1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (guava) - Chapter 7:
Bounds on codes, special matrices and miscellaneous functions
</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
</head>
<body>
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">Top of Book</a> <a href="chap6.html">Previous Chapter</a> <a href="chapBib.html">Next Chapter</a> </div>
<p><a id="X7A814D518460862E" name="X7A814D518460862E"></a></p>
<div class="ChapSects"><a href="chap7.html#X7A814D518460862E">7. <span class="Heading">
Bounds on codes, special matrices and miscellaneous functions
</span></a>
<div class="ContSect"><span class="nocss"> </span><a href="chap7.html#X87C753EB840C34D3">7.1 <span class="Heading">
Distance bounds on codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8673277C7F6C04C3">7.1-1 UpperBoundSingleton</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X828095537C91FDFA">7.1-2 UpperBoundHamming</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X82EBFAAB7F5BFD4A">7.1-3 UpperBoundJohnson</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7A26E2537DFF4409">7.1-4 UpperBoundPlotkin</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X86A5A7C67F625A40">7.1-5 UpperBoundElias</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X82366C277E218130">7.1-6 UpperBoundGriesmer</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8301FA9F7C6C7445">7.1-7 IsGriesmerCode</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7A5CB74485184FEE">7.1-8 UpperBound</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7FDF54BA81115D88">7.1-9 LowerBoundMinimumDistance</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7CF15D2084499869">7.1-10 LowerBoundGilbertVarshamov</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8217D830871286D8">7.1-11 LowerBoundSpherePacking</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7C6A58327BD6B685">7.1-12 UpperBoundMinimumDistance</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7B3858B27A9E509A">7.1-13 BoundsMinimumDistance</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap7.html#X817D0A647D3331EB">7.2 <span class="Heading">
Covering radius bounds on codes
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8320D1C180A1AAAD">7.2-1 BoundsCoveringRadius</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7881E03E812140F4">7.2-2 IncreaseCoveringRadiusLowerBound</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7AD9F1D27C52BC0F">7.2-3 ExhaustiveSearchCoveringRadius</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X85D671F4824B4B0C">7.2-4 GeneralLowerBoundCoveringRadius</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8638F5A67D6E50C1">7.2-5 GeneralUpperBoundCoveringRadius</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7E7FBCC87D5562AB">7.2-6 LowerBoundCoveringRadiusSphereCovering</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X85E20C518360AB70">7.2-7 LowerBoundCoveringRadiusVanWee1</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7C72994A825228E7">7.2-8 LowerBoundCoveringRadiusVanWee2</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7F95362485759ACB">7.2-9 LowerBoundCoveringRadiusCountingExcess</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X829C14A383B5BF59">7.2-10 LowerBoundCoveringRadiusEmbedded1</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7B0C81B88604C448">7.2-11 LowerBoundCoveringRadiusEmbedded2</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7D27F6E27B9A0D35">7.2-12 LowerBoundCoveringRadiusInduction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X80F8DFAD7D67CBEC">7.2-13 UpperBoundCoveringRadiusRedundancy</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X832847A17FD0D142">7.2-14 UpperBoundCoveringRadiusDelsarte</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X86F10D9E79AB8796">7.2-15 UpperBoundCoveringRadiusStrength</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8585C6A982489FC3">7.2-16 UpperBoundCoveringRadiusGriesmerLike</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X82A38F5F858CF3FC">7.2-17 UpperBoundCoveringRadiusCyclicCode</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap7.html#X806EBEC77C16E657">7.3 <span class="Heading">
Special matrices in <strong class="pkg">GUAVA</strong>
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X82899B64802A4BCE">7.3-1 KrawtchoukMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X87AFE2C078031CE4">7.3-2 GrayMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7E1E7C5287919CDB">7.3-3 SylvesterMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8014A1F181ECD8AA">7.3-4 HadamardMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X797F43607AD8660D">7.3-5 VandermondeMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7B47D82485B66F1D">7.3-6 PutStandardForm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7D4EDA0A854EBFEF">7.3-7 IsInStandardForm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7A97AD477E7638DE">7.3-8 PermutedCols</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7B68119F85E9EC6D">7.3-9 VerticalConversionFieldMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8033E9A67BA155C8">7.3-10 HorizontalConversionFieldMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X804AAFF2867080F7">7.3-11 MOLS</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7F34306B81DC2776">7.3-12 IsLatinSquare</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X81B9B40B7B2D97D5">7.3-13 AreMOLS</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap7.html#X7AB5E5CE7FDF7132">7.4 <span class="Heading">
Some functions related to the norm of a code
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8032E53078264ABB">7.4-1 CoordinateNorm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7ED2EF368203AF47">7.4-2 CodeNorm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7D24F8BF7F9A7BF1">7.4-3 IsCoordinateAcceptable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X87039FD179AD3009">7.4-4 GeneralizedCodeNorm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X80283A2F7C8101BD">7.4-5 IsNormalCode</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap7.html#X8308D685809A4E2F">7.5 <span class="Heading">
Miscellaneous functions
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X871286437DE7A6A4">7.5-1 CodeWeightEnumerator</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X84DA928083B103A0">7.5-2 CodeDistanceEnumerator</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X84B2BE66780EFBF9">7.5-3 CodeMacWilliamsTransform</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7903286078F8051B">7.5-4 CodeDensity</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X85303BAE7BD46D81">7.5-5 SphereContent</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7ACDC5377CD17451">7.5-6 Krawtchouk</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X827E39957A87EB51">7.5-7 PrimitiveUnityRoot</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X78AEA40F7AD9D541">7.5-8 PrimitivePolynomialsNr</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7A2B54EF868AA752">7.5-9 IrreduciblePolynomialsNr</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7B50D3417F6FD7C6">7.5-10 MatrixRepresentationOfElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7805D2BB7CE4D455">7.5-11 ReciprocalPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7AEA9F807E6FFEFF">7.5-12 CyclotomicCosets</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7A4EA98D794CF410">7.5-13 WeightHistogram</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X805DF25C84585FD6">7.5-14 MultiplicityInList</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8072B0DA78FBE562">7.5-15 MostCommonInList</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7C5407EF87849857">7.5-16 RotateList</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X85E526367878F72A">7.5-17 CirculantMatrix</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap7.html#X7969103F7A8598F9">7.6 <span class="Heading">
Miscellaneous polynomial functions
</span></a>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X84D51EBB784E7C5D">7.6-1 MatrixTransformationOnMultivariatePolynomial </a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X80433A4B792880EF">7.6-2 DegreeMultivariatePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X83F44E397C56F2E0">7.6-3 DegreesMultivariatePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7E9021697A61A60F">7.6-4 CoefficientMultivariatePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X79E76B6F7D177E27">7.6-5 SolveLinearSystem</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X80171AA687FFDC70">7.6-6 GuavaVersion</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7EBBE86D85CC90C0">7.6-7 ZechLog</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7C8C1E6A7E3497F0">7.6-8 CoefficientToPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8431985183B63BB7">7.6-9 DegreesMonomialTerm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X860EF39B841380A1">7.6-10 DivisorsMultivariatePolynomial</a></span>
</div>
<div class="ContSect"><span class="nocss"> </span><a href="chap7.html#X82257DE97D1822AA">7.7 <span class="Heading">
GNU Free Documentation License
</span></a>
</div>
</div>
<h3>7. <span class="Heading">
Bounds on codes, special matrices and miscellaneous functions
</span></h3>
<p>In this chapter we describe functions that determine bounds on the size and minimum distance of codes (Section <a href="chap7.html#X87C753EB840C34D3"><b>7.1</b></a>), functions that determine bounds on the size and covering radius of codes (Section <a href="chap7.html#X817D0A647D3331EB"><b>7.2</b></a>), functions that work with special matrices <strong class="pkg">GUAVA</strong> needs for several codes (see Section <a href="chap7.html#X806EBEC77C16E657"><b>7.3</b></a>), and constructing codes or performing calculations with codes (see Section <a href="chap7.html#X8308D685809A4E2F"><b>7.5</b></a>).</p>
<p><a id="X87C753EB840C34D3" name="X87C753EB840C34D3"></a></p>
<h4>7.1 <span class="Heading">
Distance bounds on codes
</span></h4>
<p>This section describes the functions that calculate estimates for upper bounds on the size and minimum distance of codes. Several algorithms are known to compute a largest number of words a code can have with given length and minimum distance. It is important however to understand that in some cases the true upper bound is unknown. A code which has a size equalto the calculated upper bound may not have been found. However, codes that have a larger size do not exist.</p>
<p>A second way to obtain bounds is a table. In <strong class="pkg">GUAVA</strong>, an extensive table is implemented for linear codes over GF(2), GF(3) and GF(4). It contains bounds on the minimum distance for given word length and dimension. It contains entries for word lengths less than or equal to 257, 243 and 256 for codes over GF(2), GF(3) and GF(4) respectively. These entries were obtained from Brouwer's tables as of 11 May 2006. For the latest information, please see A. E. Brouwer's tables <a href="chapBib.html#biBBr">[Bro06]</a> on the internet.</p>
<p>Firstly, we describe functions that compute specific upper bounds on the code size (see <code class="func">UpperBoundSingleton</code> (<a href="chap7.html#X8673277C7F6C04C3"><b>7.1-1</b></a>), <code class="func">UpperBoundHamming</code> (<a href="chap7.html#X828095537C91FDFA"><b>7.1-2</b></a>), <code class="func">UpperBoundJohnson</code> (<a href="chap7.html#X82EBFAAB7F5BFD4A"><b>7.1-3</b></a>), <code class="func">UpperBoundPlotkin</code> (<a href="chap7.html#X7A26E2537DFF4409"><b>7.1-4</b></a>), <code class="func">UpperBoundElias</code> (<a href="chap7.html#X86A5A7C67F625A40"><b>7.1-5</b></a>) and <code class="func">UpperBoundGriesmer</code> (<a href="chap7.html#X82366C277E218130"><b>7.1-6</b></a>)).</p>
<p>Next we describe a function that computes <strong class="pkg">GUAVA</strong>'s best upper bound on the code size (see <code class="func">UpperBound</code> (<a href="chap7.html#X7A5CB74485184FEE"><b>7.1-8</b></a>)).</p>
<p>Then we describe two functions that compute a lower and upper bound on the minimum distance of a code (see <code class="func">LowerBoundMinimumDistance</code> (<a href="chap7.html#X7FDF54BA81115D88"><b>7.1-9</b></a>) and <code class="func">UpperBoundMinimumDistance</code> (<a href="chap7.html#X7C6A58327BD6B685"><b>7.1-12</b></a>)).</p>
<p>Finally, we describe a function that returns a lower and upper bound on the minimum distance with given parameters and a description of how the bounds were obtained (see <code class="func">BoundsMinimumDistance</code> (<a href="chap7.html#X7B3858B27A9E509A"><b>7.1-13</b></a>)).</p>
<p><a id="X8673277C7F6C04C3" name="X8673277C7F6C04C3"></a></p>
<h5>7.1-1 UpperBoundSingleton</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundSingleton</code>( <var class="Arg">n, d, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBoundSingleton</code> returns the Singleton bound for a code of length <var class="Arg">n</var>, minimum distance <var class="Arg">d</var> over a field of size <var class="Arg">q</var>. This bound is based on the shortening of codes. By shortening an (n, M, d) code d-1 times, an (n-d+1,M,1) code results, with M <= q^n-d+1 (see <code class="func">ShortenedCode</code> (<a href="chap6.html#X81CBEAFF7B9DE6EF"><b>6.1-9</b></a>)). Thus</p>
<p class="pcenter">
M \leq q^{n-d+1}.
</p>
<p>Codes that meet this bound are called <em>maximum distance separable</em> (see <code class="func">IsMDSCode</code> (<a href="chap4.html#X789380D28018EC3F"><b>4.3-7</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> UpperBoundSingleton(4, 3, 5);
25
gap> C := ReedSolomonCode(4,3);; Size(C);
25
gap> IsMDSCode(C);
true
</pre></td></tr></table>
<p><a id="X828095537C91FDFA" name="X828095537C91FDFA"></a></p>
<h5>7.1-2 UpperBoundHamming</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundHamming</code>( <var class="Arg">n, d, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The Hamming bound (also known as the <em>sphere packing bound</em>) returns an upper bound on the size of a code of length <var class="Arg">n</var>, minimum distance <var class="Arg">d</var>, over a field of size <var class="Arg">q</var>. The Hamming bound is obtained by dividing the contents of the entire space GF(q)^n by the contents of a ball with radius lfloor(d-1) / 2rfloor. As all these balls are disjoint, they can never contain more than the whole vector space.</p>
<p class="pcenter">
M \leq {q^n \over V(n,e)},
</p>
<p>where M is the maxmimum number of codewords and V(n,e) is equal to the contents of a ball of radius e (see <code class="func">SphereContent</code> (<a href="chap7.html#X85303BAE7BD46D81"><b>7.5-5</b></a>)). This bound is useful for small values of <var class="Arg">d</var>. Codes for which equality holds are called <em>perfect</em> (see <code class="func">IsPerfectCode</code> (<a href="chap4.html#X85E3BD26856424F7"><b>4.3-6</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> UpperBoundHamming( 15, 3, 2 );
2048
gap> C := HammingCode( 4, GF(2) );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> Size( C );
2048
</pre></td></tr></table>
<p><a id="X82EBFAAB7F5BFD4A" name="X82EBFAAB7F5BFD4A"></a></p>
<h5>7.1-3 UpperBoundJohnson</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundJohnson</code>( <var class="Arg">n, d</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The Johnson bound is an improved version of the Hamming bound (see <code class="func">UpperBoundHamming</code> (<a href="chap7.html#X828095537C91FDFA"><b>7.1-2</b></a>)). In addition to the Hamming bound, it takes into account the elements of the space outside the balls of radius e around the elements of the code. The Johnson bound only works for binary codes.</p>
<table class="example">
<tr><td><pre>
gap> UpperBoundJohnson( 13, 5 );
77
gap> UpperBoundHamming( 13, 5, 2);
89 # in this case the Johnson bound is better
</pre></td></tr></table>
<p><a id="X7A26E2537DFF4409" name="X7A26E2537DFF4409"></a></p>
<h5>7.1-4 UpperBoundPlotkin</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundPlotkin</code>( <var class="Arg">n, d, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">UpperBoundPlotkin</code> calculates the sum of the distances of all ordered pairs of different codewords. It is based on the fact that the minimum distance is at most equal to the average distance. It is a good bound if the weights of the codewords do not differ much. It results in:</p>
<p class="pcenter">
M \leq {d \over {d-(1-1/q)n}},
</p>
<p>where M is the maximum number of codewords. In this case, <var class="Arg">d</var> must be larger than (1-1/q)n, but by shortening the code, the case d < (1-1/q)n is covered.</p>
<table class="example">
<tr><td><pre>
gap> UpperBoundPlotkin( 15, 7, 2 );
32
gap> C := BCHCode( 15, 7, GF(2) );
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> Size(C);
32
gap> WeightDistribution(C);
[ 1, 0, 0, 0, 0, 0, 0, 15, 15, 0, 0, 0, 0, 0, 0, 1 ]
</pre></td></tr></table>
<p><a id="X86A5A7C67F625A40" name="X86A5A7C67F625A40"></a></p>
<h5>7.1-5 UpperBoundElias</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundElias</code>( <var class="Arg">n, d, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The Elias bound is an improvement of the Plotkin bound (see <code class="func">UpperBoundPlotkin</code> (<a href="chap7.html#X7A26E2537DFF4409"><b>7.1-4</b></a>)) for large codes. Subcodes are used to decrease the size of the code, in this case the subcode of all codewords within a certain ball. This bound is useful for large codes with relatively small minimum distances.</p>
<table class="example">
<tr><td><pre>
gap> UpperBoundPlotkin( 16, 3, 2 );
12288
gap> UpperBoundElias( 16, 3, 2 );
10280
gap> UpperBoundElias( 20, 10, 3 );
16255
</pre></td></tr></table>
<p><a id="X82366C277E218130" name="X82366C277E218130"></a></p>
<h5>7.1-6 UpperBoundGriesmer</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundGriesmer</code>( <var class="Arg">n, d, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The Griesmer bound is valid only for linear codes. It is obtained by counting the number of equal symbols in each row of the generator matrix of the code. By omitting the coordinates in which all rows have a zero, a smaller code results. The Griesmer bound is obtained by repeating this proces until a trivial code is left in the end.</p>
<table class="example">
<tr><td><pre>
gap> UpperBoundGriesmer( 13, 5, 2 );
64
gap> UpperBoundGriesmer( 18, 9, 2 );
8 # the maximum number of words for a linear code is 8
gap> Size( PuncturedCode( HadamardCode( 20, 1 ) ) );
20 # this non-linear code has 20 elements
</pre></td></tr></table>
<p><a id="X8301FA9F7C6C7445" name="X8301FA9F7C6C7445"></a></p>
<h5>7.1-7 IsGriesmerCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> IsGriesmerCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsGriesmerCode</code> returns `true' if a linear code <var class="Arg">C</var> is a Griesmer code, and `false' otherwise. A code is called <em>Griesmer</em> if its length satisfies</p>
<p class="pcenter">
n = g[k,d] = \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil.
</p>
<table class="example">
<tr><td><pre>
gap> IsGriesmerCode( HammingCode( 3, GF(2) ) );
true
gap> IsGriesmerCode( BCHCode( 17, 2, GF(2) ) );
false
</pre></td></tr></table>
<p><a id="X7A5CB74485184FEE" name="X7A5CB74485184FEE"></a></p>
<h5>7.1-8 UpperBound</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBound</code>( <var class="Arg">n, d, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBound</code> returns the best known upper bound A(n,d) for the size of a code of length <var class="Arg">n</var>, minimum distance <var class="Arg">d</var> over a field of size <var class="Arg">q</var>. The function <code class="code">UpperBound</code> first checks for trivial cases (like d=1 or n=d), and if the value is in the built-in table. Then it calculates the minimum value of the upper bound using the methods of Singleton (see <code class="func">UpperBoundSingleton</code> (<a href="chap7.html#X8673277C7F6C04C3"><b>7.1-1</b></a>)), Hamming (see <code class="func">UpperBoundHamming</code> (<a href="chap7.html#X828095537C91FDFA"><b>7.1-2</b></a>)), Johnson (see <code class="func">UpperBoundJohnson</code> (<a href="chap7.html#X82EBFAAB7F5BFD4A"><b>7.1-3</b></a>)), Plotkin (see <code class="func">UpperBoundPlotkin</code> (<a href="chap7.html#X7A26E2537DFF4409"><b>7.1-4</b></a>)) and Elias (see <code class="func">UpperBoundElias</code> (<a href="chap7.html#X86A5A7C67F625A40"><b>7.1-5</b></a>)). If the code is binary, A(n, 2* ell-1) = A(n+1,2* ell), so the <code class="code">UpperBound</code> takes the minimum of the values obtained from all methods for the parameters (n, 2*ell-1) and (n+1, 2* ell).</p>
<table class="example">
<tr><td><pre>
gap> UpperBound( 10, 3, 2 );
85
gap> UpperBound( 25, 9, 8 );
1211778792827540
</pre></td></tr></table>
<p><a id="X7FDF54BA81115D88" name="X7FDF54BA81115D88"></a></p>
<h5>7.1-9 LowerBoundMinimumDistance</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundMinimumDistance</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In this form, <code class="code">LowerBoundMinimumDistance</code> returns a lower bound for the minimum distance of code <var class="Arg">C</var>.</p>
<p>This command can also be called using the syntax <code class="code">LowerBoundMinimumDistance( n, k, F )</code>. In this form, <code class="code">LowerBoundMinimumDistance</code> returns a lower bound for the minimum distance of the best known linear code of length <var class="Arg">n</var>, dimension <var class="Arg">k</var> over field <var class="Arg">F</var>. It uses the mechanism explained in section <a href="chap7.html#X7B3858B27A9E509A"><b>7.1-13</b></a>.</p>
<table class="example">
<tr><td><pre>
gap> C := BCHCode( 45, 7 );
a cyclic [45,23,7..9]6..16 BCH code, delta=7, b=1 over GF(2)
gap> LowerBoundMinimumDistance( C );
7 # designed distance is lower bound for minimum distance
gap> LowerBoundMinimumDistance( 45, 23, GF(2) );
10
</pre></td></tr></table>
<p><a id="X7CF15D2084499869" name="X7CF15D2084499869"></a></p>
<h5>7.1-10 LowerBoundGilbertVarshamov</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundGilbertVarshamov</code>( <var class="Arg">n, d, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This is the lower bound due (independently) to Gilbert and Varshamov. It says that for each <var class="Arg">n</var> and <var class="Arg">d</var>, there exists a linear code having length n and minimum distance d at least of size q^n-1/ SphereContent(n-1,d-2,GF(q)).</p>
<table class="example">
<tr><td><pre>
gap> LowerBoundGilbertVarshamov(3,2,2);
4
gap> LowerBoundGilbertVarshamov(3,3,2);
1
gap> LowerBoundMinimumDistance(3,3,2);
1
gap> LowerBoundMinimumDistance(3,2,2);
2
</pre></td></tr></table>
<p><a id="X8217D830871286D8" name="X8217D830871286D8"></a></p>
<h5>7.1-11 LowerBoundSpherePacking</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundSpherePacking</code>( <var class="Arg">n, d, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This is the lower bound due (independently) to Gilbert and Varshamov. It says that for each <var class="Arg">n</var> and <var class="Arg">r</var>, there exists an unrestricted code at least of size q^n/ SphereContent(n,d,GF(q)) minimum distance d.</p>
<table class="example">
<tr><td><pre>
gap> LowerBoundSpherePacking(3,2,2);
2
gap> LowerBoundSpherePacking(3,3,2);
1
</pre></td></tr></table>
<p><a id="X7C6A58327BD6B685" name="X7C6A58327BD6B685"></a></p>
<h5>7.1-12 UpperBoundMinimumDistance</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundMinimumDistance</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In this form, <code class="code">UpperBoundMinimumDistance</code> returns an upper bound for the minimum distance of code <var class="Arg">C</var>. For unrestricted codes, it just returns the word length. For linear codes, it takes the minimum of the possibly known value from the method of construction, the weight of the generators, and the value from the table (see <a href="chap7.html#X7B3858B27A9E509A"><b>7.1-13</b></a>).</p>
<p>This command can also be called using the syntax <code class="code">UpperBoundMinimumDistance( n, k, F )</code>. In this form, <code class="code">UpperBoundMinimumDistance</code> returns an upper bound for the minimum distance of the best known linear code of length <var class="Arg">n</var>, dimension <var class="Arg">k</var> over field <var class="Arg">F</var>. It uses the mechanism explained in section <a href="chap7.html#X7B3858B27A9E509A"><b>7.1-13</b></a>.</p>
<table class="example">
<tr><td><pre>
gap> C := BCHCode( 45, 7 );;
gap> UpperBoundMinimumDistance( C );
9
gap> UpperBoundMinimumDistance( 45, 23, GF(2) );
11
</pre></td></tr></table>
<p><a id="X7B3858B27A9E509A" name="X7B3858B27A9E509A"></a></p>
<h5>7.1-13 BoundsMinimumDistance</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> BoundsMinimumDistance</code>( <var class="Arg">n, k, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">BoundsMinimumDistance</code> calculates a lower and upper bound for the minimum distance of an optimal linear code with word length <var class="Arg">n</var>, dimension <var class="Arg">k</var> over field <var class="Arg">F</var>. The function returns a record with the two bounds and an explanation for each bound. The function <code class="code">Display</code> can be used to show the explanations.</p>
<p>The values for the lower and upper bound are obtained from a table. <strong class="pkg">GUAVA</strong> has tables containing lower and upper bounds for q=2 (n <= 257), 3 (n <= 243), 4 (n <= 256). (Current as of 11 May 2006.) These tables were derived from the table of Brouwer. (See <a href="chapBib.html#biBBr">[Bro06]</a>, <span class="URL"><a href="http://www.win.tue.nl/~aeb/voorlincod.html">http://www.win.tue.nl/~aeb/voorlincod.html</a></span> for the most recent data.) For codes over other fields and for larger word lengths, trivial bounds are used.</p>
<p>The resulting record can be used in the function <code class="code">BestKnownLinearCode</code> (see <code class="func">BestKnownLinearCode</code> (<a href="chap5.html#X871508567CB34D96"><b>5.2-14</b></a>)) to construct a code with minimum distance equal to the lower bound.</p>
<table class="example">
<tr><td><pre>
gap> bounds := BoundsMinimumDistance( 7, 3 );; DisplayBoundsInfo( bounds );
an optimal linear [7,3,d] code over GF(2) has d=4
------------------------------------------------------------------------------
Lb(7,3)=4, by shortening of:
Lb(8,4)=4, u u+v construction of C1 and C2:
Lb(4,3)=2, dual of the repetition code
Lb(4,1)=4, repetition code
------------------------------------------------------------------------------
Ub(7,3)=4, Griesmer bound
# The lower bound is equal to the upper bound, so a code with
# these parameters is optimal.
gap> C := BestKnownLinearCode( bounds );; Display( C );
a linear [7,3,4]2..3 shortened code of
a linear [8,4,4]2 U U+V construction code of
U: a cyclic [4,3,2]1 dual code of
a cyclic [4,1,4]2 repetition code over GF(2)
V: a cyclic [4,1,4]2 repetition code over GF(2)
</pre></td></tr></table>
<p><a id="X817D0A647D3331EB" name="X817D0A647D3331EB"></a></p>
<h4>7.2 <span class="Heading">
Covering radius bounds on codes
</span></h4>
<p><a id="X8320D1C180A1AAAD" name="X8320D1C180A1AAAD"></a></p>
<h5>7.2-1 BoundsCoveringRadius</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> BoundsCoveringRadius</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">BoundsCoveringRadius</code> returns a list of integers. The first entry of this list is the maximum of some lower bounds for the covering radius of <var class="Arg">C</var>, the last entry the minimum of some upper bounds of <var class="Arg">C</var>.</p>
<p>If the covering radius of <var class="Arg">C</var> is known, a list of length 1 is returned. <code class="code">BoundsCoveringRadius</code> makes use of the functions <code class="code">GeneralLowerBoundCoveringRadius</code> and <code class="code">GeneralUpperBoundCoveringRadius</code>.</p>
<table class="example">
<tr><td><pre>
gap> BoundsCoveringRadius( BCHCode( 17, 3, GF(2) ) );
[ 3 .. 4 ]
gap> BoundsCoveringRadius( HammingCode( 5, GF(2) ) );
[ 1 ]
</pre></td></tr></table>
<p><a id="X7881E03E812140F4" name="X7881E03E812140F4"></a></p>
<h5>7.2-2 IncreaseCoveringRadiusLowerBound</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> IncreaseCoveringRadiusLowerBound</code>( <var class="Arg">C[, stopdist][, startword]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IncreaseCoveringRadiusLowerBound</code> tries to increase the lower bound of the covering radius of <var class="Arg">C</var>. It does this by means of a probabilistic algorithm. This algorithm takes a random word in GF(q)^n (or <var class="Arg">startword</var> if it is specified), and, by changing random coordinates, tries to get as far from <var class="Arg">C</var> as possible. If changing a coordinate finds a word that has a larger distance to the code than the previous one, the change is made permanent, and the algorithm starts all over again. If changing a coordinate does not find a coset leader that is further away from the code, then the change is made permanent with a chance of 1 in 100, if it gets the word closer to the code, or with a chance of 1 in 10, if the word stays at the same distance. Otherwise, the algorithm starts again with the same word as before.</p>
<p>If the algorithm did not allow changes that decrease the distance to the code, it might get stuck in a sub-optimal situation (the coset leader corresponding to such a situation - i.e. no coordinate of this coset leader can be changed in such a way that we get at a larger distance from the code - is called an <em>orphan</em>).</p>
<p>If the algorithm finds a word that has distance <var class="Arg">stopdist</var> to the code, it ends and returns that word, which can be used for further investigations.</p>
<p>The variable <var class="Arg">InfoCoveringRadius</var> can be set to <var class="Arg">Print</var> to print the maximum distance reached so far every 1000 runs. The algorithm can be interrupted with <strong class="button">ctrl-C</strong>, allowing the user to look at the word that is currently being examined (called `current'), or to change the chances that the new word is made permanent (these are called `staychance' and `downchance'). If one of these variables is i, then it corresponds with a i in 100 chance.</p>
<p>At the moment, the algorithm is only useful for codes with small dimension, where small means that the elements of the code fit in the memory. It works with larger codes, however, but when you use it for codes with large dimension, you should be <em>very</em> patient. If running the algorithm quits GAP (due to memory problems), you can change the global variable <var class="Arg">CRMemSize</var> to a lower value. This might cause the algorithm to run slower, but without quitting GAP. The only way to find out the best value of <var class="Arg">CRMemSize</var> is by experimenting.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> IncreaseCoveringRadiusLowerBound(C,10);
Number of runs: 1000 best distance so far: 3
Number of runs: 2000 best distance so far: 3
Number of changes: 100
Number of runs: 3000 best distance so far: 3
Number of runs: 4000 best distance so far: 3
Number of runs: 5000 best distance so far: 3
Number of runs: 6000 best distance so far: 3
Number of runs: 7000 best distance so far: 3
Number of changes: 200
Number of runs: 8000 best distance so far: 3
Number of runs: 9000 best distance so far: 3
Number of runs: 10000 best distance so far: 3
Number of changes: 300
Number of runs: 11000 best distance so far: 3
Number of runs: 12000 best distance so far: 3
Number of runs: 13000 best distance so far: 3
Number of changes: 400
Number of runs: 14000 best distance so far: 3
user interrupt at...
#
# used ctrl-c to break out of execution
#
... called from
IncreaseCoveringRadiusLowerBound( code, -1, current ) called from
function( arguments ) called from read-eval-loop
Entering break read-eval-print loop ...
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> current;
[ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]
brk>
gap> CoveringRadius(C);
3
</pre></td></tr></table>
<p><a id="X7AD9F1D27C52BC0F" name="X7AD9F1D27C52BC0F"></a></p>
<h5>7.2-3 ExhaustiveSearchCoveringRadius</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ExhaustiveSearchCoveringRadius</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ExhaustiveSearchCoveringRadius</code> does an exhaustive search to find the covering radius of <var class="Arg">C</var>. Every time a coset leader of a coset with weight w is found, the function tries to find a coset leader of a coset with weight w+1. It does this by enumerating all words of weight w+1, and checking whether a word is a coset leader. The start weight is the current known lower bound on the covering radius.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> ExhaustiveSearchCoveringRadius(C);
Trying 3 ...
[ 3 .. 5 ]
gap> CoveringRadius(C);
3
</pre></td></tr></table>
<p><a id="X85D671F4824B4B0C" name="X85D671F4824B4B0C"></a></p>
<h5>7.2-4 GeneralLowerBoundCoveringRadius</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GeneralLowerBoundCoveringRadius</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralLowerBoundCoveringRadius</code> returns a lower bound on the covering radius of <var class="Arg">C</var>. It uses as many functions which names start with <code class="code">LowerBoundCoveringRadius</code> as possible to find the best known lower bound (at least that <strong class="pkg">GUAVA</strong> knows of) together with tables for the covering radius of binary linear codes with length not greater than 64.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> GeneralLowerBoundCoveringRadius(C);
2
gap> CoveringRadius(C);
3
</pre></td></tr></table>
<p><a id="X8638F5A67D6E50C1" name="X8638F5A67D6E50C1"></a></p>
<h5>7.2-5 GeneralUpperBoundCoveringRadius</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GeneralUpperBoundCoveringRadius</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralUpperBoundCoveringRadius</code> returns an upper bound on the covering radius of <var class="Arg">C</var>. It uses as many functions which names start with <code class="code">UpperBoundCoveringRadius</code> as possible to find the best known upper bound (at least that <strong class="pkg">GUAVA</strong> knows of).</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> GeneralUpperBoundCoveringRadius(C);
4
gap> CoveringRadius(C);
3
</pre></td></tr></table>
<p><a id="X7E7FBCC87D5562AB" name="X7E7FBCC87D5562AB"></a></p>
<h5>7.2-6 LowerBoundCoveringRadiusSphereCovering</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundCoveringRadiusSphereCovering</code>( <var class="Arg">n, M[, F], false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called using the syntax <code class="code">LowerBoundCoveringRadiusSphereCovering( n, r, [F,] true )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusSphereCovering</code> is <var class="Arg">false</var>, then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>
<p><var class="Arg">F</var> is the field over which the code is defined. If <var class="Arg">F</var> is omitted, it is assumed that the code is over GF(2). The bound is computed according to the sphere covering bound:</p>
<p class="pcenter">
M \cdot V_q(n,r) \geq q^n
</p>
<p>where V_q(n,r) is the size of a sphere of radius r in GF(q)^n.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusSphereCovering(10,32,GF(2),false);
2
gap> LowerBoundCoveringRadiusSphereCovering(10,3,GF(2),true);
6
</pre></td></tr></table>
<p><a id="X85E20C518360AB70" name="X85E20C518360AB70"></a></p>
<h5>7.2-7 LowerBoundCoveringRadiusVanWee1</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundCoveringRadiusVanWee1</code>( <var class="Arg">n, M[, F], false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called using the syntax <code class="code">LowerBoundCoveringRadiusVanWee1( n, r, [F,] true )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusVanWee1</code> is <var class="Arg">false</var>, then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>
<p><var class="Arg">F</var> is the field over which the code is defined. If <var class="Arg">F</var> is omitted, it is assumed that the code is over GF(2).</p>
<p>The Van Wee bound is an improvement of the sphere covering bound:</p>
<p class="pcenter">
M \cdot \left\{ V_q(n,r) -
\frac{{n \choose r}}{\lceil\frac{n-r}{r+1}\rceil}
\left(\left\lceil\frac{n+1}{r+1}\right\rceil - \frac{n+1}{r+1}\right)
\right\} \geq q^n
</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusVanWee1(10,32,GF(2),false);
2
gap> LowerBoundCoveringRadiusVanWee1(10,3,GF(2),true);
6
</pre></td></tr></table>
<p><a id="X7C72994A825228E7" name="X7C72994A825228E7"></a></p>
<h5>7.2-8 LowerBoundCoveringRadiusVanWee2</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundCoveringRadiusVanWee2</code>( <var class="Arg">n, M, false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called using the syntax <code class="code">LowerBoundCoveringRadiusVanWee2( n, r [,true] )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusVanWee2</code> is <var class="Arg">false</var>, then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>
<p>This bound only works for binary codes. It is based on the following inequality:</p>
<p class="pcenter">
M \cdot \frac{\left( \left( V_2(n,2) - \frac{1}{2}(r+2)(r-1) \right)
V_2(n,r) + \varepsilon
V_2(n,r-2) \right)}
{(V_2(n,2) - \frac{1}{2}(r+2)(r-1) + \varepsilon)}
\geq 2^n,
</p>
<p>where</p>
<p class="pcenter">
\varepsilon = {r+2 \choose 2} \left\lceil
{n-r+1 \choose 2} / {r+2 \choose 2} \right\rceil
- {n-r+1 \choose 2}.
</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusVanWee2(10,32,false);
2
gap> LowerBoundCoveringRadiusVanWee2(10,3,true);
7
</pre></td></tr></table>
<p><a id="X7F95362485759ACB" name="X7F95362485759ACB"></a></p>
<h5>7.2-9 LowerBoundCoveringRadiusCountingExcess</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundCoveringRadiusCountingExcess</code>( <var class="Arg">n, M, false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called with <code class="code">LowerBoundCoveringRadiusCountingExcess( n, r [,true] )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusCountingExcess</code> is <var class="Arg">false</var>, then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>
<p>This bound only works for binary codes. It is based on the following inequality:</p>
<p class="pcenter">
M \cdot \left( \rho V_2(n,r) + \varepsilon V_2(n,r-1) \right) \geq
(\rho + \varepsilon) 2^n,
</p>
<p>where</p>
<p class="pcenter">
\varepsilon = (r+1) \left\lceil\frac{n+1}{r+1}\right\rceil - (n+1)
</p>
<p>and</p>
<p class="pcenter">
\rho = \left\{
\begin{array}{l}
n-3+\frac{2}{n}, \ \ \ \ \ \ {\rm if}\ r = 2\\
n-r-1 , \ \ \ \ \ \ {\rm if}\ r \geq 3 .
\end{array}
\right.
</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusCountingExcess(10,32,false);
0
gap> LowerBoundCoveringRadiusCountingExcess(10,3,true);
7
</pre></td></tr></table>
<p><a id="X829C14A383B5BF59" name="X829C14A383B5BF59"></a></p>
<h5>7.2-10 LowerBoundCoveringRadiusEmbedded1</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundCoveringRadiusEmbedded1</code>( <var class="Arg">n, M, false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called with <code class="code">LowerBoundCoveringRadiusEmbedded1( n, r [,true] )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusEmbedded1</code> is 'false', then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>
<p>This bound only works for binary codes. It is based on the following inequality:</p>
<p class="pcenter">
M \cdot \left( V_2(n,r) - {2r \choose r} \right) \geq
2^n - A( n, 2r+1 ) {2r \choose r},
</p>
<p>where A(n,d) denotes the maximal cardinality of a (binary) code of length n and minimum distance d. The function <code class="code">UpperBound</code> is used to compute this value.</p>
<p>Sometimes <code class="code">LowerBoundCoveringRadiusEmbedded1</code> is better than <code class="code">LowerBoundCoveringRadiusEmbedded2</code>, sometimes it is the other way around.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(10,5,GF(2));
a [10,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
3
gap> LowerBoundCoveringRadiusEmbedded1(10,32,false);
2
gap> LowerBoundCoveringRadiusEmbedded1(10,3,true);
7
</pre></td></tr></table>
<p><a id="X7B0C81B88604C448" name="X7B0C81B88604C448"></a></p>
<h5>7.2-11 LowerBoundCoveringRadiusEmbedded2</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundCoveringRadiusEmbedded2</code>( <var class="Arg">n, M, false</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command can also be called with <code class="code">LowerBoundCoveringRadiusEmbedded2( n, r [,true] )</code>. If the last argument of <code class="code">LowerBoundCoveringRadiusEmbedded2</code> is 'false', then it returns a lower bound for the covering radius of a code of size <var class="Arg">M</var> and length <var class="Arg">n</var>. Otherwise, it returns a lower bound for the size of a code of length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>
<p>This bound only works for binary codes. It is based on the following inequality:</p>
<p class="pcenter">
M \cdot \left( V_2(n,r) - \frac{3}{2} {2r \choose r} \right) \geq
2^n - 2A( n, 2r+1 ) {2r \choose r},
</p>
<p>where A(n,d) denotes the maximal cardinality of a (binary) code of length n and minimum distance d. The function <code class="code">UpperBound</code> is used to compute this value.</p>
<p>Sometimes <code class="code">LowerBoundCoveringRadiusEmbedded1</code> is better than <code class="code">LowerBoundCoveringRadiusEmbedded2</code>, sometimes it is the other way around.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> Size(C);
32
gap> CoveringRadius(C);
6
gap> LowerBoundCoveringRadiusEmbedded2(10,32,false);
2
gap> LowerBoundCoveringRadiusEmbedded2(10,3,true);
7
</pre></td></tr></table>
<p><a id="X7D27F6E27B9A0D35" name="X7D27F6E27B9A0D35"></a></p>
<h5>7.2-12 LowerBoundCoveringRadiusInduction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> LowerBoundCoveringRadiusInduction</code>( <var class="Arg">n, r</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">LowerBoundCoveringRadiusInduction</code> returns a lower bound for the size of a code with length <var class="Arg">n</var> and covering radius <var class="Arg">r</var>.</p>
<p>If n = 2r+2 and r >= 1, the returned value is 4.</p>
<p>If n = 2r+3 and r >= 1, the returned value is 7.</p>
<p>If n = 2r+4 and r >= 4, the returned value is 8.</p>
<p>Otherwise, 0 is returned.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> LowerBoundCoveringRadiusInduction(15,6);
7
</pre></td></tr></table>
<p><a id="X80F8DFAD7D67CBEC" name="X80F8DFAD7D67CBEC"></a></p>
<h5>7.2-13 UpperBoundCoveringRadiusRedundancy</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundCoveringRadiusRedundancy</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBoundCoveringRadiusRedundancy</code> returns the redundancy of <var class="Arg">C</var> as an upper bound for the covering radius of <var class="Arg">C</var>. <var class="Arg">C</var> must be a linear code.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusRedundancy(C);
10
</pre></td></tr></table>
<p><a id="X832847A17FD0D142" name="X832847A17FD0D142"></a></p>
<h5>7.2-14 UpperBoundCoveringRadiusDelsarte</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundCoveringRadiusDelsarte</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBoundCoveringRadiusDelsarte</code> returns an upper bound for the covering radius of <var class="Arg">C</var>. This upper bound is equal to the external distance of <var class="Arg">C</var>, this is the minimum distance of the dual code, if <var class="Arg">C</var> is a linear code.</p>
<p>This is described in Theorem 11.3.3 of <a href="chapBib.html#biBHP03">[HP03]</a>.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusDelsarte(C);
13
</pre></td></tr></table>
<p><a id="X86F10D9E79AB8796" name="X86F10D9E79AB8796"></a></p>
<h5>7.2-15 UpperBoundCoveringRadiusStrength</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundCoveringRadiusStrength</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">UpperBoundCoveringRadiusStrength</code> returns an upper bound for the covering radius of <var class="Arg">C</var>.</p>
<p>First the code is punctured at the zero coordinates (i.e. the coordinates where all codewords have a zero). If the remaining code has <em>strength</em> 1 (i.e. each coordinate contains each element of the field an equal number of times), then it returns fracq-1qm + (n-m) (where q is the size of the field and m is the length of punctured code), otherwise it returns n. This bound works for all codes.</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusStrength(C);
7
</pre></td></tr></table>
<p><a id="X8585C6A982489FC3" name="X8585C6A982489FC3"></a></p>
<h5>7.2-16 UpperBoundCoveringRadiusGriesmerLike</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundCoveringRadiusGriesmerLike</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns an upper bound for the covering radius of <var class="Arg">C</var>, which must be linear, in a Griesmer-like fashion. It returns</p>
<p class="pcenter">
n - \sum_{i=1}^k \left\lceil \frac{d}{q^i} \right\rceil
</p>
<table class="example">
<tr><td><pre>
gap> C:=RandomLinearCode(15,5,GF(2));
a [15,5,?] randomly generated code over GF(2)
gap> CoveringRadius(C);
5
gap> UpperBoundCoveringRadiusGriesmerLike(C);
9
</pre></td></tr></table>
<p><a id="X82A38F5F858CF3FC" name="X82A38F5F858CF3FC"></a></p>
<h5>7.2-17 UpperBoundCoveringRadiusCyclicCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> UpperBoundCoveringRadiusCyclicCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns an upper bound for the covering radius of <var class="Arg">C</var>, which must be a cyclic code. It returns</p>
<p class="pcenter">
n - k + 1 - \left\lceil \frac{w(g(x))}{2} \right\rceil,
</p>
<p>where g(x) is the generator polynomial of <var class="Arg">C</var>.</p>
<table class="example">
<tr><td><pre>
gap> C:=CyclicCodes(15,GF(2))[3];
a cyclic [15,12,1..2]1..3 enumerated code over GF(2)
gap> CoveringRadius(C);
3
gap> UpperBoundCoveringRadiusCyclicCode(C);
3
</pre></td></tr></table>
<p><a id="X806EBEC77C16E657" name="X806EBEC77C16E657"></a></p>
<h4>7.3 <span class="Heading">
Special matrices in <strong class="pkg">GUAVA</strong>
</span></h4>
<p>This section explains functions that work with special matrices <strong class="pkg">GUAVA</strong> needs for several codes.</p>
<p>Firstly, we describe some matrix generating functions (see <code class="func">KrawtchoukMat</code> (<a href="chap7.html#X82899B64802A4BCE"><b>7.3-1</b></a>), <code class="func">GrayMat</code> (<a href="chap7.html#X87AFE2C078031CE4"><b>7.3-2</b></a>), <code class="func">SylvesterMat</code> (<a href="chap7.html#X7E1E7C5287919CDB"><b>7.3-3</b></a>), <code class="func">HadamardMat</code> (<a href="chap7.html#X8014A1F181ECD8AA"><b>7.3-4</b></a>) and <code class="func">MOLS</code> (<a href="chap7.html#X804AAFF2867080F7"><b>7.3-11</b></a>)).</p>
<p>Next we describe two functions regarding a standard form of matrices (see <code class="func">PutStandardForm</code> (<a href="chap7.html#X7B47D82485B66F1D"><b>7.3-6</b></a>) and <code class="func">IsInStandardForm</code> (<a href="chap7.html#X7D4EDA0A854EBFEF"><b>7.3-7</b></a>)).</p>
<p>Then we describe functions that return a matrix after a manipulation (see <code class="func">PermutedCols</code> (<a href="chap7.html#X7A97AD477E7638DE"><b>7.3-8</b></a>), <code class="func">VerticalConversionFieldMat</code> (<a href="chap7.html#X7B68119F85E9EC6D"><b>7.3-9</b></a>) and <code class="func">HorizontalConversionFieldMat</code> (<a href="chap7.html#X8033E9A67BA155C8"><b>7.3-10</b></a>)).</p>
<p>Finally, we describe functions that do some tests on matrices (see <code class="func">IsLatinSquare</code> (<a href="chap7.html#X7F34306B81DC2776"><b>7.3-12</b></a>) and <code class="func">AreMOLS</code> (<a href="chap7.html#X81B9B40B7B2D97D5"><b>7.3-13</b></a>)).</p>
<p><a id="X82899B64802A4BCE" name="X82899B64802A4BCE"></a></p>
<h5>7.3-1 KrawtchoukMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> KrawtchoukMat</code>( <var class="Arg">n, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">KrawtchoukMat</code> returns the n+1 by n+1 matrix K=(k_ij) defined by k_ij=K_i(j) for i,j=0,...,n. K_i(j) is the Krawtchouk number (see <code class="func">Krawtchouk</code> (<a href="chap7.html#X7ACDC5377CD17451"><b>7.5-6</b></a>)). <var class="Arg">n</var> must be a positive integer and <var class="Arg">q</var> a prime power. The Krawtchouk matrix is used in the <em>MacWilliams identities</em>, defining the relation between the weight distribution of a code of length <var class="Arg">n</var> over a field of size <var class="Arg">q</var>, and its dual code. Each call to <code class="code">KrawtchoukMat</code> returns a new matrix, so it is safe to modify the result.</p>
<table class="example">
<tr><td><pre>
gap> PrintArray( KrawtchoukMat( 3, 2 ) );
[ [ 1, 1, 1, 1 ],
[ 3, 1, -1, -3 ],
[ 3, -1, -1, 3 ],
[ 1, -1, 1, -1 ] ]
gap> C := HammingCode( 3 );; a := WeightDistribution( C );
[ 1, 0, 0, 7, 7, 0, 0, 1 ]
gap> n := WordLength( C );; q := Size( LeftActingDomain( C ) );;
gap> k := Dimension( C );;
gap> q^( -k ) * KrawtchoukMat( n, q ) * a;
[ 1, 0, 0, 0, 7, 0, 0, 0 ]
gap> WeightDistribution( DualCode( C ) );
[ 1, 0, 0, 0, 7, 0, 0, 0 ]
</pre></td></tr></table>
<p><a id="X87AFE2C078031CE4" name="X87AFE2C078031CE4"></a></p>
<h5>7.3-2 GrayMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GrayMat</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GrayMat</code> returns a list of all different vectors (see GAP's <code class="code">Vectors</code> command) of length <var class="Arg">n</var> over the field <var class="Arg">F</var>, using Gray ordering. <var class="Arg">n</var> must be a positive integer. This order has the property that subsequent vectors differ in exactly one coordinate. The first vector is always the null vector. Each call to <code class="code">GrayMat</code> returns a new matrix, so it is safe to modify the result.</p>
<table class="example">
<tr><td><pre>
gap> GrayMat(3);
[ [ 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0 ],
[ 0*Z(2), Z(2)^0, Z(2)^0 ], [ 0*Z(2), Z(2)^0, 0*Z(2) ],
[ Z(2)^0, Z(2)^0, 0*Z(2) ], [ Z(2)^0, Z(2)^0, Z(2)^0 ],
[ Z(2)^0, 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2), 0*Z(2) ] ]
gap> G := GrayMat( 4, GF(4) );; Length(G);
256 # the length of a GrayMat is always q^n
gap> G[101] - G[100];
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]
</pre></td></tr></table>
<p><a id="X7E1E7C5287919CDB" name="X7E1E7C5287919CDB"></a></p>
<h5>7.3-3 SylvesterMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> SylvesterMat</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">SylvesterMat</code> returns the nx n Sylvester matrix of order <var class="Arg">n</var>. This is a special case of the Hadamard matrices (see <code class="func">HadamardMat</code> (<a href="chap7.html#X8014A1F181ECD8AA"><b>7.3-4</b></a>)). For this construction, <var class="Arg">n</var> must be a power of 2. Each call to <code class="code">SylvesterMat</code> returns a new matrix, so it is safe to modify the result.</p>
<table class="example">
<tr><td><pre>
gap> PrintArray(SylvesterMat(2));
[ [ 1, 1 ],
[ 1, -1 ] ]
gap> PrintArray( SylvesterMat(4) );
[ [ 1, 1, 1, 1 ],
[ 1, -1, 1, -1 ],
[ 1, 1, -1, -1 ],
[ 1, -1, -1, 1 ] ]
</pre></td></tr></table>
<p><a id="X8014A1F181ECD8AA" name="X8014A1F181ECD8AA"></a></p>
<h5>7.3-4 HadamardMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> HadamardMat</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">HadamardMat</code> returns a Hadamard matrix of order <var class="Arg">n</var>. This is an nx n matrix with the property that the matrix multiplied by its transpose returns <var class="Arg">n</var> times the identity matrix. This is only possible for n=1, n=2 or in cases where <var class="Arg">n</var> is a multiple of 4. If the matrix does not exist or is not known (as of 1998), <code class="code">HadamardMat</code> returns an error. A large number of construction methods is known to create these matrices for different orders. <code class="code">HadamardMat</code> makes use of two construction methods (the Paley Type I and II constructions, and the Sylvester construction -- see <code class="func">SylvesterMat</code> (<a href="chap7.html#X7E1E7C5287919CDB"><b>7.3-3</b></a>)). These methods cover most of the possible Hadamard matrices, although some special algorithms have not been implemented yet. The following orders less than 100 do not yet have an implementation for a Hadamard matrix in <strong class="pkg">GUAVA</strong>: 52, 92.</p>
<table class="example">
<tr><td><pre>
gap> C := HadamardMat(8);; PrintArray(C);
[ [ 1, 1, 1, 1, 1, 1, 1, 1 ],
[ 1, -1, 1, -1, 1, -1, 1, -1 ],
[ 1, 1, -1, -1, 1, 1, -1, -1 ],
[ 1, -1, -1, 1, 1, -1, -1, 1 ],
[ 1, 1, 1, 1, -1, -1, -1, -1 ],
[ 1, -1, 1, -1, -1, 1, -1, 1 ],
[ 1, 1, -1, -1, -1, -1, 1, 1 ],
[ 1, -1, -1, 1, -1, 1, 1, -1 ] ]
gap> C * TransposedMat(C) = 8 * IdentityMat( 8, 8 );
true
</pre></td></tr></table>
<p><a id="X797F43607AD8660D" name="X797F43607AD8660D"></a></p>
<h5>7.3-5 VandermondeMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> VandermondeMat</code>( <var class="Arg">X, a</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">VandermondeMat</code> returns the (a+1)x n matrix of powers x_i^j where <var class="Arg">X</var> is a list of elements of a field, X= x_1,...,x_n, and <var class="Arg">a</var> is a non-negative integer.</p>
<table class="example">
<tr><td><pre>
gap> M:=VandermondeMat([Z(5),Z(5)^2,Z(5)^0,Z(5)^3],2);
[ [ Z(5)^0, Z(5), Z(5)^2 ], [ Z(5)^0, Z(5)^2, Z(5)^0 ],
[ Z(5)^0, Z(5)^0, Z(5)^0 ], [ Z(5)^0, Z(5)^3, Z(5)^2 ] ]
gap> Display(M);
1 2 4
1 4 1
1 1 1
1 3 4
</pre></td></tr></table>
<p><a id="X7B47D82485B66F1D" name="X7B47D82485B66F1D"></a></p>
<h5>7.3-6 PutStandardForm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> PutStandardForm</code>( <var class="Arg">M[, idleft]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>We say that a kx n matrix is in <em>standard form</em> if it is equal to the block matrix (I | A), for some kx (n-k) matrix A and where I is the kx k identity matrix. It follows from a basis result in linear algebra that, after a possible permutation of the columns, using elementary row operations, every matrix can be reduced to standard form. <code class="code">PutStandardForm</code> puts a matrix <var class="Arg">M</var> in standard form, and returns the permutation needed to do so. <var class="Arg">idleft</var> is a boolean that sets the position of the identity matrix in <var class="Arg">M</var>. (The default for <var class="Arg">idleft</var> is `true'.) If <var class="Arg">idleft</var> is set to `true', the identity matrix is put on the left side of <var class="Arg">M</var>. Otherwise, it is put at the right side. (This option is useful when putting a check matrix of a code into standard form.) The function <code class="code">BaseMat</code> also returns a similar standard form, but does not apply column permutations. The rows of the matrix still span the same vector space after <code class="code">BaseMat</code>, but after calling <code class="code">PutStandardForm</code>, this is not necessarily true.</p>
<table class="example">
<tr><td><pre>
gap> M := Z(2)*[[1,0,0,1],[0,0,1,1]];; PrintArray(M);
[ [ Z(2), 0*Z(2), 0*Z(2), Z(2) ],
[ 0*Z(2), 0*Z(2), Z(2), Z(2) ] ]
gap> PutStandardForm(M); # identity at the left side
(2,3)
gap> PrintArray(M);
[ [ Z(2), 0*Z(2), 0*Z(2), Z(2) ],
[ 0*Z(2), Z(2), 0*Z(2), Z(2) ] ]
gap> PutStandardForm(M, false); # identity at the right side
(1,4,3)
gap> PrintArray(M);
[ [ 0*Z(2), Z(2), Z(2), 0*Z(2) ],
[ 0*Z(2), Z(2), 0*Z(2), Z(2) ] ]
gap> C := BestKnownLinearCode( 23, 12, GF(2) );
a linear [23,12,7]3 punctured code
gap> G:=MutableCopyMat(GeneratorMat(C));;
gap> PutStandardForm(G);
()
gap> Display(G);
1 . . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1
. 1 . . . . . . . . . . 1 1 1 1 1 . . 1 . . .
. . 1 . . . . . . . . . 1 1 . 1 . . 1 . 1 . 1
. . . 1 . . . . . . . . 1 1 . . . 1 1 1 . 1 .
. . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 . 1
. . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 1
. . . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1
. . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 . .
. . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 .
. . . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 .
. . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1 1
. . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1
</pre></td></tr></table>
<p><a id="X7D4EDA0A854EBFEF" name="X7D4EDA0A854EBFEF"></a></p>
<h5>7.3-7 IsInStandardForm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> IsInStandardForm</code>( <var class="Arg">M[, idleft]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsInStandardForm</code> determines if <var class="Arg">M</var> is in standard form. <var class="Arg">idleft</var> is a boolean that indicates the position of the identity matrix in <var class="Arg">M</var>, as in <code class="code">PutStandardForm</code> (see <code class="func">PutStandardForm</code> (<a href="chap7.html#X7B47D82485B66F1D"><b>7.3-6</b></a>)). <code class="code">IsInStandardForm</code> checks if the identity matrix is at the left side of <var class="Arg">M</var>, otherwise if it is at the right side. The elements of <var class="Arg">M</var> may be elements of any field.</p>
<table class="example">
<tr><td><pre>
gap> IsInStandardForm(IdentityMat(7, GF(2)));
true
gap> IsInStandardForm([[1, 1, 0], [1, 0, 1]], false);
true
gap> IsInStandardForm([[1, 3, 2, 7]]);
true
gap> IsInStandardForm(HadamardMat(4));
false
</pre></td></tr></table>
<p><a id="X7A97AD477E7638DE" name="X7A97AD477E7638DE"></a></p>
<h5>7.3-8 PermutedCols</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> PermutedCols</code>( <var class="Arg">M, P</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PermutedCols</code> returns a matrix <var class="Arg">M</var> with a permutation <var class="Arg">P</var> applied to its columns.</p>
<table class="example">
<tr><td><pre>
gap> M := [[1,2,3,4],[1,2,3,4]];; PrintArray(M);
[ [ 1, 2, 3, 4 ],
[ 1, 2, 3, 4 ] ]
gap> PrintArray(PermutedCols(M, (1,2,3)));
[ [ 3, 1, 2, 4 ],
[ 3, 1, 2, 4 ] ]
</pre></td></tr></table>
<p><a id="X7B68119F85E9EC6D" name="X7B68119F85E9EC6D"></a></p>
<h5>7.3-9 VerticalConversionFieldMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> VerticalConversionFieldMat</code>( <var class="Arg">M, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">VerticalConversionFieldMat</code> returns the matrix <var class="Arg">M</var> with its elements converted from a field F=GF(q^m), q prime, to a field GF(q). Each element is replaced by its representation over the latter field, placed vertically in the matrix, using the GF(p)-vector space isomorphism</p>
<p class="pcenter">
[...] : GF(q)\rightarrow GF(p)^m,
</p>
<p>with q=p^m.</p>
<p>If <var class="Arg">M</var> is a k by n matrix, the result is a k* m x n matrix, since each element of GF(q^m) can be represented in GF(q) using m elements.</p>
<table class="example">
<tr><td><pre>
gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[ [ Z(3^2), Z(3^2)^5 ],
[ Z(3^2)^5, Z(3^2) ] ]
gap> DefaultField( Flat(M) );
GF(3^2)
gap> VCFM := VerticalConversionFieldMat( M, GF(9) );; PrintArray(VCFM);
[ [ 0*Z(3), 0*Z(3) ],
[ Z(3)^0, Z(3) ],
[ 0*Z(3), 0*Z(3) ],
[ Z(3), Z(3)^0 ] ]
gap> DefaultField( Flat(VCFM) );
GF(3)
</pre></td></tr></table>
<p>A similar function is <code class="code">HorizontalConversionFieldMat</code> (see <code class="func">HorizontalConversionFieldMat</code> (<a href="chap7.html#X8033E9A67BA155C8"><b>7.3-10</b></a>)).</p>
<p><a id="X8033E9A67BA155C8" name="X8033E9A67BA155C8"></a></p>
<h5>7.3-10 HorizontalConversionFieldMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> HorizontalConversionFieldMat</code>( <var class="Arg">M, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">HorizontalConversionFieldMat</code> returns the matrix <var class="Arg">M</var> with its elements converted from a field F=GF(q^m), q prime, to a field GF(q). Each element is replaced by its representation over the latter field, placed horizontally in the matrix.</p>
<p>If <var class="Arg">M</var> is a k x n matrix, the result is a kx mx n* m matrix. The new word length of the resulting code is equal to n* m, because each element of GF(q^m) can be represented in GF(q) using m elements. The new dimension is equal to kx m because the new matrix should be a basis for the same number of vectors as the old one.</p>
<p><code class="code">ConversionFieldCode</code> uses horizontal conversion to convert a code (see <code class="func">ConversionFieldCode</code> (<a href="chap6.html#X81FE1F387DFCCB22"><b>6.1-15</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> M := Z(9)*[[1,2],[2,1]];; PrintArray(M);
[ [ Z(3^2), Z(3^2)^5 ],
[ Z(3^2)^5, Z(3^2) ] ]
gap> DefaultField( Flat(M) );
GF(3^2)
gap> HCFM := HorizontalConversionFieldMat(M, GF(9));; PrintArray(HCFM);
[ [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3) ],
[ Z(3)^0, Z(3)^0, Z(3), Z(3) ],
[ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ],
[ Z(3), Z(3), Z(3)^0, Z(3)^0 ] ]
gap> DefaultField( Flat(HCFM) );
GF(3)
</pre></td></tr></table>
<p>A similar function is <code class="code">VerticalConversionFieldMat</code> (see <code class="func">VerticalConversionFieldMat</code> (<a href="chap7.html#X7B68119F85E9EC6D"><b>7.3-9</b></a>)).</p>
<p><a id="X804AAFF2867080F7" name="X804AAFF2867080F7"></a></p>
<h5>7.3-11 MOLS</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> MOLS</code>( <var class="Arg">q[, n]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">MOLS</code> returns a list of <var class="Arg">n</var> <em>Mutually Orthogonal Latin Squares</em> (MOLS). A <em>Latin square</em> of order <var class="Arg">q</var> is a qx q matrix whose entries are from a set F_q of <var class="Arg">q</var> distinct symbols (<strong class="pkg">GUAVA</strong> uses the integers from 0 to <var class="Arg">q</var>) such that each row and each column of the matrix contains each symbol exactly once.</p>
<p>A set of Latin squares is a set of MOLS if and only if for each pair of Latin squares in this set, every ordered pair of elements that are in the same position in these matrices occurs exactly once.</p>
<p><var class="Arg">n</var> must be less than <var class="Arg">q</var>. If <var class="Arg">n</var> is omitted, two MOLS are returned. If <var class="Arg">q</var> is not a prime power, at most 2 MOLS can be created. For all values of <var class="Arg">q</var> with q > 2 and q <> 6, a list of MOLS can be constructed. However, <strong class="pkg">GUAVA</strong> does not yet construct MOLS for q= 2 mod 4. If it is not possible to construct <var class="Arg">n</var> MOLS, the function returns `false'.</p>
<p>MOLS are used to create <var class="Arg">q</var>-ary codes (see <code class="func">MOLSCode</code> (<a href="chap5.html#X81B7EE4279398F67"><b>5.1-4</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> M := MOLS( 4, 3 );;PrintArray( M[1] );
[ [ 0, 1, 2, 3 ],
[ 1, 0, 3, 2 ],
[ 2, 3, 0, 1 ],
[ 3, 2, 1, 0 ] ]
gap> PrintArray( M[2] );
[ [ 0, 2, 3, 1 ],
[ 1, 3, 2, 0 ],
[ 2, 0, 1, 3 ],
[ 3, 1, 0, 2 ] ]
gap> PrintArray( M[3] );
[ [ 0, 3, 1, 2 ],
[ 1, 2, 0, 3 ],
[ 2, 1, 3, 0 ],
[ 3, 0, 2, 1 ] ]
gap> MOLS( 12, 3 );
false
</pre></td></tr></table>
<p><a id="X7F34306B81DC2776" name="X7F34306B81DC2776"></a></p>
<h5>7.3-12 IsLatinSquare</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> IsLatinSquare</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsLatinSquare</code> determines if a matrix <var class="Arg">M</var> is a Latin square. For a Latin square of size nx n, each row and each column contains all the integers 1,dots,n exactly once.</p>
<table class="example">
<tr><td><pre>
gap> IsLatinSquare([[1,2],[2,1]]);
true
gap> IsLatinSquare([[1,2,3],[2,3,1],[1,3,2]]);
false
</pre></td></tr></table>
<p><a id="X81B9B40B7B2D97D5" name="X81B9B40B7B2D97D5"></a></p>
<h5>7.3-13 AreMOLS</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> AreMOLS</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AreMOLS</code> determines if <var class="Arg">L</var> is a list of mutually orthogonal Latin squares (MOLS). For each pair of Latin squares in this list, the function checks if each ordered pair of elements that are in the same position in these matrices occurs exactly once. The function <code class="code">MOLS</code> creates MOLS (see <code class="func">MOLS</code> (<a href="chap7.html#X804AAFF2867080F7"><b>7.3-11</b></a>)).</p>
<table class="example">
<tr><td><pre>
gap> M := MOLS(4,2);
[ [ [ 0, 1, 2, 3 ], [ 1, 0, 3, 2 ], [ 2, 3, 0, 1 ], [ 3, 2, 1, 0 ] ],
[ [ 0, 2, 3, 1 ], [ 1, 3, 2, 0 ], [ 2, 0, 1, 3 ], [ 3, 1, 0, 2 ] ] ]
gap> AreMOLS(M);
true
</pre></td></tr></table>
<p><a id="X7AB5E5CE7FDF7132" name="X7AB5E5CE7FDF7132"></a></p>
<h4>7.4 <span class="Heading">
Some functions related to the norm of a code
</span></h4>
<p>In this section, some functions that can be used to compute the norm of a code and to decide upon its normality are discussed. Typically, these are applied to binary linear codes. The definitions of this section were introduced in Graham and Sloane <a href="chapBib.html#biBGS85">[GS85]</a>.</p>
<p><a id="X8032E53078264ABB" name="X8032E53078264ABB"></a></p>
<h5>7.4-1 CoordinateNorm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CoordinateNorm</code>( <var class="Arg">C, coord</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CoordinateNorm</code> returns the norm of <var class="Arg">C</var> with respect to coordinate <var class="Arg">coord</var>. If C_a = c in C | c_coord = a, then the norm of <var class="Arg">C</var> with respect to <var class="Arg">coord</var> is defined as</p>
<p class="pcenter">
\max_{v \in GF(q)^n} \sum_{a=1}^q d(x,C_a),
</p>
<p>with the convention that d(x,C_a) = n if C_a is empty.</p>
<table class="example">
<tr><td><pre>
gap> CoordinateNorm( HammingCode( 3, GF(2) ), 3 );
3
</pre></td></tr></table>
<p><a id="X7ED2EF368203AF47" name="X7ED2EF368203AF47"></a></p>
<h5>7.4-2 CodeNorm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CodeNorm</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeNorm</code> returns the norm of <var class="Arg">C</var>. The <em>norm</em> of a code is defined as the minimum of the norms for the respective coordinates of the code. In effect, for each coordinate <code class="code">CoordinateNorm</code> is called, and the minimum of the calculated numbers is returned.</p>
<table class="example">
<tr><td><pre>
gap> CodeNorm( HammingCode( 3, GF(2) ) );
3
</pre></td></tr></table>
<p><a id="X7D24F8BF7F9A7BF1" name="X7D24F8BF7F9A7BF1"></a></p>
<h5>7.4-3 IsCoordinateAcceptable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> IsCoordinateAcceptable</code>( <var class="Arg">C, coord</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsCoordinateAcceptable</code> returns `true' if coordinate <var class="Arg">coord</var> of <var class="Arg">C</var> is acceptable. A coordinate is called <em>acceptable</em> if the norm of the code with respect to that coordinate is not more than two times the covering radius of the code plus one.</p>
<table class="example">
<tr><td><pre>
gap> IsCoordinateAcceptable( HammingCode( 3, GF(2) ), 3 );
true
</pre></td></tr></table>
<p><a id="X87039FD179AD3009" name="X87039FD179AD3009"></a></p>
<h5>7.4-4 GeneralizedCodeNorm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GeneralizedCodeNorm</code>( <var class="Arg">C, subcode1, subscode2, ..., subcodek</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">GeneralizedCodeNorm</code> returns the <var class="Arg">k</var>-norm of <var class="Arg">C</var> with respect to <var class="Arg">k</var> subcodes.</p>
<table class="example">
<tr><td><pre>
gap> c := RepetitionCode( 7, GF(2) );;
gap> ham := HammingCode( 3, GF(2) );;
gap> d := EvenWeightSubcode( ham );;
gap> e := ConstantWeightSubcode( ham, 3 );;
gap> GeneralizedCodeNorm( ham, c, d, e );
4
</pre></td></tr></table>
<p><a id="X80283A2F7C8101BD" name="X80283A2F7C8101BD"></a></p>
<h5>7.4-5 IsNormalCode</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> IsNormalCode</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsNormalCode</code> returns `true' if <var class="Arg">C</var> is normal. A code is called <em>normal</em> if the norm of the code is not more than two times the covering radius of the code plus one. Almost all codes are normal, however some (non-linear) abnormal codes have been found.</p>
<p>Often, it is difficult to find out whether a code is normal, because it involves computing the covering radius. However, <code class="code">IsNormalCode</code> uses much information from the literature (in particular, <a href="chapBib.html#biBGS85">[GS85]</a>) about normality for certain code parameters.</p>
<table class="example">
<tr><td><pre>
gap> IsNormalCode( HammingCode( 3, GF(2) ) );
true
</pre></td></tr></table>
<p><a id="X8308D685809A4E2F" name="X8308D685809A4E2F"></a></p>
<h4>7.5 <span class="Heading">
Miscellaneous functions
</span></h4>
<p>In this section we describe several vector space functions <strong class="pkg">GUAVA</strong> uses for constructing codes or performing calculations with codes.</p>
<p>In this section, some new miscellaneous functions are described, including weight enumerators, the MacWilliams-transform and affinity and almost affinity of codes.</p>
<p><a id="X871286437DE7A6A4" name="X871286437DE7A6A4"></a></p>
<h5>7.5-1 CodeWeightEnumerator</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CodeWeightEnumerator</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeWeightEnumerator</code> returns a polynomial of the following form:</p>
<p class="pcenter">
f(x) = \sum_{i=0}^{n} A_i x^i,
</p>
<p>where A_i is the number of codewords in <var class="Arg">C</var> with weight i.</p>
<table class="example">
<tr><td><pre>
gap> CodeWeightEnumerator( ElementsCode( [ [ 0,0,0 ], [ 0,0,1 ],
> [ 0,1,1 ], [ 1,1,1 ] ], GF(2) ) );
x^3 + x^2 + x + 1
gap> CodeWeightEnumerator( HammingCode( 3, GF(2) ) );
x^7 + 7*x^4 + 7*x^3 + 1
</pre></td></tr></table>
<p><a id="X84DA928083B103A0" name="X84DA928083B103A0"></a></p>
<h5>7.5-2 CodeDistanceEnumerator</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CodeDistanceEnumerator</code>( <var class="Arg">C, w</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeDistanceEnumerator</code> returns a polynomial of the following form:</p>
<p class="pcenter">
f(x) = \sum_{i=0}^{n} B_i x^i,
</p>
<p>where B_i is the number of codewords with distance i to <var class="Arg">w</var>.</p>
<p>If <var class="Arg">w</var> is a codeword, then <code class="code">CodeDistanceEnumerator</code> returns the same polynomial as <code class="code">CodeWeightEnumerator</code>.</p>
<table class="example">
<tr><td><pre>
gap> CodeDistanceEnumerator( HammingCode( 3, GF(2) ),[0,0,0,0,0,0,1] );
x^6 + 3*x^5 + 4*x^4 + 4*x^3 + 3*x^2 + x
gap> CodeDistanceEnumerator( HammingCode( 3, GF(2) ),[1,1,1,1,1,1,1] );
x^7 + 7*x^4 + 7*x^3 + 1 # `[1,1,1,1,1,1,1]' $\in$ `HammingCode( 3, GF(2 ) )'
</pre></td></tr></table>
<p><a id="X84B2BE66780EFBF9" name="X84B2BE66780EFBF9"></a></p>
<h5>7.5-3 CodeMacWilliamsTransform</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CodeMacWilliamsTransform</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeMacWilliamsTransform</code> returns a polynomial of the following form:</p>
<p class="pcenter">
f(x) = \sum_{i=0}^{n} C_i x^i,
</p>
<p>where C_i is the number of codewords with weight i in the <em>dual</em> code of <var class="Arg">C</var>.</p>
<table class="example">
<tr><td><pre>
gap> CodeMacWilliamsTransform( HammingCode( 3, GF(2) ) );
7*x^4 + 1
</pre></td></tr></table>
<p><a id="X7903286078F8051B" name="X7903286078F8051B"></a></p>
<h5>7.5-4 CodeDensity</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CodeDensity</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CodeDensity</code> returns the <em>density</em> of <var class="Arg">C</var>. The density of a code is defined as</p>
<p class="pcenter">
\frac{M \cdot V_q(n,t)}{q^n},
</p>
<p>where M is the size of the code, V_q(n,t) is the size of a sphere of radius t in GF(q^n) (which may be computed using <code class="code">SphereContent</code>), t is the covering radius of the code and n is the length of the code.</p>
<table class="example">
<tr><td><pre>
gap> CodeDensity( HammingCode( 3, GF(2) ) );
1
gap> CodeDensity( ReedMullerCode( 1, 4 ) );
14893/2048
</pre></td></tr></table>
<p><a id="X85303BAE7BD46D81" name="X85303BAE7BD46D81"></a></p>
<h5>7.5-5 SphereContent</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> SphereContent</code>( <var class="Arg">n, t, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">SphereContent</code> returns the content of a ball of radius <var class="Arg">t</var> around an arbitrary element of the vectorspace F^n. This is the cardinality of the set of all elements of F^n that are at distance (see <code class="func">DistanceCodeword</code> (<a href="chap3.html#X7CDA1B547D55E6FB"><b>3.6-2</b></a>) less than or equal to <var class="Arg">t</var> from an element of F^n.</p>
<p>In the context of codes, the function is used to determine if a code is perfect. A code is <em>perfect</em> if spheres of radius t around all codewords partition the whole ambient vector space, where <em>t</em> is the number of errors the code can correct.</p>
<table class="example">
<tr><td><pre>
gap> SphereContent( 15, 0, GF(2) );
1 # Only one word with distance 0, which is the word itself
gap> SphereContent( 11, 3, GF(4) );
4984
gap> C := HammingCode(5);
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
#the minimum distance is 3, so the code can correct one error
gap> ( SphereContent( 31, 1, GF(2) ) * Size(C) ) = 2 ^ 31;
true
</pre></td></tr></table>
<p><a id="X7ACDC5377CD17451" name="X7ACDC5377CD17451"></a></p>
<h5>7.5-6 Krawtchouk</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> Krawtchouk</code>( <var class="Arg">k, i, n, q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Krawtchouk</code> returns the Krawtchouk number K_k(i). <var class="Arg">q</var> must be a prime power, <var class="Arg">n</var> must be a positive integer, <var class="Arg">k</var> must be a non-negative integer less then or equal to <var class="Arg">n</var> and <var class="Arg">i</var> can be any integer. (See <code class="func">KrawtchoukMat</code> (<a href="chap7.html#X82899B64802A4BCE"><b>7.3-1</b></a>)). This number is the value at x=i of the polynomial</p>
<p class="pcenter">
K_k^{n,q}(x)
=\sum_{j=0}^n (-1)^j(q-1)^{k-j}b(x,j)b(n-x,k-j),
</p>
<p>where $b(v,u)=u!/(v!(v-u)!)$ is the binomial coefficient if $u,v$ are integers. For more properties of these polynomials, see <a href="chapBib.html#biBMS83">[MS83]</a>.</p>
<table class="example">
<tr><td><pre>
gap> Krawtchouk( 2, 0, 3, 2);
3
</pre></td></tr></table>
<p><a id="X827E39957A87EB51" name="X827E39957A87EB51"></a></p>
<h5>7.5-7 PrimitiveUnityRoot</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> PrimitiveUnityRoot</code>( <var class="Arg">F, n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PrimitiveUnityRoot</code> returns a primitive <var class="Arg">n</var>-th root of unity in an extension field of <var class="Arg">F</var>. This is a finite field element a with the property a^n=1 in <var class="Arg">F</var>, and <var class="Arg">n</var> is the smallest integer such that this equality holds.</p>
<table class="example">
<tr><td><pre>
gap> PrimitiveUnityRoot( GF(2), 15 );
Z(2^4)
gap> last^15;
Z(2)^0
gap> PrimitiveUnityRoot( GF(8), 21 );
Z(2^6)^3
</pre></td></tr></table>
<p><a id="X78AEA40F7AD9D541" name="X78AEA40F7AD9D541"></a></p>
<h5>7.5-8 PrimitivePolynomialsNr</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> PrimitivePolynomialsNr</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PrimitivePolynomialsNr</code> returns the number of irreducible polynomials over F=GF(q) of degree <var class="Arg">n</var> with (maximum) period q^n-1. (According to a theorem of S. Golomb, this is phi(p^n-1)/n.)</p>
<p>See also the GAP function <code class="code">RandomPrimitivePolynomial</code>, <code class="func">RandomPrimitivePolynomial</code> (<a href="chap2.html#X7ECC593583E68A6C"><b>2.2-2</b></a>).</p>
<table class="example">
<tr><td><pre>
gap> PrimitivePolynomialsNr(3,4);
12
</pre></td></tr></table>
<p><a id="X7A2B54EF868AA752" name="X7A2B54EF868AA752"></a></p>
<h5>7.5-9 IrreduciblePolynomialsNr</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> IrreduciblePolynomialsNr</code>( <var class="Arg">n, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">PrimitivePolynomialsNr</code> returns the number of irreducible polynomials over F=GF(q) of degree <var class="Arg">n</var>.</p>
<table class="example">
<tr><td><pre>
gap> IrreduciblePolynomialsNr(3,4);
20
</pre></td></tr></table>
<p><a id="X7B50D3417F6FD7C6" name="X7B50D3417F6FD7C6"></a></p>
<h5>7.5-10 MatrixRepresentationOfElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> MatrixRepresentationOfElement</code>( <var class="Arg">a, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Here <var class="Arg">F</var> is either a finite extension of the ``base field'' GF(p) or of the rationals Q}, and ain F. The command <code class="code">MatrixRepresentationOfElement</code> returns a matrix representation of <var class="Arg">a</var> over the base field.</p>
<p>If the element <var class="Arg">a</var> is defined over the base field then it returns the corresponding 1x 1 matrix.</p>
<table class="example">
<tr><td><pre>
gap> a:=Random(GF(4));
0*Z(2)
gap> M:=MatrixRepresentationOfElement(a,GF(4));; Display(M);
.
gap> a:=Random(GF(4));
Z(2^2)
gap> M:=MatrixRepresentationOfElement(a,GF(4));; Display(M);
. 1
1 1
gap>
</pre></td></tr></table>
<p><a id="X7805D2BB7CE4D455" name="X7805D2BB7CE4D455"></a></p>
<h5>7.5-11 ReciprocalPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ReciprocalPolynomial</code>( <var class="Arg">P</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ReciprocalPolynomial</code> returns the <em>reciprocal</em> of polynomial <var class="Arg">P</var>. This is a polynomial with coefficients of <var class="Arg">P</var> in the reverse order. So if P=a_0 + a_1 X + ... + a_n X^n, the reciprocal polynomial is P'=a_n + a_n-1 X + ... + a_0 X^n.</p>
<p>This command can also be called using the syntax <code class="code">ReciprocalPolynomial( P , n )</code>. In this form, the number of coefficients of <var class="Arg">P</var> is assumed to be less than or equal to n+1 (with zero coefficients added in the highest degrees, if necessary). Therefore, the reciprocal polynomial also has degree n+1.</p>
<table class="example">
<tr><td><pre>
gap> P := UnivariatePolynomial( GF(3), Z(3)^0 * [1,0,1,2] );
Z(3)^0+x_1^2-x_1^3
gap> RecP := ReciprocalPolynomial( P );
-Z(3)^0+x_1+x_1^3
gap> ReciprocalPolynomial( RecP ) = P;
true
gap> P := UnivariatePolynomial( GF(3), Z(3)^0 * [1,0,1,2] );
Z(3)^0+x_1^2-x_1^3
gap> ReciprocalPolynomial( P, 6 );
-x_1^3+x_1^4+x_1^6
</pre></td></tr></table>
<p><a id="X7AEA9F807E6FFEFF" name="X7AEA9F807E6FFEFF"></a></p>
<h5>7.5-12 CyclotomicCosets</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CyclotomicCosets</code>( <var class="Arg">q, n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">CyclotomicCosets</code> returns the cyclotomic cosets of q mod n. <var class="Arg">q</var> and <var class="Arg">n</var> must be relatively prime. Each of the elements of the returned list is a list of integers that belong to one cyclotomic coset. A q-cyclotomic coset of s mod n is a set of the form s,sq,sq^2,...,sq^r-1, where r is the smallest positive integer such that sq^r-s is 0 mod n. In other words, each coset contains all multiplications of the coset representative by q mod n. The coset representative is the smallest integer that isn't in the previous cosets.</p>
<table class="example">
<tr><td><pre>
gap> CyclotomicCosets( 2, 15 );
[ [ 0 ], [ 1, 2, 4, 8 ], [ 3, 6, 12, 9 ], [ 5, 10 ],
[ 7, 14, 13, 11 ] ]
gap> CyclotomicCosets( 7, 6 );
[ [ 0 ], [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] ]
</pre></td></tr></table>
<p><a id="X7A4EA98D794CF410" name="X7A4EA98D794CF410"></a></p>
<h5>7.5-13 WeightHistogram</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> WeightHistogram</code>( <var class="Arg">C[, h]</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">WeightHistogram</code> plots a histogram of weights in code <var class="Arg">C</var>. The maximum length of a column is <var class="Arg">h</var>. Default value for <var class="Arg">h</var> is 1/3 of the size of the screen. The number that appears at the top of the histogram is the maximum value of the list of weights.</p>
<table class="example">
<tr><td><pre>
gap> H := HammingCode(2, GF(5));
a linear [6,4,3]1 Hamming (2,5) code over GF(5)
gap> WeightDistribution(H);
[ 1, 0, 0, 80, 120, 264, 160 ]
gap> WeightHistogram(H);
264----------------
*
*
*
*
* *
* * *
* * * *
* * * *
+--------+--+--+--+--
0 1 2 3 4 5 6
</pre></td></tr></table>
<p><a id="X805DF25C84585FD6" name="X805DF25C84585FD6"></a></p>
<h5>7.5-14 MultiplicityInList</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> MultiplicityInList</code>( <var class="Arg">L, a</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This is a very simple list command which returns how many times a occurs in L. It returns 0 if a is not in L. (The GAP command <code class="code">Collected</code> does not quite handle this "extreme" case.)</p>
<table class="example">
<tr><td><pre>
gap> L:=[1,2,3,4,3,2,1,5,4,3,2,1];;
gap> MultiplicityInList(L,1);
3
gap> MultiplicityInList(L,6);
0
</pre></td></tr></table>
<p><a id="X8072B0DA78FBE562" name="X8072B0DA78FBE562"></a></p>
<h5>7.5-15 MostCommonInList</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> MostCommonInList</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: a list L</p>
<p>Output: an a in L which occurs at least as much as any other in L</p>
<table class="example">
<tr><td><pre>
gap> L:=[1,2,3,4,3,2,1,5,4,3,2,1];;
gap> MostCommonInList(L);
1
</pre></td></tr></table>
<p><a id="X7C5407EF87849857" name="X7C5407EF87849857"></a></p>
<h5>7.5-16 RotateList</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> RotateList</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: a list L</p>
<p>Output: a list L' which is the cyclic rotation of L (to the right)</p>
<table class="example">
<tr><td><pre>
gap> L:=[1,2,3,4];;
gap> RotateList(L);
[2,3,4,1]
</pre></td></tr></table>
<p><a id="X85E526367878F72A" name="X85E526367878F72A"></a></p>
<h5>7.5-17 CirculantMatrix</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CirculantMatrix</code>( <var class="Arg">k, L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: integer k, a list L of length n</p>
<p>Output: kxn matrix whose rows are cyclic rotations of the list L</p>
<table class="example">
<tr><td><pre>
gap> k:=3; L:=[1,2,3,4];;
gap> M:=CirculantMatrix(k,L);;
gap> Display(M);
</pre></td></tr></table>
<p><a id="X7969103F7A8598F9" name="X7969103F7A8598F9"></a></p>
<h4>7.6 <span class="Heading">
Miscellaneous polynomial functions
</span></h4>
<p>In this section we describe several multivariate polynomial GAP functions <strong class="pkg">GUAVA</strong> uses for constructing codes or performing calculations with codes.</p>
<p><a id="X84D51EBB784E7C5D" name="X84D51EBB784E7C5D"></a></p>
<h5>7.6-1 MatrixTransformationOnMultivariatePolynomial </h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> MatrixTransformationOnMultivariatePolynomial </code>( <var class="Arg">AfR</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><var class="Arg">A</var> is an nx n matrix with entries in a field F, <var class="Arg">R</var> is a polynomial ring of n variables, say F[x_1,...,x_n], and <var class="Arg">f</var> is a polynomial in <var class="Arg">R</var>. Returns the composition fcirc A.</p>
<p><a id="X80433A4B792880EF" name="X80433A4B792880EF"></a></p>
<h5>7.6-2 DegreeMultivariatePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DegreeMultivariatePolynomial</code>( <var class="Arg">f, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This command takes two arguments, <var class="Arg">f</var>, a multivariate polynomial, and <var class="Arg">R</var> a polynomial ring over a field F containing <var class="Arg">f</var>, say R=F[x_1,x_2,...,x_n]. The output is simply the maximum degrees of all the monomials occurring in <var class="Arg">f</var>.</p>
<p>This command can be used to compute the degree of an affine plane curve.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [ x_1, x_2 ])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;
gap> poly:=y^2-x*(x^2-1);;
gap> DegreeMultivariatePolynomial(poly,R2);
3
</pre></td></tr></table>
<p><a id="X83F44E397C56F2E0" name="X83F44E397C56F2E0"></a></p>
<h5>7.6-3 DegreesMultivariatePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DegreesMultivariatePolynomial</code>( <var class="Arg">f, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns a list of information about the multivariate polynomial <var class="Arg">f</var>. Nice for other programs but mostly unreadable by GAP users.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [ x_1, x_2 ])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;
gap> poly:=y^2-x*(x^2-1);;
gap> DegreesMultivariatePolynomial(poly,R2);
[ [ [ x_1, x_1, 1 ], [ x_1, x_2, 0 ] ], [ [ x_2^2, x_1, 0 ], [ x_2^2, x_2, 2 ] ],
[ [ x_1^3, x_1, 3 ], [ x_1^3, x_2, 0 ] ] ]
gap>
</pre></td></tr></table>
<p><a id="X7E9021697A61A60F" name="X7E9021697A61A60F"></a></p>
<h5>7.6-4 CoefficientMultivariatePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CoefficientMultivariatePolynomial</code>( <var class="Arg">f, var, power, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The command <code class="code">CoefficientMultivariatePolynomial</code> takes four arguments: a multivariant polynomial <var class="Arg">f</var>, a variable name <var class="Arg">var</var>, an integer <var class="Arg">power</var>, and a polynomial ring <var class="Arg">R</var> containing <var class="Arg">f</var>. For example, if <var class="Arg">f</var> is a multivariate polynomial in R = F[x_1,x_2,...,x_n] then <var class="Arg">var</var> must be one of the x_i. The output is the coefficient of x_i^power in <var class="Arg">f</var>.</p>
<p>(Not sure if F needs to be a field in fact ...)</p>
<p>Related to the GAP command <code class="code">PolynomialCoefficientsPolynomial</code>.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [ x_1, x_2 ])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;
gap> poly:=y^2-x*(x^2-1);;
gap> PolynomialCoefficientsOfPolynomial(poly,x);
[ x_2^2, Z(11)^0, 0*Z(11), -Z(11)^0 ]
gap> PolynomialCoefficientsOfPolynomial(poly,y);
[ -x_1^3+x_1, 0*Z(11), Z(11)^0 ]
gap> CoefficientMultivariatePolynomial(poly,y,0,R2);
-x_1^3+x_1
gap> CoefficientMultivariatePolynomial(poly,y,1,R2);
0*Z(11)
gap> CoefficientMultivariatePolynomial(poly,y,2,R2);
Z(11)^0
gap> CoefficientMultivariatePolynomial(poly,x,0,R2);
x_2^2
gap> CoefficientMultivariatePolynomial(poly,x,1,R2);
Z(11)^0
gap> CoefficientMultivariatePolynomial(poly,x,2,R2);
0*Z(11)
gap> CoefficientMultivariatePolynomial(poly,x,3,R2);
-Z(11)^0
</pre></td></tr></table>
<p><a id="X79E76B6F7D177E27" name="X79E76B6F7D177E27"></a></p>
<h5>7.6-5 SolveLinearSystem</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> SolveLinearSystem</code>( <var class="Arg">L, vars</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Input: <var class="Arg">L</var> is a list of linear forms in the variables <var class="Arg">vars</var>.</p>
<p>Output: the solution of the system, if its unique.</p>
<p>The procedure is straightforward: Find the associated matrix A, find the "constant vector" b, and solve A*v=b. No error checking is performed.</p>
<p>Related to the GAP command <code class="code">SolutionMat( A, b )</code>.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);;
gap> R2:=PolynomialRing(F,2);
PolynomialRing(..., [ x_1, x_2 ])
gap> vars:=IndeterminatesOfPolynomialRing(R2);;
gap> x:=vars[1];; y:=vars[2];;
gap> f:=3*y-3*x+1;; g:=-5*y+2*x-7;;
gap> soln:=SolveLinearSystem([f,g],[x,y]);
[ Z(11)^3, Z(11)^2 ]
gap> Value(f,[x,y],soln); # checking okay
0*Z(11)
gap> Value(g,[x,y],col); # checking okay
0*Z(11)
</pre></td></tr></table>
<p><a id="X80171AA687FFDC70" name="X80171AA687FFDC70"></a></p>
<h5>7.6-6 GuavaVersion</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> GuavaVersion</code>( <var class="Arg"></var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns the current version of Guava. Same as <code class="code">guava\_version()</code>.</p>
<table class="example">
<tr><td><pre>
gap> GuavaVersion();
"2.7"
</pre></td></tr></table>
<p><a id="X7EBBE86D85CC90C0" name="X7EBBE86D85CC90C0"></a></p>
<h5>7.6-7 ZechLog</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> ZechLog</code>( <var class="Arg">x, b, F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns the Zech log of x to base b, ie the i such that $x+1=b^i$, so $y+z=y(1+z/y)=b^k$, where k=Log(y,b)+ZechLog(z/y,b) and b must be a primitive element of F.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);; l := One(F);;
gap> ZechLog(2*l,8*l,F);
-24
gap> 8*l+l;(2*l)^(-24);
Z(11)^6
Z(11)^6
</pre></td></tr></table>
<p><a id="X7C8C1E6A7E3497F0" name="X7C8C1E6A7E3497F0"></a></p>
<h5>7.6-8 CoefficientToPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> CoefficientToPolynomial</code>( <var class="Arg">coeffs, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">CoefficientToPolynomial</code> returns the degree d-1 polynomial c_0+c_1x+...+c_d-1x^d-1, where <var class="Arg">coeffs</var> is a list of elements of a field, coeffs= c_0,...,c_d-1, and <var class="Arg">R</var> is a univariate polynomial ring.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> coeffs:=Z(11)^0*[1,2,3,4];
[ Z(11)^0, Z(11), Z(11)^8, Z(11)^2 ]
gap> CoefficientToPolynomial(coeffs,R1);
Z(11)^2*a^3+Z(11)^8*a^2+Z(11)*a+Z(11)^0
</pre></td></tr></table>
<p><a id="X8431985183B63BB7" name="X8431985183B63BB7"></a></p>
<h5>7.6-9 DegreesMonomialTerm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DegreesMonomialTerm</code>( <var class="Arg">m, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">DegreesMonomialTerm</code> returns the list of degrees to which each variable in the multivariate polynomial ring <var class="Arg">R</var> occurs in the monomial <var class="Arg">m</var>, where <var class="Arg">coeffs</var> is a list of elements of a field.</p>
<table class="example">
<tr><td><pre>
gap> F:=GF(11);
GF(11)
gap> R1:=PolynomialRing(F,["a"]);;
gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
gap> b:=X(F,"b",var1);
b
gap> var2:=Concatenation(var1,[b]);
[ a, b ]
gap> R2:=PolynomialRing(F,var2);
PolynomialRing(..., [ a, b ])
gap> c:=X(F,"c",var2);
c
gap> var3:=Concatenation(var2,[c]);
[ a, b, c ]
gap> R3:=PolynomialRing(F,var3);
PolynomialRing(..., [ a, b, c ])
gap> m:=b^3*c^7;
b^3*c^7
gap> DegreesMonomialTerm(m,R3);
[ 0, 3, 7 ]
</pre></td></tr></table>
<p><a id="X860EF39B841380A1" name="X860EF39B841380A1"></a></p>
<h5>7.6-10 DivisorsMultivariatePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">> DivisorsMultivariatePolynomial</code>( <var class="Arg">f, R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The function <code class="code">DivisorsMultivariatePolynomial</code> returns the list of polynomial divisors of <var class="Arg">f</var> in the multivariate polynomial ring <var class="Arg">R</var> with coefficients in a field. This program uses a simple but slow algorithm (see Joachim von zur Gathen, Jürgen Gerhard, <a href="chapBib.html#biBGG03">[GG03]</a>, exercise 16.10) which first converts the multivariate polynomial <var class="Arg">f</var> to an associated univariate polynomial f^*, then <code class="code">Factors</code> f^*, and finally converts these univariate factors back into the multivariate polynomial factors of <var class="Arg">f</var>. Since <code class="code">Factors</code> is non-deterministic, <code class="code">DivisorsMultivariatePolynomial</code> is non-deterministic as well.</p>
<table class="example">
<tr><td><pre>
gap> R2:=PolynomialRing(GF(3),["x1","x2"]);
PolynomialRing(..., [ x1, x2 ])
gap> vars:=IndeterminatesOfPolynomialRing(R2);
[ x1, x2 ]
gap> x2:=vars[2];
x2
gap> x1:=vars[1];
x1
gap> f:=x1^3+x2^3;;
gap> DivisorsMultivariatePolynomial(f,R2);
[ x1+x2, x1+x2, x1+x2 ]
</pre></td></tr></table>
<p><a id="X82257DE97D1822AA" name="X82257DE97D1822AA"></a></p>
<h4>7.7 <span class="Heading">
GNU Free Documentation License
</span></h4>
<p>GNU Free Documentation License Version 1.2, November 2002</p>
<p>Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.</p>
<p>0. PREAMBLE</p>
<p>The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.</p>
<p>This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.</p>
<p>We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.</p>
<p>1. APPLICABILITY AND DEFINITIONS</p>
<p>This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.</p>
<p>A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.</p>
<p>A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.</p>
<p>The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.</p>
<p>The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.</p>
<p>A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".</p>
<p>Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.</p>
<p>The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.</p>
<p>A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.</p>
<p>The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.</p>
<p>2. VERBATIM COPYING</p>
<p>You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.</p>
<p>You may also lend copies, under the same conditions stated above, and you may publicly display copies.</p>
<p>3. COPYING IN QUANTITY</p>
<p>If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.</p>
<p>If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.</p>
<p>If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.</p>
<p>It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.</p>
<p>4. MODIFICATIONS</p>
<p>You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:</p>
<p>A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.</p>
<p>B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.</p>
<p>C. State on the Title page the name of the publisher of the Modified Version, as the publisher.</p>
<p>D. Preserve all the copyright notices of the Document.</p>
<p>E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.</p>
<p>F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.</p>
<p>G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.</p>
<p>H. Include an unaltered copy of this License.</p>
<p>I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.</p>
<p>J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.</p>
<p>K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.</p>
<p>L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.</p>
<p>M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.</p>
<p>N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.</p>
<p>O. Preserve any Warranty Disclaimers.</p>
<p>If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.</p>
<p>You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.</p>
<p>You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.</p>
<p>The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.</p>
<p>5. COMBINING DOCUMENTS</p>
<p>You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.</p>
<p>The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.</p>
<p>In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".</p>
<p>6. COLLECTIONS OF DOCUMENTS</p>
<p>You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.</p>
<p>You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.</p>
<p>7. AGGREGATION WITH INDEPENDENT WORKS</p>
<p>A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.</p>
<p>If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.</p>
<p>8. TRANSLATION</p>
<p>Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.</p>
<p>If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.</p>
<p>9. TERMINATION</p>
<p>You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.</p>
<p>10. FUTURE REVISIONS OF THIS LICENSE</p>
<p>The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.</p>
<p>Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.</p>
<div class="chlinkprevnextbot"> <a href="chap0.html">Top of Book</a> <a href="chap6.html">Previous Chapter</a> <a href="chapBib.html">Next Chapter</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|