) );
a cyclic [6,0,6]6 nullcode over GF(2)
gap&gt; C2 := AddedElementsCode( C1, [ "111111" ] );
a (6,2,1..6)3 code with 1 word(s) added
gap&gt; IsCyclicCode( C2 );
true
gap&gt; C3 := AddedElementsCode( C2, [ "101010", "010101" ] );
a (6,4,1..6)2 code with 2 word(s) added
gap&gt; IsCyclicCode( C3 );
true 
</pre></td></tr></table>

<p>To remove elements from a code, use <code class="code">RemovedElementsCode</code> (see <code class="func">RemovedElementsCode</code> (<a href="chap6.html#X7B0A6E1F82686B43"><b>6.1-7</b></a>)). To add elements to the base of a linear code, use <code class="code">AugmentedCode</code> (see <code class="func">AugmentedCode</code> (<a href="chap6.html#X8134BE2B8478BE8A"><b>6.1-6</b></a>)).</p>

<p><a id="X81CBEAFF7B9DE6EF" name="X81CBEAFF7B9DE6EF"></a></p>

<h5>6.1-9 ShortenedCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ShortenedCode</code>( <var class="Arg">C[, L]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ShortenedCode( C )</code> returns the code <var class="Arg">C</var> shortened by taking a cross section. If <var class="Arg">C</var> is a linear code, this is done by removing all codewords that start with a non-zero entry, after which the first column is cut off. If <var class="Arg">C</var> was a [n,k,d] code, the shortened code generally is a [n-1,k-1,d] code. It is possible that the dimension remains the same; it is also possible that the minimum distance increases.</p>

<p>If <var class="Arg">C</var> is a non-linear code, <code class="code">ShortenedCode</code> first checks which finite field element occurs most often in the first column of the codewords. The codewords not starting with this element are removed from the code, after which the first column is cut off. The resulting shortened code has at least the same minimum distance as <var class="Arg">C</var>.</p>

<p>This command can also be called using the syntax <code class="code">ShortenedCode(C,L)</code>. When called in this format, <code class="code">ShortenedCode</code> repeats the shortening process on each of the columns specified by <var class="Arg">L</var>. <var class="Arg">L</var> therefore is a list of integers. The column numbers in <var class="Arg">L</var> are the numbers as they are before the shortening process. If <var class="Arg">L</var> has l entries, the returned code has a word length of l positions shorter than <var class="Arg">C</var>.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := HammingCode( 4 );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap&gt; C2 := ShortenedCode( C1 );
a linear [14,10,3]2 shortened code
gap&gt; C3 := ElementsCode( ["1000", "1101", "0011" ], GF(2) );
a (4,3,1..4)2 user defined unrestricted code over GF(2)
gap&gt; MinimumDistance( C3 );
2
gap&gt; C4 := ShortenedCode( C3 );
a (3,2,2..3)1..2 shortened code
gap&gt; AsSSortedList( C4 );
[ [ 0 0 0 ], [ 1 0 1 ] ]
gap&gt; C5 := HammingCode( 5, GF(2) );
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
gap&gt; C6 := ShortenedCode( C5, [ 1, 2, 3 ] );
a linear [28,23,3]2 shortened code
gap&gt; OptimalityLinearCode( C6 );
0
</pre></td></tr></table>

<p>The function <code class="code">LengthenedCode</code> lengthens the code again (only for linear codes), see <code class="func">LengthenedCode</code> (<a href="chap6.html#X7A5D5419846FC867"><b>6.1-10</b></a>). In general, this is not exactly the inverse function.</p>

<p><a id="X7A5D5419846FC867" name="X7A5D5419846FC867"></a></p>

<h5>6.1-10 LengthenedCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; LengthenedCode</code>( <var class="Arg">C[, i]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">LengthenedCode( C )</code> returns the code <var class="Arg">C</var> lengthened. <var class="Arg">C</var> must be a linear code. First, the all-ones vector is added to the generator matrix (see <code class="func">AugmentedCode</code> (<a href="chap6.html#X8134BE2B8478BE8A"><b>6.1-6</b></a>)). If the all-ones vector was already a codeword, nothing happens to the code. Then, the code is extended <var class="Arg">i</var> times (see <code class="func">ExtendedCode</code> (<a href="chap6.html#X794679BE7F9EB5C1"><b>6.1-1</b></a>)). <var class="Arg">i</var> is equal to 1 by default. If <var class="Arg">C</var> was an [n,k] code, the new code generally is a [n+i,k+1] code.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := CordaroWagnerCode( 5 );
a linear [5,2,3]2 Cordaro-Wagner code over GF(2)
gap&gt; C2 := LengthenedCode( C1 );
a linear [6,3,2]2..3 code, lengthened with 1 column(s) 
</pre></td></tr></table>

<p><code class="code">ShortenedCode</code>' shortens the code, see <code class="func">ShortenedCode</code> (<a href="chap6.html#X81CBEAFF7B9DE6EF"><b>6.1-9</b></a>). In general, this is not exactly the inverse function.</p>

<p><a id="X7982D699803ECD0F" name="X7982D699803ECD0F"></a></p>

<h5>6.1-11 SubCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; SubCode</code>( <var class="Arg">C[, s]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function <code class="code">SubCode</code> returns a subcode of <var class="Arg">C</var> by taking the first k - s rows of the generator matrix of <var class="Arg">C</var>, where k is the dimension of <var class="Arg">C</var>. The interger <var class="Arg">s</var> may be omitted and in this case it is assumed as 1.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := BCHCode(31,11);
a cyclic [31,11,11]7..11 BCH code, delta=11, b=1 over GF(2)
gap&gt; S1:= SubCode(C);
a linear [31,10,11]7..13 subcode
gap&gt; WeightDistribution(S1);
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 120, 190, 0, 0, 272, 255, 0, 0, 120, 66,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
gap&gt; S2:= SubCode(C, 8);
a linear [31,3,11]14..20 subcode
gap&gt; History(S2);
[ "a linear [31,3,11]14..20 subcode of",
  "a cyclic [31,11,11]7..11 BCH code, delta=11, b=1 over GF(2)" ]
gap&gt; WeightDistribution(S2);
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0 ]
</pre></td></tr></table>

<p><a id="X809376187C1525AA" name="X809376187C1525AA"></a></p>

<h5>6.1-12 ResidueCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ResidueCode</code>( <var class="Arg">C[, c]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">ResidueCode</code> takes a codeword <var class="Arg">c</var> of <var class="Arg">C</var> (if <var class="Arg">c</var> is omitted, a codeword of minimal weight is used). It removes this word and all its linear combinations from the code and then punctures the code in the coordinates where <var class="Arg">c</var> is unequal to zero. The resulting code is an [n-w, k-1, d-lfloor w*(q-1)/q rfloor ] code. <var class="Arg">C</var> must be a linear code and <var class="Arg">c</var> must be non-zero. If <var class="Arg">c</var> is not in <var class="Arg"></var> then no change is made to <var class="Arg">C</var>.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := BCHCode( 15, 7 );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap&gt; C2 := ResidueCode( C1 );
a linear [8,4,4]2 residue code
gap&gt; c := Codeword( [ 0,0,0,1,0,0,1,1,0,1,0,1,1,1,1 ], C1);;
gap&gt; C3 := ResidueCode( C1, c );
a linear [7,4,3]1 residue code 
</pre></td></tr></table>

<p><a id="X7E92DC9581F96594" name="X7E92DC9581F96594"></a></p>

<h5>6.1-13 ConstructionBCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ConstructionBCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">ConstructionBCode</code> takes a binary linear code <var class="Arg">C</var> and calculates the minimum distance of the dual of <var class="Arg">C</var> (see <code class="func">DualCode</code> (<a href="chap6.html#X799B12F085ACB609"><b>6.1-14</b></a>)). It then removes the columns of the parity check matrix of <var class="Arg">C</var> where a codeword of the dual code of minimal weight has coordinates unequal to zero. The resulting matrix is a parity check matrix for an [n-dd, k-dd+1, &gt;= d] code, where dd is the minimum distance of the dual of <var class="Arg">C</var>.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := ReedMullerCode( 2, 5 );
a linear [32,16,8]6 Reed-Muller (2,5) code over GF(2)
gap&gt; C2 := ConstructionBCode( C1 );
a linear [24,9,8]5..10 Construction B (8 coordinates)
gap&gt; BoundsMinimumDistance( 24, 9, GF(2) );
rec( n := 24, k := 9, q := 2, references := rec(  ), 
  construction := [ [ Operation "UUVCode" ], 
      [ [ [ Operation "UUVCode" ], [ [ [ Operation "DualCode" ], 
                      [ [ [ Operation "RepetitionCode" ], [ 6, 2 ] ] ] ], 
                  [ [ Operation "CordaroWagnerCode" ], [ 6 ] ] ] ], 
          [ [ Operation "CordaroWagnerCode" ], [ 12 ] ] ] ], lowerBound := 8, 
  lowerBoundExplanation := [ "Lb(24,9)=8, u u+v construction of C1 and C2:", 
      "Lb(12,7)=4, u u+v construction of C1 and C2:", 
      "Lb(6,5)=2, dual of the repetition code", 
      "Lb(6,2)=4, Cordaro-Wagner code", "Lb(12,2)=8, Cordaro-Wagner code" ], 
  upperBound := 8, 
  upperBoundExplanation := [ "Ub(24,9)=8, otherwise construction B would 
                             contradict:", "Ub(18,4)=8, Griesmer bound" ] )
# so C2 is optimal
</pre></td></tr></table>

<p><a id="X799B12F085ACB609" name="X799B12F085ACB609"></a></p>

<h5>6.1-14 DualCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; DualCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">DualCode</code> returns the dual code of <var class="Arg">C</var>. The dual code consists of all codewords that are orthogonal to the codewords of <var class="Arg">C</var>. If <var class="Arg">C</var> is a linear code with generator matrix G, the dual code has parity check matrix G (or if <var class="Arg">C</var> has parity check matrix H, the dual code has generator matrix H). So if <var class="Arg">C</var> is a linear [n, k] code, the dual code of <var class="Arg">C</var> is a linear [n, n-k] code. If <var class="Arg">C</var> is a cyclic code with generator polynomial g(x), the dual code has the reciprocal polynomial of g(x) as check polynomial.</p>

<p>The dual code is always a linear code, even if <var class="Arg">C</var> is non-linear.</p>

<p>If a code <var class="Arg">C</var> is equal to its dual code, it is called <em>self-dual</em>.</p>


<table class="example">
<tr><td><pre>
gap&gt; R := ReedMullerCode( 1, 3 );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap&gt; RD := DualCode( R );
a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap&gt; R = RD;
true
gap&gt; N := WholeSpaceCode( 7, GF(4) );
a cyclic [7,7,1]0 whole space code over GF(4)
gap&gt; DualCode( N ) = NullCode( 7, GF(4) );
true 
</pre></td></tr></table>

<p><a id="X81FE1F387DFCCB22" name="X81FE1F387DFCCB22"></a></p>

<h5>6.1-15 ConversionFieldCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ConversionFieldCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ConversionFieldCode</code> returns the code obtained from <var class="Arg">C</var> after converting its field. If the field of <var class="Arg">C</var> is GF(q^m), the returned code has field GF(q). Each symbol of every codeword is replaced by a concatenation of m symbols from GF(q). If <var class="Arg">C</var> is an (n, M, d_1) code, the returned code is a (n* m, M, d_2) code, where d_2 &gt; d_1.</p>

<p>See also <code class="func">HorizontalConversionFieldMat</code> (<a href="chap7.html#X8033E9A67BA155C8"><b>7.3-10</b></a>).</p>


<table class="example">
<tr><td><pre>
gap&gt; R := RepetitionCode( 4, GF(4) );
a cyclic [4,1,4]3 repetition code over GF(4)
gap&gt; R2 := ConversionFieldCode( R );
a linear [8,2,4]3..4 code, converted to basefield GF(2)
gap&gt; Size( R ) = Size( R2 );
true
gap&gt; GeneratorMat( R );
[ [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ]
gap&gt; GeneratorMat( R2 );
[ [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ],
  [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ] 
</pre></td></tr></table>

<p><a id="X82D18907800FE3D9" name="X82D18907800FE3D9"></a></p>

<h5>6.1-16 TraceCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; TraceCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: <var class="Arg">C</var> is a linear code defined over an extension E of <var class="Arg">F</var> (<var class="Arg">F</var> is the ``base field'')</p>

<p>Output: The linear code generated by Tr_E/F(c), for all c in C.</p>

<p><code class="code">TraceCode</code> returns the image of the code <var class="Arg">C</var> under the trace map. If the field of <var class="Arg">C</var> is GF(q^m), the returned code has field GF(q).</p>

<p>Very slow. It does not seem to be easy to related the parameters of the trace code to the original except in the ``Galois closed'' case.</p>


<table class="example">
<tr><td><pre>
gap&gt; C:=RandomLinearCode(10,4,GF(4)); MinimumDistance(C);
a  [10,4,?] randomly generated code over GF(4)
5
gap&gt; trC:=TraceCode(C,GF(2)); MinimumDistance(trC);
a linear [10,7,1]1..3 user defined unrestricted code over GF(2)
1

</pre></td></tr></table>

<p><a id="X8799F4BF81B0842B" name="X8799F4BF81B0842B"></a></p>

<h5>6.1-17 CosetCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; CosetCode</code>( <var class="Arg">C, w</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CosetCode</code> returns the coset of a code <var class="Arg">C</var> with respect to word <var class="Arg">w</var>. <var class="Arg">w</var> must be of the codeword type. Then, <var class="Arg">w</var> is added to each codeword of <var class="Arg">C</var>, yielding the elements of the new code. If <var class="Arg">C</var> is linear and <var class="Arg">w</var> is an element of <var class="Arg">C</var>, the new code is equal to <var class="Arg">C</var>, otherwise the new code is an unrestricted code.</p>

<p>Generating a coset is also possible by simply adding the word <var class="Arg">w</var> to <var class="Arg">C</var>. See <a href="chap4.html#X832DA51986A3882C"><b>4.2</b></a>.</p>


<table class="example">
<tr><td><pre>
gap&gt; H := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap&gt; c := Codeword("1011011");; c in H;
false
gap&gt; C := CosetCode(H, c);
a (7,16,3)1 coset code
gap&gt; List(AsSSortedList(C), el-&gt; Syndrome(H, el));
[ [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ],
  [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ],
  [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ], [ 1 1 1 ] ]
# All elements of the coset have the same syndrome in H 
</pre></td></tr></table>

<p><a id="X873EA5EE85699832" name="X873EA5EE85699832"></a></p>

<h5>6.1-18 ConstantWeightSubcode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ConstantWeightSubcode</code>( <var class="Arg">C, w</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ConstantWeightSubcode</code> returns the subcode of <var class="Arg">C</var> that only has codewords of weight <var class="Arg">w</var>. The resulting code is a non-linear code, because it does not contain the all-zero vector.</p>

<p>This command also can be called with the syntax <code class="code">ConstantWeightSubcode(C)</code> In this format, <code class="code">ConstantWeightSubcode</code> returns the subcode of <var class="Arg">C</var> consisting of all minimum weight codewords of <var class="Arg">C</var>.</p>

<p><code class="code">ConstantWeightSubcode</code> first checks if Leon's binary <code class="code">wtdist</code> exists on your computer (in the default directory). If it does, then this program is called. Otherwise, the constant weight subcode is computed using a GAP program which checks each codeword in <var class="Arg">C</var> to see if it is of the desired weight.</p>


<table class="example">
<tr><td><pre>
gap&gt; N := NordstromRobinsonCode();; WeightDistribution(N);
[ 1, 0, 0, 0, 0, 0, 112, 0, 30, 0, 112, 0, 0, 0, 0, 0, 1 ]
gap&gt; C := ConstantWeightSubcode(N, 8);
a (16,30,6..16)5..8 code with codewords of weight 8
gap&gt; WeightDistribution(C);
[ 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0 ] 
gap&gt; eg := ExtendedTernaryGolayCode();; WeightDistribution(eg);
[ 1, 0, 0, 0, 0, 0, 264, 0, 0, 440, 0, 0, 24 ]
gap&gt; C := ConstantWeightSubcode(eg);
a (12,264,6..12)3..6 code with codewords of weight 6
gap&gt; WeightDistribution(C);
[ 0, 0, 0, 0, 0, 0, 264, 0, 0, 0, 0, 0, 0 ] 
</pre></td></tr></table>

<p><a id="X7AA203A380BC4C79" name="X7AA203A380BC4C79"></a></p>

<h5>6.1-19 StandardFormCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; StandardFormCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">StandardFormCode</code> returns <var class="Arg">C</var> after putting it in standard form. If <var class="Arg">C</var> is a non-linear code, this means the elements are organized using lexicographical order. This means they form a legal GAP `Set'.</p>

<p>If <var class="Arg">C</var> is a linear code, the generator matrix and parity check matrix are put in standard form. The generator matrix then has an identity matrix in its left part, the parity check matrix has an identity matrix in its right part. Although <strong class="pkg">GUAVA</strong> always puts both matrices in a standard form using <code class="code">BaseMat</code>, this never alters the code. <code class="code">StandardFormCode</code> even applies column permutations if unavoidable, and thereby changes the code. The column permutations are recorded in the construction history of the new code (see <code class="func">Display</code> (<a href="chap4.html#X83A5C59278E13248"><b>4.6-3</b></a>)). <var class="Arg">C</var> and the new code are of course equivalent.</p>

<p>If <var class="Arg">C</var> is a cyclic code, its generator matrix cannot be put in the usual upper triangular form, because then it would be inconsistent with the generator polynomial. The reason is that generating the elements from the generator matrix would result in a different order than generating the elements from the generator polynomial. This is an unwanted effect, and therefore <code class="code">StandardFormCode</code> just returns a copy of <var class="Arg">C</var> for cyclic codes.</p>


<table class="example">
<tr><td><pre>
gap&gt; G := GeneratorMatCode( Z(2) * [ [0,1,1,0], [0,1,0,1], [0,0,1,1] ], 
          "random form code", GF(2) );
a linear [4,2,1..2]1..2 random form code over GF(2)
gap&gt; Codeword( GeneratorMat( G ) );
[ [ 0 1 0 1 ], [ 0 0 1 1 ] ]
gap&gt; Codeword( GeneratorMat( StandardFormCode( G ) ) );
[ [ 1 0 0 1 ], [ 0 1 0 1 ] ] 
</pre></td></tr></table>

<p><a id="X7EF49A257D6DB53B" name="X7EF49A257D6DB53B"></a></p>

<h5>6.1-20 PiecewiseConstantCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; PiecewiseConstantCode</code>( <var class="Arg">part, wts[, F]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PiecewiseConstantCode</code> returns a code with length n = sum n_i, where <var class="Arg">part</var>=[ n_1, dots, n_k ]. <var class="Arg">wts</var> is a list of <var class="Arg">constraints</var> w=(w_1,...,w_k), each of length k, where 0 &lt;= w_i &lt;= n_i. The default field is GF(2).</p>

<p>A constraint is a list of integers, and a word c = ( c_1, dots, c_k ) (according to <var class="Arg">part</var>, i.e., each c_i is a subword of length n_i) is in the resulting code if and only if, for some constraint w in <var class="Arg">wts</var>, |c_i| = w_i for all 1 &lt;= i &lt;= k, where | ...| denotes the Hamming weight.</p>

<p>An example might make things clearer:</p>


<table class="example">
<tr><td><pre>
gap&gt; PiecewiseConstantCode( [ 2, 3 ],
     [ [ 0, 0 ], [ 0, 3 ], [ 1, 0 ], [ 2, 2 ] ],GF(2) );
the C code programs are compiled, so using Leon's binary....
the C code programs are compiled, so using Leon's binary....
the C code programs are compiled, so using Leon's binary....
the C code programs are compiled, so using Leon's binary....
a (5,7,1..5)1..5 piecewise constant code over GF(2)
gap&gt; AsSSortedList(last);
[ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 0 0 ], [ 1 0 0 0 0 ], 
  [ 1 1 0 1 1 ], [ 1 1 1 0 1 ], [ 1 1 1 1 0 ] ]
gap&gt;

</pre></td></tr></table>

<p>The first constraint is satisfied by codeword 1, the second by codeword 2, the third by codewords 3 and 4, and the fourth by codewords 5, 6 and 7.</p>

<p><a id="X7964BF0081CC8352" name="X7964BF0081CC8352"></a></p>

<h4>6.2 <span class="Heading">
Functions that Generate a New Code from Two or More Given Codes
</span></h4>

<p><a id="X79E00D3A8367D65A" name="X79E00D3A8367D65A"></a></p>

<h5>6.2-1 DirectSumCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; DirectSumCode</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">DirectSumCode</code> returns the direct sum of codes <var class="Arg">C1</var> and <var class="Arg">C2</var>. The direct sum code consists of every codeword of <var class="Arg">C1</var> concatenated by every codeword of <var class="Arg">C2</var>. Therefore, if <var class="Arg">Ci</var> was a (n_i,M_i,d_i) code, the result is a (n_1+n_2,M_1*M_2,min(d_1,d_2)) code.</p>

<p>If both <var class="Arg">C1</var> and <var class="Arg">C2</var> are linear codes, the result is also a linear code. If one of them is non-linear, the direct sum is non-linear too. In general, a direct sum code is not cyclic.</p>

<p>Performing a direct sum can also be done by adding two codes (see Section <a href="chap4.html#X832DA51986A3882C"><b>4.2</b></a>). Another often used method is the `u, u+v'-construction, described in <code class="func">UUVCode</code> (<a href="chap6.html#X86E9D6DE7F1A07E6"><b>6.2-2</b></a>).</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := ElementsCode( [ [1,0], [4,5] ], GF(7) );;
gap&gt; C2 := ElementsCode( [ [0,0,0], [3,3,3] ], GF(7) );;
gap&gt; D := DirectSumCode(C1, C2);;
gap&gt; AsSSortedList(D);
[ [ 1 0 0 0 0 ], [ 1 0 3 3 3 ], [ 4 5 0 0 0 ], [ 4 5 3 3 3 ] ]
gap&gt; D = C1 + C2;   # addition = direct sum
true 
</pre></td></tr></table>

<p><a id="X86E9D6DE7F1A07E6" name="X86E9D6DE7F1A07E6"></a></p>

<h5>6.2-2 UUVCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; UUVCode</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UUVCode</code> returns the so-called (u|u+v) construction applied to <var class="Arg">C1</var> and <var class="Arg">C2</var>. The resulting code consists of every codeword u of <var class="Arg">C1</var> concatenated by the sum of u and every codeword v of <var class="Arg">C2</var>. If <var class="Arg">C1</var> and <var class="Arg">C2</var> have different word lengths, sufficient zeros are added to the shorter code to make this sum possible. If <var class="Arg">Ci</var> is a (n_i,M_i,d_i) code, the result is an (n_1+max(n_1,n_2),M_1* M_2,min(2* d_1,d_2)) code.</p>

<p>If both <var class="Arg">C1</var> and <var class="Arg">C2</var> are linear codes, the result is also a linear code. If one of them is non-linear, the UUV sum is non-linear too. In general, a UUV sum code is not cyclic.</p>

<p>The function <code class="code">DirectSumCode</code> returns another sum of codes (see <code class="func">DirectSumCode</code> (<a href="chap6.html#X79E00D3A8367D65A"><b>6.2-1</b></a>)).</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := EvenWeightSubcode(WholeSpaceCode(4, GF(2)));
a cyclic [4,3,2]1 even weight subcode
gap&gt; C2 := RepetitionCode(4, GF(2));
a cyclic [4,1,4]2 repetition code over GF(2)
gap&gt; R := UUVCode(C1, C2);
a linear [8,4,4]2 U U+V construction code
gap&gt; R = ReedMullerCode(1,3);
true 
</pre></td></tr></table>

<p><a id="X7BFBBA5784C293C1" name="X7BFBBA5784C293C1"></a></p>

<h5>6.2-3 DirectProductCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; DirectProductCode</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">DirectProductCode</code> returns the direct product of codes <var class="Arg">C1</var> and <var class="Arg">C2</var>. Both must be linear codes. Suppose <var class="Arg">Ci</var> has generator matrix G_i. The direct product of <var class="Arg">C1</var> and <var class="Arg">C2</var> then has the Kronecker product of G_1 and G_2 as the generator matrix (see the GAP command <code class="code">KroneckerProduct</code>).</p>

<p>If <var class="Arg">Ci</var> is a [n_i, k_i, d_i] code, the direct product then is an [n_1* n_2,k_1* k_2,d_1* d_2] code.</p>


<table class="example">
<tr><td><pre>
gap&gt; L1 := LexiCode(10, 4, GF(2));
a linear [10,5,4]2..4 lexicode over GF(2)
gap&gt; L2 := LexiCode(8, 3, GF(2));
a linear [8,4,3]2..3 lexicode over GF(2)
gap&gt; D := DirectProductCode(L1, L2);
a linear [80,20,12]20..45 direct product code 
</pre></td></tr></table>

<p><a id="X78F0B1BC81FB109C" name="X78F0B1BC81FB109C"></a></p>

<h5>6.2-4 IntersectionCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; IntersectionCode</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IntersectionCode</code> returns the intersection of codes <var class="Arg">C1</var> and <var class="Arg">C2</var>. This code consists of all codewords that are both in <var class="Arg">C1</var> and <var class="Arg">C2</var>. If both codes are linear, the result is also linear. If both are cyclic, the result is also cyclic.</p>


<table class="example">
<tr><td><pre>
gap&gt; C := CyclicCodes(7, GF(2));
[ a cyclic [7,7,1]0 enumerated code over GF(2),
  a cyclic [7,6,1..2]1 enumerated code over GF(2),
  a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
  a cyclic [7,0,7]7 enumerated code over GF(2),
  a cyclic [7,3,1..4]2..3 enumerated code over GF(2),
  a cyclic [7,4,1..3]1 enumerated code over GF(2),
  a cyclic [7,1,7]3 enumerated code over GF(2),
  a cyclic [7,4,1..3]1 enumerated code over GF(2) ]
gap&gt; IntersectionCode(C[6], C[8]) = C[7];
true 
</pre></td></tr></table>

<p>The <em>hull</em> of a linear code is the intersection of the code with its dual code. In other words, the hull of C is <code class="code">IntersectionCode(C, DualCode(C))</code>.</p>

<p><a id="X8228A1F57A29B8F4" name="X8228A1F57A29B8F4"></a></p>

<h5>6.2-5 UnionCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; UnionCode</code>( <var class="Arg">C1, C2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UnionCode</code> returns the union of codes <var class="Arg">C1</var> and <var class="Arg">C2</var>. This code consists of the union of all codewords of <var class="Arg">C1</var> and <var class="Arg">C2</var> and all linear combinations. Therefore this function works only for linear codes. The function <code class="code">AddedElementsCode</code> can be used for non-linear codes, or if the resulting code should not include linear combinations. See <code class="func">AddedElementsCode</code> (<a href="chap6.html#X784E1255874FCA8A"><b>6.1-8</b></a>). If both arguments are cyclic, the result is also cyclic.</p>


<table class="example">
<tr><td><pre>
gap&gt; G := GeneratorMatCode([[1,0,1],[0,1,1]]*Z(2)^0, GF(2));
a linear [3,2,1..2]1 code defined by generator matrix over GF(2)
gap&gt; H := GeneratorMatCode([[1,1,1]]*Z(2)^0, GF(2));
a linear [3,1,3]1 code defined by generator matrix over GF(2)
gap&gt; U := UnionCode(G, H);
a linear [3,3,1]0 union code
gap&gt; c := Codeword("010");; c in G;
false
gap&gt; c in H;
false
gap&gt; c in U;
true 
</pre></td></tr></table>

<p><a id="X7A85F8AF8154D387" name="X7A85F8AF8154D387"></a></p>

<h5>6.2-6 ExtendedDirectSumCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ExtendedDirectSumCode</code>( <var class="Arg">L, B, m</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The extended direct sum construction is described in section V of Graham and Sloane <a href="chapBib.html#biBGS85">[GS85]</a>. The resulting code consists of <var class="Arg">m</var> copies of <var class="Arg">L</var>, extended by repeating the codewords of <var class="Arg">B</var> <var class="Arg">m</var> times.</p>

<p>Suppose <var class="Arg">L</var> is an [n_L, k_L]r_L code, and <var class="Arg">B</var> is an [n_L, k_B]r_B code (non-linear codes are also permitted). The length of <var class="Arg">B</var> must be equal to the length of <var class="Arg">L</var>. The length of the new code is n = m n_L, the dimension (in the case of linear codes) is k &lt;= m k_L + k_B, and the covering radius is r &lt;= lfloor m Psi( L, B ) rfloor, with</p>

<p class="pcenter">
\Psi( L, B ) = \max_{u \in F_2^{n_L}} \frac{1}{2^{k_B}}
               \sum_{v \in B} {\rm d}( L, v + u ).
</p>

<p>However, this computation will not be executed, because it may be too time consuming for large codes.</p>

<p>If L subseteq B, and L and B are linear codes, the last copy of <var class="Arg">L</var> is omitted. In this case the dimension is k = m k_L + (k_B - k_L).</p>


<table class="example">
<tr><td><pre>
gap&gt; c := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap&gt; d := WholeSpaceCode( 7, GF(2) );
a cyclic [7,7,1]0 whole space code over GF(2)
gap&gt; e := ExtendedDirectSumCode( c, d, 3 );
a linear [21,15,1..3]2 3-fold extended direct sum code
</pre></td></tr></table>

<p><a id="X7E17107686A845DB" name="X7E17107686A845DB"></a></p>

<h5>6.2-7 AmalgamatedDirectSumCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; AmalgamatedDirectSumCode</code>( <var class="Arg">c1, c2[, check]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AmalgamatedDirectSumCode</code> returns the amalgamated direct sum of the codes <var class="Arg">c1</var> and <var class="Arg">c2</var>. The amalgamated direct sum code consists of all codewords of the form (u , | ,0 , | , v) if (u , | , 0) in c_1 and (0 , | , v) in c_2 and all codewords of the form (u , | , 1 , | , v) if (u , | , 1) in c_1 and (1 , | , v) in c_2. The result is a code with length n = n_1 + n_2 - 1 and size M &lt;= M_1 * M_2 / 2.</p>

<p>If both codes are linear, they will first be standardized, with information symbols in the last and first coordinates of the first and second code, respectively.</p>

<p>If <var class="Arg">c1</var> is a normal code (see <code class="func">IsNormalCode</code> (<a href="chap7.html#X80283A2F7C8101BD"><b>7.4-5</b></a>)) with the last coordinate acceptable (see <code class="func">IsCoordinateAcceptable</code> (<a href="chap7.html#X7D24F8BF7F9A7BF1"><b>7.4-3</b></a>)), and <var class="Arg">c2</var> is a normal code with the first coordinate acceptable, then the covering radius of the new code is r &lt;= r_1 + r_2. However, checking whether a code is normal or not is a lot of work, and almost all codes seem to be normal. Therefore, an option <var class="Arg">check</var> can be supplied. If <var class="Arg">check</var> is true, then the codes will be checked for normality. If <var class="Arg">check</var> is false or omitted, then the codes will not be checked. In this case it is assumed that they are normal. Acceptability of the last and first coordinate of the first and second code, respectively, is in the last case also assumed to be done by the user.</p>


<table class="example">
<tr><td><pre>
gap&gt; c := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap&gt; d := ReedMullerCode( 1, 4 );
a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap&gt; e := DirectSumCode( c, d );
a linear [23,9,3]7 direct sum code
gap&gt; f := AmalgamatedDirectSumCode( c, d );;
gap&gt; MinimumDistance( f );;
gap&gt; CoveringRadius( f );; 
gap&gt; f;
a linear [22,8,3]7 amalgamated direct sum code
</pre></td></tr></table>

<p><a id="X7D8981AF7DFE9814" name="X7D8981AF7DFE9814"></a></p>

<h5>6.2-8 BlockwiseDirectSumCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; BlockwiseDirectSumCode</code>( <var class="Arg">C1, L1, C2, L2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">BlockwiseDirectSumCode</code> returns a subcode of the direct sum of <var class="Arg">C1</var> and <var class="Arg">C2</var>. The fields of <var class="Arg">C1</var> and <var class="Arg">C2</var> must be same. The lists <var class="Arg">L1</var> and <var class="Arg">L2</var> are two equally long with elements from the ambient vector spaces of <var class="Arg">C1</var> and <var class="Arg">C2</var>, respectively, <em>or</em> <var class="Arg">L1</var> and <var class="Arg">L2</var> are two equally long lists containing codes. The union of the codes in <var class="Arg">L1</var> and <var class="Arg">L2</var> must be <var class="Arg">C1</var> and <var class="Arg">C2</var>, respectively.</p>

<p>In the first case, the blockwise direct sum code is defined as</p>

<p class="pcenter">
bds = \bigcup_{1 \leq i \leq \ell} ( C_1 + (L_1)_i ) \oplus ( C_2 + (L_2)_i ),
</p>

<p>where ell is the length of <var class="Arg">L1</var> and <var class="Arg">L2</var>, and oplus is the direct sum.</p>

<p>In the second case, it is defined as</p>

<p class="pcenter">
bds = \bigcup_{1 \leq i \leq \ell} ( (L_1)_i \oplus (L_2)_i ).
</p>

<p>The length of the new code is n = n_1 + n_2.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := HammingCode( 3, GF(2) );;
gap&gt; C2 := EvenWeightSubcode( WholeSpaceCode( 6, GF(2) ) );;
gap&gt; BlockwiseDirectSumCode( C1, [[ 0,0,0,0,0,0,0 ],[ 1,0,1,0,1,0,0 ]],
&gt; C2, [[ 0,0,0,0,0,0 ],[ 1,0,1,0,1,0 ]] );
a (13,1024,1..13)1..2 blockwise direct sum code
</pre></td></tr></table>

<p><a id="X7C37D467791CE99B" name="X7C37D467791CE99B"></a></p>

<h5>6.2-9 ConstructionXCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ConstructionXCode</code>( <var class="Arg">C, A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Consider a list of j linear codes of the same length N over the same field F, C = C_1, C_2, ..., C_j, where the parameter of the ith code is C_i = [N, K_i, D_i] and C_j subset C_j-1 subset ... subset C_2 subset C_1. Consider a list of j-1 auxiliary linear codes of the same field F, A = A_1, A_2, ..., A_j-1 where the parameter of the ith code A_i is [n_i, k_i=(K_i-K_i+1), d_i], an [n, K_1, d] linear code over field F can be constructed where n = N + sum_i=1^j-1 n_i, and d = min D_j, D_j-1 + d_j-1, D_j-2 + d_j-2 + d_j-1, ..., D_1 + sum_i=1^j-1 d_i.</p>

<p>For more information on Construction X, refer to <a href="chapBib.html#biBSloane72">[SRC72]</a>.</p>


<table class="example">
<tr><td><pre>
gap&gt; C1 := BCHCode(127, 43);
a cyclic [127,29,43]31..59 BCH code, delta=43, b=1 over GF(2)
gap&gt; C2 := BCHCode(127, 47);
a cyclic [127,22,47..51]36..63 BCH code, delta=47, b=1 over GF(2)
gap&gt; C3 := BCHCode(127, 55);
a cyclic [127,15,55]41..62 BCH code, delta=55, b=1 over GF(2)
gap&gt; G1 := ShallowCopy( GeneratorMat(C2) );;
gap&gt; Append(G1, [ GeneratorMat(C1)[23] ]);;
gap&gt; C1 := GeneratorMatCode(G1, GF(2));
a linear [127,23,1..43]35..63 code defined by generator matrix over GF(2)
gap&gt; MinimumDistance(C1);
43
gap&gt; C := [ C1, C2, C3 ];
[ a linear [127,23,43]35..63 code defined by generator matrix over GF(2), 
  a cyclic [127,22,47..51]36..63 BCH code, delta=47, b=1 over GF(2), 
  a cyclic [127,15,55]41..62 BCH code, delta=55, b=1 over GF(2) ]
gap&gt; IsSubset(C[1], C[2]);
true
gap&gt; IsSubset(C[2], C[3]);
true
gap&gt; A := [ RepetitionCode(4, GF(2)), EvenWeightSubcode( QRCode(17, GF(2)) ) ];
[ a cyclic [4,1,4]2 repetition code over GF(2), a cyclic [17,8,6]3..6 even weight subcode ]
gap&gt; CX := ConstructionXCode(C, A);
a linear [148,23,53]43..74 Construction X code
gap&gt; History(CX);
[ "a linear [148,23,53]43..74 Construction X code of", 
  "Base codes: [ a cyclic [127,15,55]41..62 BCH code, delta=55, b=1 over GF(2)\
, a cyclic [127,22,47..51]36..63 BCH code, delta=47, b=1 over GF(2), a linear \
[127,23,43]35..63 code defined by generator matrix over GF(2) ]", 
  "Auxiliary codes: [ a cyclic [4,1,4]2 repetition code over GF(2), a cyclic [\
17,8,6]3..6 even weight subcode ]" ]
</pre></td></tr></table>

<p><a id="X7B50943B8014134F" name="X7B50943B8014134F"></a></p>

<h5>6.2-10 ConstructionXXCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; ConstructionXXCode</code>( <var class="Arg">C1, C2, C3, A1, A2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Consider a set of linear codes over field F of the same length, n, C_1=[n, k_1, d_1], C_2=[n, k_2, d_2] and C_3=[n, k_3, d_3] such that C_2 subset C_1, C_3 subset C_1 and C_4 = C_2 cap C_3. Given two auxiliary codes A_1=[n_1, k_1-k_2, e_1] and A_2=[n_2, k_1-k_3, e_2] over the same field F, there exists an [n+n_1+n_2, k_1, d] linear code C_XX over field F, where d = mind_4, d_3 + e_1, d_2 + e_2, d_1 + e_1 + e_2.</p>

<p>The codewords of C_XX can be partitioned into three sections ( v;|;a;|;b ) where v has length n, a has length n_1 and b has length n_2. A codeword from Construction XX takes the following form:</p>


<ul>
<li><p>( v ; | ; 0 ; | ; 0 ) if v in C_4</p>

</li>
<li><p>( v ; | ; a_1 ; | ; 0 ) if v in C_3 backslash C_4</p>

</li>
<li><p>( v ; | ; 0 ; | ; a_2 ) if v in C_2 backslash C_4</p>

</li>
<li><p>( v ; | ; a_1 ; | ; a_2 ) otherwise</p>

</li>
</ul>
<p>For more information on Construction XX, refer to <a href="chapBib.html#biBAlltop84">[All84]</a>.</p>


<table class="example">
<tr><td><pre>
gap&gt; a := PrimitiveRoot(GF(32));
Z(2^5)
gap&gt; f0 := MinimalPolynomial( GF(2), a^0 );
x_1+Z(2)^0
gap&gt; f1 := MinimalPolynomial( GF(2), a^1 );
x_1^5+x_1^2+Z(2)^0
gap&gt; f5 := MinimalPolynomial( GF(2), a^5 );
x_1^5+x_1^4+x_1^2+x_1+Z(2)^0
gap&gt; C2 := CheckPolCode( f0 * f1, 31, GF(2) );; MinimumDistance(C2);; Display(C2);
a cyclic [31,6,15]10..13 code defined by check polynomial over GF(2)
gap&gt; C3 := CheckPolCode( f0 * f5, 31, GF(2) );; MinimumDistance(C3);; Display(C3);
a cyclic [31,6,15]10..13 code defined by check polynomial over GF(2)
gap&gt; C1 := UnionCode(C2, C3);; MinimumDistance(C1);; Display(C1);
a linear [31,11,11]7..11 union code of
U: a cyclic [31,6,15]10..13 code defined by check polynomial over GF(2)
V: a cyclic [31,6,15]10..13 code defined by check polynomial over GF(2)
gap&gt; A1 := BestKnownLinearCode( 10, 5, GF(2) );
a linear [10,5,4]2..4 shortened code
gap&gt; A2 := DualCode( RepetitionCode(6, GF(2)) );
a cyclic [6,5,2]1 dual code
gap&gt; CXX:= ConstructionXXCode(C1, C2, C3, A1, A2 );
a linear [47,11,15..17]13..23 Construction XX code
gap&gt; MinimumDistance(CXX);
17
gap&gt; History(CXX);        
[ "a linear [47,11,17]13..23 Construction XX code of", 
  "C1: a cyclic [31,11,11]7..11 union code", 
  "C2: a cyclic [31,6,15]10..13 code defined by check polynomial over GF(2)", 
  "C3: a cyclic [31,6,15]10..13 code defined by check polynomial over GF(2)", 
  "A1: a linear [10,5,4]2..4 shortened code", 
  "A2: a cyclic [6,5,2]1 dual code" ]
</pre></td></tr></table>

<p><a id="X790C614985BFAE16" name="X790C614985BFAE16"></a></p>

<h5>6.2-11 BZCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; BZCode</code>( <var class="Arg">O, I</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Given a set of outer codes of the same length O_i = [N, K_i, D_i] over GF(q^e_i), where i=1,2,...,t and a set of inner codes of the same length I_i = [n, k_i, d_i] over GF(q), <code class="code">BZCode</code> returns a Blokh-Zyablov multilevel concatenated code with parameter [ n x N, sum_i=1^t e_i x K_i, min_i=1,...,td_i x D_i ] over GF(q).</p>

<p>Note that the set of inner codes must satisfy chain condition, i.e. I_1 = [n, k_1, d_1] subset I_2=[n, k_2, d_2] subset ... subset I_t=[n, k_t, d_t] where 0=k_0 &lt; k_1 &lt; k_2 &lt; ... &lt; k_t. The dimension of the inner codes must satisfy the condition e_i = k_i - k_i-1, where GF(q^e_i) is the field of the ith outer code.</p>

<p>For more information on Blokh-Zyablov multilevel concatenated code, refer to <a href="chapBib.html#biBBrouwer98">[Bro98]</a>.</p>

<p><a id="X820327D6854A50B5" name="X820327D6854A50B5"></a></p>

<h5>6.2-12 BZCodeNC</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&gt; BZCodeNC</code>( <var class="Arg">O, I</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function is the same as <code class="code">BZCode</code>, except this version is faster as it does not estimate the covering radius of the code. Users are encouraged to use this version unless you are working on very small codes.</p>


<table class="example">
<tr><td><pre>
gap&gt; #
gap&gt; # Binary code
gap&gt; #
gap&gt; O := [ CyclicMDSCode(2,3,7), BestKnownLinearCode(9,5,GF(2)), CyclicMDSCode(2,3,4) ];
[ a cyclic [9,7,3]1 MDS code over GF(8), a linear [9,5,3]2..3 shortened code, 
  a cyclic [9,4,6]4..5 MDS code over GF(8) ]
gap&gt; A := ExtendedCode( HammingCode(3,GF(2)) );;
gap&gt; I := [ SubCode(A), A, DualCode( RepetitionCode(8, GF(2)) ) ];
[ a linear [8,3,4]3..4 subcode, a linear [8,4,4]2 extended code, a cyclic [8,7,2]1 dual code ]
gap&gt; C := BZCodeNC(O, I);
a linear [72,38,12]0..72 Blokh Zyablov concatenated code
gap&gt; #
gap&gt; # Non binary code
gap&gt; #
gap&gt; O2 := ExtendedCode(GoppaCode(ConwayPolynomial(5,2), Elements(GF(5))));;
gap&gt; O3 := ExtendedCode(GoppaCode(ConwayPolynomial(5,3), Elements(GF(5))));;
gap&gt; O1 := DualCode( O3 );;
gap&gt; MinimumDistance(O1);; MinimumDistance(O2);; MinimumDistance(O3);;
gap&gt; Cy := CyclicCodes(5, GF(5));;
gap&gt; for i in [4, 5] do; MinimumDistance(Cy[i]);; od;
gap&gt; O  := [ O1, O2, O3 ];
[ a linear [6,4,3]1 dual code, a linear [6,3,4]2..3 extended code,
  a linear [6,2,5]3..4 extended code ]
gap&gt; I  := [ Cy[5], Cy[4], Cy[3] ];
[ a cyclic [5,1,5]3..4 enumerated code over GF(5),
  a cyclic [5,2,4]2..3 enumerated code over GF(5),
  a cyclic [5,3,1..3]2 enumerated code over GF(5) ]
gap&gt; C  := BZCodeNC( O, I );
a linear [30,9,5..15]0..30 Blokh Zyablov concatenated code
gap&gt; MinimumDistance(C);
15
gap&gt; History(C);
[ "a linear [30,9,15]0..30 Blokh Zyablov concatenated code of",
  "Inner codes: [ a cyclic [5,1,5]3..4 enumerated code over GF(5), a cyclic [5\
,2,4]2..3 enumerated code over GF(5), a cyclic [5,3,1..3]2 enumerated code ove\
r GF(5) ]",
  "Outer codes: [ a linear [6,4,3]1 dual code, a linear [6,3,4]2..3 extended c\
ode, a linear [6,2,5]3..4 extended code ]" ]
</pre></td></tr></table>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">Top of Book</a>&nbsp;  &nbsp;<a href="chap5.html">Previous Chapter</a>&nbsp;  &nbsp;<a href="chap7.html">Next Chapter</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>