1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
#############################################################################
##
#A matrices.gi GUAVA library Reinald Baart
#A &Jasper Cramwinckel
#A &Erik Roijackers
##
## This file contains functions for generating matrices
##
#H @(#)$Id: matrices.gi,v 1.4 2003/02/12 03:49:19 gap Exp $
##
Revision.("guava/lib/matrices_gi") :=
"@(#)$Id: matrices.gi,v 1.4 2003/02/12 03:49:19 gap Exp $";
#############################################################################
##
#F KrawtchoukMat( <n> [, <q>] ) . . . . . . . matrix of Krawtchouk numbers
##
InstallMethod(KrawtchoukMat, "n,q", true, [IsInt, IsInt], 0,
function(n,q)
local res,i,k;
if not IsPrimePowerInt(q) then
Error("q must be a prime power int");
fi;
res := MutableNullMat(n+1,n+1);
for k in [0..n] do
res[1][k+1]:=1;
od;
for k in [0..n] do
res[k+1][1] := Binomial(n,k)*(q-1)^k;
od;
for i in [2..n+1] do
for k in [2..n+1] do
res[k][i] := res[k][i-1] - (q-1)*res[k-1][i] - res[k-1][i-1];
od;
od;
return res;
end);
InstallOtherMethod(KrawtchoukMat, "n", true, [IsInt], 0,
function(n)
return KrawtchoukMat(n, 2);
end);
#############################################################################
##
#F GrayMat( <n> [, <F>] ) . . . . . . . . . matrix of Gray-ordered vectors
##
## GrayMat(n [, F]) returns a matrix in which rows a(i) have the property
## d( a(i), a(i+1) ) = 1 and a(1) = 0.
##
InstallMethod(GrayMat, "n,Field", true, [IsInt, IsField], 0,
function(n, F)
local M, result, row, series, column, elem, q, elementnr, line,
goingup;
elem := AsSSortedList(F);
q := Length(elem);
M := q^n;
result := MutableNullMat(M,n);
for column in [1..n] do
goingup := true;
row:=0;
for series in [1..q^(column-1)] do
for elementnr in [1..q] do
for line in [1..q^(n-column)] do
row:=row+1;
if goingup then
result[row][column]:= elem[elementnr];
else
result[row][column]:= elem[q+1-elementnr];
fi;
od;
od;
goingup:= not goingup;
od;
od;
return result;
end);
InstallOtherMethod(GrayMat, "n", true, [IsInt], 0,
function(n)
return GrayMat(n, GF(2));
end);
#############################################################################
##
#F SylvesterMat( <n> ) . . . . . . . . . . . . Sylvester matrix of order <n>
##
InstallMethod(SylvesterMat, "order", true, [IsInt], 0,
function(n)
local result, syl;
if n = 1 then
return [[1]];
elif (n mod 2)=0 then
syl:=SylvesterMat(n/2);
result:=List(syl, x->Concatenation(x,x));
Append(result,List(syl,x->Concatenation(x,-x)));
return result;
else
Error("n must be a power of 2");
fi;
end);
HadamardMat_paleyI := function(n)
local p,N,i,j,H1,H2,L,S,I;
if IsPrime(n-1) and (n-1) mod 4=3 then
p := n-1;
else
Print("The order ",n," is not covered by the Paley type I construction.\n");
return(0);
fi;
H1 := function(i,j)
if i=0 then return(1); fi;
if j=0 then return(-1); fi;
if i=j then return(1); fi;
return Legendre(i-j,p);
end;
L := List([0..p],j->List([0..p], i->H1(i,j)));
return L;
end;
HadamardMat_paleyII := function(n)
local p,N,i,j,H1,H2,L,S,I,B;
N := n/2;
if IsPrime(N-1) and (N-1) mod 4=1 then
p := N-1;
else
Print("The order ",n," is not covered by the Paley type II construction.\n");
return(0);
fi;
H2 := function(i,j)
if (i=0 and j=0) then return(0); fi;
if i=0 or j=0 then return(1); fi;
if i=j then return(0); fi;
return Legendre(i-j,p);
end;
S := List([0..p],j->List([0..p], i->H2(i,j)));
I := IdentityMat(N,Integers);
Display(S);
Print(S,"\n",I,"\n");
B := BlockMatrix([[1,1,S+I],[1,2,S-I],[2,1,S-I],[2,2,-S-I]],2,2);
return MatrixByBlockMatrix(B);
end;
#############################################################################
##
#F HadamardMat( <n> ) . . . . . . . . . . . . Hadamard matrix of order <n>
##
InstallMethod(HadamardMat, "order", true, [IsInt], 0, function(n)
local result, had, i, j, N;
if n mod 2 = 0 then
N:=n/2;
else
Error("The Hadamard matrix of order ",n," does not exist");
fi;
if n = 1 then
return [[1]];
elif IsPrimeInt(N-1) and ((N-1) mod 4)=1 then
Print("Type II\n");
return HadamardMat_paleyII(n);
elif (n=2) or (n=4) or ((n mod 8)=0) then
had:=HadamardMat(n/2);
result:=List(had, x->Concatenation(x,x));
Append(result,List(had,x->Concatenation(x,-x)));
return result;
elif IsPrimeInt(n-1) and (n mod 4)=0 then
result := List(MutableNullMat(n,n)+1, x->ShallowCopy(x));
for i in [2..n] do
result[i][i]:=-1;
for j in [i+1..n] do
result[i][j]:=Legendre(j-i,n-1);
result[j][i]:=-result[i][j];
od;
od;
return result;
elif (n mod 4)=0 then
Error("The Hadamard matrix of order ",n," is not yet implemented");
else
Error("The Hadamard matrix of order ",n," does not exist");
fi;
end);
#############################################################################
##
#F IsLatinSquare( <M> ) . . . . . . . determines if matrix is latin square
##
## IsLatinSquare determines if M is a latin square, that is a q*q array whose
## entries are from a set of q distinct symbols such that each row and each
## column of the array contains each symbol exactly once
##
InstallMethod(IsLatinSquare, "method for matrix", true, [IsMatrix], 0,
function(M)
local i, j, s, n, isLS, MT;
n:=Length(M);
s:=Set(M[1]);
isLS:= (Length(s) = n and Length(s) = Length(M[1]) );
i:=2;
if isLS then
MT:=TransposedMat(M);
fi;
while isLS and i<=n do
isLS:= (Set(M[i]) = s);
i:=i+1;
od;
i := 1;
while isLS and i<=n do
isLS:= (Set(MT[i]) = s);
i:=i+1;
od;
return isLS;
end);
InstallOtherMethod(IsLatinSquare, "generic method, any object", true,
[IsObject], 0,
function(obj)
if IsMatrix(obj) then
TryNextMethod();
fi;
return false;
end);
#############################################################################
##
#F AreMOLS( <matlist> ) . . . . . . . . . determines if arguments are MOLS
##
## AreMOLS(M1, M2, ...) determines if the arguments are mutually orthogonal
## latin squares.
##
##LR - doesn't handle case where arg is list of one matrix. Is this a prob?
InstallGlobalFunction(AreMOLS,
function(arg)
local i, j, s, M, n, q2, first, second, max, fast;
if Length(arg) = 1 then
M:=arg[1];
else
M:=List([1..Length(arg)],i->arg[i]);
fi;
n:=Length(M);
if ( n >= Length(M[1]) ) or not ForAll(M, i-> IsLatinSquare(i)) then
return false; #this is right
fi;
q2 := Length(M[1])^2;
max := Maximum(M[1][1]) + 1;
M := List(M, i -> Flat(i));
fast := (DefaultField(Flat(M)) = Rationals);
first := 1;
repeat
second := first+1;
if fast then
repeat
s := Set( M[first] * max + M[second] );
second := second + 1;
until (Length(s) < q2) or (second > n);
else
repeat
s:=Set([]);
for i in [1 .. q2] do
AddSet(s, [ M[first][i], M[second][i] ]);
od;
second := second + 1;
until (Length(s) < q2) or (second > n);
fi;
first:=first + 1;
until (Length(s) < q2) or (first >= n);
return Length(s) = q2;
end);
#############################################################################
##
#F MOLS( <q> [, <n>] ) . . . . . . . . . . list of <n> MOLS of size <q>*<q>
##
## MOLS( q [, n]) returns a list of n Mutually Orthogonal Latin
## Squares of size q * q. If n is omitted, MOLS will return a list
## of two MOLS. If it is not possible to return n MOLS of size q,
## MOLS will return a boolean false.
##
InstallMethod(MOLS, "size, number", true, [IsInt, IsInt], 0,
function(q, n)
local facs, res, Merged, Squares, nr, S, ToInt;
ToInt := function(M)
local res, els, q, i, j;
q:=Length(M);
els:=AsSSortedList(GF(q));
res := MutableNullMat(q,q)+1;
for i in [1..q] do
for j in [1..q] do
while els[res[i][j]] <> M[i][j] do
res[i][j]:=res[i][j]+1;
od;
od;
od;
return res-1;
end;
Squares := function(q, n)
local els, res, i, j, k;
els:=AsSSortedList(GF(q));
res:=List([1..n], x-> MutableNullMat(q,q,GF(q)));
for i in [1..q] do
for j in [1..q] do
for k in [1..n] do
res[k][i][j] := els[i] + els[k+1] * els[j];
od;
od;
od;
return List([1..n],x -> ToInt(res[x]));
end;
Merged := function(A, B)
local i, j, q1, q2, res;
q1:=Length(A);
q2:=Length(B);
res:=KroneckerProduct(A,NullMat(q2,q2)+1);
for i in [1 .. q1*q2] do
for j in [1 .. q1*q2] do
res[i][j]:= res[i][j] + q1 *
B[((i-1) mod q2)+1][((j-1) mod q2)+1];
od;
od;
return res;
end;
if n <= 0 then
return false;
elif (q < 3) or (q = 6) or (q mod 4) = 2 then
return false; #this must be so
elif n <> 2 then
if (not IsPrimePowerInt(q)) or (n >= q) then
return false; #this is right
elif IsPrimeInt(q) then
return List([1..n],i -> List([0..q-1], y -> List([0..q-1], x ->
(x+i*y) mod q)));
else
return Squares(q,n);
fi;
else
res:=[[[0]],[[0]]];
facs:=Collected(Factors(q));
for nr in facs do
if nr[2] = 1 then
S:= List([1..2], i -> List([0..nr[1]-1],y ->
List([0..nr[1]-1], x -> (x+i*y) mod nr[1])));
else
S:=Squares(nr[1]^nr[2],2);
fi;
res:=[Merged(res[1],S[1]),Merged(res[2],S[2])];
od;
return res;
fi;
end);
InstallOtherMethod(MOLS, "size", true, [IsInt], 0,
function(q)
return MOLS(q, 2);
end);
#############################################################################
##
#F VerticalConversionFieldMat( <M> ) . . . . . . . converts matrix to GF(q)
##
## VerticalConversionFieldMat (M) converts a matrix over GF(q^m) to a matrix
## over GF(q) with vertical orientation of the tuples
##
InstallMethod(VerticalConversionFieldMat, "method for matrix and field", true,
[IsMatrix, IsField], 0,
function(M, F)
local res, q, Fq, m, n, r, ConvTable, x, temp, i, j, k, zero;
q := Characteristic(F);
Fq := GF(q);
zero := Zero(Fq);
m := Dimension(F);
n := Length(M[1]);
r := Length(M);
ConvTable := [];
x := Indeterminate(Fq);
temp := MinimalPolynomial(Fq, Z(q^m));
for i in [1.. q^m - 1] do
ConvTable[i] := VectorCodeword(Codeword(x^(i-1) mod temp, m+1));
od;
res := MutableNullMat(r * m, n, Fq);
for i in [1..r] do
for j in [1..n] do
if M[i][j] <> zero then
temp := ConvTable[LogFFE(M[i][j], Z(q^m)) + 1];
for k in [1..m] do
res[(i-1)*m + k][j] := temp[k];
od;
fi;
od;
od;
return res;
end);
InstallOtherMethod(VerticalConversionFieldMat, "method for matrix", true,
[IsMatrix], 0,
function(M)
return VerticalConversionFieldMat(M, DefaultField(Flat(M)));
end);
#############################################################################
##
#F HorizontalConversionFieldMat( <M>, <F> ) . . . converts matrix to GF(q)
##
## HorizontalConversionFieldMat (M, F) converts a matrix over GF(q^m) to a
## matrix over GF(q) with horizontal orientation of the tuples
##
InstallMethod(HorizontalConversionFieldMat, "method for matrix and field",
true, [IsMatrix, IsField], 0,
function(M, F)
local res, vec, k, n, coord, i, p, q, m, zero, g, Nul, ConvTable,
x;
q := Characteristic(F);
m := Dimension(F);
zero := Zero(F);
g := MinimalPolynomial(GF(q), Z(q^m));
Nul := List([1..m], i -> zero);
ConvTable := [];
x := Indeterminate(GF(q));
for i in [1..Size(F) - 1] do
ConvTable[i] := VectorCodeword(Codeword(x^(i-1) mod g, m));
od;
res := [];
n := Length(M[1]);
k := Length(M);
for vec in [0..k-1] do
for i in [1..m] do res[m*vec+i] := []; od;
for coord in [1..n] do
if M[vec+1][coord] <> zero then
p := LogFFE(M[vec+1][coord], Z(q^m));
for i in [1..m] do
if (p+i) mod q^m = 0 then p := p+1; fi;
Append(res[m*vec+i], ConvTable[(p + i) mod (q^m)]);
od;
else
for i in [1..m] do
Append(res[m*vec+i], Nul);
od;
fi;
od;
od;
return res;
end);
InstallOtherMethod(HorizontalConversionFieldMat, "method for matrix", true,
[IsMatrix], 0,
function(M)
return HorizontalConversionFieldMat(M, DefaultField(Flat(M)));
end);
#############################################################################
##
#F IsInStandardForm( <M> [, <boolean>] ) . . . . is matrix in standard form?
##
## IsInStandardForm(M [, identityleft]) determines if M is in standard form;
## if identityleft = false, the identitymatrix must be at the right side
## of M; otherwise at the left side.
##
InstallMethod(IsInStandardForm, "method for matrix and boolean", true,
[IsMatrix, IsBool], 0,
function(M, identityleft)
local l;
l := Length(M);
if identityleft = false then
return IdentityMat(l, DefaultField(Flat(M))) =
M{[1..l]}{[Length(M[1])-l+1..Length(M[1])]};
else
return IdentityMat(l, DefaultField(Flat(M))) = M{[1..l]}{[1..l]};
fi;
end);
InstallOtherMethod(IsInStandardForm, "method for matrix", true, [IsMatrix], 0,
function(M)
return IsInStandardForm(M, true);
end);
#############################################################################
##
#F PutStandardForm( <M> [, <boolean>] [, <F>] ) . put <M> in standard form
##
## PutStandardForm(Mat [, idleft] [, F]) puts matrix Mat in standard form,
## the size of Mat being (n x m). If idleft is true or is omitted, the
## the identity matrix is put left, else right. The permutation is returned.
##
InstallMethod(PutStandardForm, "method for matrix, idleft and field", true,
[IsMatrix, IsBool, IsField], 0,
function(Mat, idleft, F)
local n, m, row, i, j, h, hp, s, zero, P;
n := Length(Mat); # not the word length!
m := Length(Mat[1]);
if idleft then
return PutStandardForm(Mat,F);
else
s := m-n;
fi;
zero := Zero(F);
P := ();
for j in [1..n] do
if Mat[j][j+s] =zero then
i := j+1;
while (i <= n) and (Mat[i][j+s] = zero) do
i := i + 1;
od;
if i <= n then
row := Mat[j];
Mat[j] := Mat[i];
Mat[i] := row;
else
h := j+s;
while Mat[j][h] = zero do
h := h + 1;
if h > m then h := 1; fi;
od;
for i in [1..n] do
Mat[i] := Permuted(Mat[i],(j+s,h));
od;
P := P*(j+s,h);
fi;
fi;
Mat[j] := Mat[j]/Mat[j][j+s];
for i in [1..n] do
if i <> j then
if Mat[i][j+s] <> zero then
Mat[i] := Mat[i]-Mat[i][j+s]*Mat[j];
fi;
fi;
od;
od;
return P;
end);
##
##Thanks to Frank Luebeck for this code:
##
InstallOtherMethod(PutStandardForm, "method for matrix and Field", true,
[IsMatrix, IsField], 0,
function(mat, F)
local perm, k, i, j, d ;
d := Length(mat[1]);
TriangulizeMat(mat);
perm := ();
k := Length(mat[1]);
for i in [1..Length(mat)] do
j := PositionNonZero(mat[i]);
if (j <= d and i <> j) then
perm := perm * (i,j);
fi;
od;
if perm <> () then
for i in [1..Length(mat)] do
mat[i] := Permuted(mat[i], perm);
od;
fi;
return perm;
end);
InstallOtherMethod(PutStandardForm, "method for matrix and idleft", true,
[IsMatrix, IsBool], 0,
function(M, idleft)
return PutStandardForm(M, idleft, DefaultField(Flat(M)));
end);
InstallOtherMethod(PutStandardForm, "method for matrix", true, [IsMatrix], 0,
function(M)
return PutStandardForm(M, true, DefaultField(Flat(M)));
end);
|