1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
#############################################################################
##
#A tblgener.gi GUAVA library Reinald Baart
#A Jasper Cramwinckel
#A Erik Roijackers
#A Eric Minkes
##
## Table generation
##
#H @(#)$Id: tblgener.gi,v 1.2 2003/02/12 03:49:21 gap Exp $
##
Revision.("guava/lib/tblgener_gi") :=
"@(#)$Id: tblgener.gi,v 1.2 2003/02/12 03:49:21 gap Exp $";
#############################################################################
##
#F CreateBoundsTable( <Sz>, <q> [, <info> ] ) . . constructs table of bounds
##
InstallMethod(CreateBoundsTable, "Sz, fieldsize, info", true,
[IsInt, IsInt, IsBool], 0,
function(Sz, q, info)
local RulesList, LBT, UBT, FillPoints, NumberUnchanged, RuleNumber, file,
WriteToFile, InitialTable, help, temp;
help :=
Concatenation("\n##\n",
"## Each entry [n][k] of one of the tables below contains\n",
"## a bound (the first table contains lowerbounds, the \n",
"## second upperbounds) for a code with wordlength n and \n",
"## dimension k. Each entry contains one of the following\n",
"## items: \n",
"## \n",
"## FOR LOWER- AND UPPERBOUNDSTABLE \n",
"## [ 0, <d>, <ref> ] from Brouwers table \n",
"## \n",
"## FOR LOWERBOUNDSTABLE \n",
"## empty k= 0, 1, n or d= 2 or (k= 2 and q= 2) \n",
"## 1 shortening a [ n + 1, k + 1 ] code \n",
"## 2 puncturing a [ n + 1, k ] code \n",
"## 3 extending a [ n - 1, k ] code \n",
"## [ 4, <dd> ] constr. B, of a [ n+dd, k+dd-1, d ] code\n",
"## [ 5, <k1> ] an UUV-construction with a [ n / 2, k1 ]\n",
"## and a [ n / 2, k - k1 ] code \n",
"## [ 6, <n1> ] concatenation of a [ n1, k ] and a \n",
"## [ n - n1, k ] code \n",
"## [ 7, <n1> ] taking the residue of a [ n1, k + 1 ] code\n",
"## \n",
"## FOR UPPERBOUNDSTABLE \n",
"## empty Griesmer bound \n",
"## 11 shortening a [ n + 1, k + 1 ] code \n",
"## 12 puncturing a [ n + 1, k ] code \n",
"## 13 extending a [ n - 1, k ] code \n",
"## [ 14, <dd> ] constr. B, with dd = dual distance \n");
InitialTable := function(to, lb)
local n, k, d, i, j, sum, BT;
BT := List([1..to], i-> [[i]]); #RepetitionCodes
for k in [2 .. to] do
BT[k][k] := [1]; #WholeSpaceCode
for n in [k+1 .. to] do
if lb then
BT[n][k] := [2];
else #upperbound
# Calculate Griesmer bound (for linear codes only)
# n >= Sum([0..k-1],i->DivUp(d,q^i));
d := BT[n-1][k][1] + 1;
sum := 0;
i := 1;
j := 1;
while j <= k do
# Calculate one term
sum := sum + QuoInt(d, i) + SignInt(d mod i);
i := i * q;
if i >= d then
# the rest will be one
sum := sum + k - j;
j := k;
fi;
j := j + 1;
od;
if sum <= n then
BT[n][k] := [d];
else
BT[n][k] := [d - 1];
fi;
fi;
od;
if q = 2 and k > 2 then #CordaroWagnerCode
BT[k][2] := [ 2*Int( (k+1) / 3 ) - Int(k mod 3 / 2 ) ];
fi;
od;
return BT;
end;
FillPoints := function( BT, lb )
local pt, initialfile;
GUAVA_TEMP_VAR := [false];
if lb then
initialfile := Filename(LOADED_PACKAGES.guava,
Concatenation("tbl/codes",
String(q),".g") );
else
initialfile := Filename(LOADED_PACKAGES.guava,
Concatenation("tbl/upperbd",
String(q),".g") );
fi;
if initialfile = fail then
Error("no table around for GF(",String(q),")");
fi;
if GUAVA_TEMP_VAR[1] = false then
GUAVA_TEMP_VAR := GUAVA_TEMP_VAR{[ 2 .. Length(GUAVA_TEMP_VAR) ]};
fi;
for pt in GUAVA_TEMP_VAR do
if (pt[1] <= Sz) and (pt[2] <= pt[1]) and
((lb and pt[3] > BT[pt[1]][pt[2]][1]) or
((not lb) and pt[3] < BT[pt[1]][pt[2]][1])) then
BT[pt[1]][pt[2]] := [pt[3], [ 0, pt[3], pt[4] ] ];
fi;
od;
return BT;
end;
WriteToFile := function(BT)
local list, k, n;
Print(Concatenation( "][", String(q), "] := [\n#V n = 1\n[ ]" ) );
for n in [2 .. Sz] do
list := [];
for k in [1 .. n] do
if Length( BT[n][k] ) = 2 then
list[k] := BT[n][k][2];
fi;
od;
Print(Concatenation(",\n#V n = ",String(n),"\n"), list);
od;
Print("];");
end;
#F begin of rules for lowerbound
RulesList := [];
# If a rule is added which is only valid for a special q (like q=2) the
# check for q should be around the Add(RulesList, function()....) :
# if q=2 then Add(RulesList, function() .... end); fi;
# Extending
Add(RulesList, function()
local n, k, number;
number := 0;
for n in [1..Sz-1] do
for k in [1..n] do
if q=2 and IsOddInt(LBT[n][k][1]) then
if LBT[n+1][k][1] < LBT[n][k][1] + 1 then
LBT[n+1][k] := [LBT[n][k][1] + 1, 3 ];
number := number + 1;
fi;
else
if LBT[n+1][k][1] < LBT[n][k][1] then
LBT[n+1][k] := [LBT[n][k][1], 3 ];
number := number + 1;
fi;
fi;
od;
od;
if info then Print(number," changes with Extending\n" ); fi;
return number > 0;
end);
# UUV Construction
Add(RulesList, function()
local n, k1, k2, d, d1, number;
number := 0;
for n in [ 3 .. Int( Sz / 2 ) ] do
for k1 in [ 1 .. n-2 ] do # V is a ( n, k1, d1 )-code
d1 := LBT[n][k1][1];
for k2 in [ k1+1 .. n-1 ] do # U is a ( n, k2, d2 )-code
d := 2 * LBT[n][k2][1];
if d1 < d then d := d1; fi; #faster then Minimum();
if LBT[2 * n][k1 + k2][1] < d then
LBT[2 * n][k1 + k2] := [d, [5, k2] ];
number := number + 1;
fi;
od;
od;
od;
if info then Print(number," changes with UUV\n" ); fi;
return (number > 0);
end);
# Concatenation
Add(RulesList, function()
local n1, n2, k, d, number;
number := 0;
for k in [ 2 .. Sz ] do
for n1 in [ k .. Int( Sz / 2 ) ] do
for n2 in [ n1 .. Sz - n1 ] do
d := LBT[n1][k][1] + LBT[n2][k][1];
if LBT[n1 + n2][k][1] < d then
LBT[n1 + n2][k] := [d, [6, n1 ] ];
number := number + 1;
fi;
od;
od;
od;
if info then Print(number," changes with Concatenation\n" ); fi;
return number > 0;
end);
# Puncturing
Add( RulesList,
function()
local n, k, number;
number := 0;
for n in Reversed([2..Sz]) do
for k in [1..n-1] do
if LBT[n-1][k][1] < LBT[n][k][1] - 1 then
LBT[n-1][k] := [LBT[n][k][1] - 1, 2 ];
number := number + 1;
fi;
od;
od;
if info then Print(number," changes with Puncturing\n" ); fi;
return (number > 0);
end);
# Shortening
Add(RulesList,
function()
local n, k, number;
number := 0;
for n in Reversed([5 .. Sz]) do
for k in [3 .. n-2] do
if LBT[n-1][k-1][1] < LBT[n][k][1] then
LBT[n-1][k-1] := [LBT[n][k][1], 1 ];
number := number + 1;
fi;
od;
od;
if info then Print(number," changes with Shortening\n" ); fi;
return (number > 0);
end);
# Taking the residue
Add(RulesList, function()
local n, k, temp, d, dnew, number;
number := 0;
for n in Reversed([ 4 .. Sz ]) do
temp := LBT[n];
for k in [ 3 .. n - 1 ] do
d := temp[k][1];
dnew := QuoInt(d,q)+SignInt(d mod q);# = (d/q) rounded up
if ( n - d > k ) and (LBT[ n - d ][ k - 1 ][1] < dnew) then
LBT[ n - d ][ k - 1 ] := [ dnew, [ 7, n ] ];
number := number + 1;
fi;
od;
od;
if info then Print(number," changes with Residue\n" ); fi;
return number > 0;
end);
# Construction B: M&S, Ch. 18, P. 9, Pg. 592
Add(RulesList, function()
local n, k, dd, number;
number := 0;
for n in Reversed([2..Sz]) do
for k in Reversed([1..n-1]) do
dd := UBT[n][n-k][1]; # upper bound for dual distance
if n-dd > 0 and k-dd+1 > 0 and
LBT[n-dd][k-dd+1][1] < LBT[n][k][1] then
LBT[n-dd][k-dd+1] := [ LBT[n][k][1], [4, dd] ];
number := number + 1;
fi;
od;
od;
if info then Print(number," changes with Construction B\n" ); fi;
return number > 0;
end);
#F begin of rules for lowerbound (not working)
# # ConversionFieldCode (it appears that this rule is not needed)
# if q = 2 then
# temp := BT4[1];
# Add(RulesList,
# function()
# local n, k, d, number;
# number := 0;
# for n in [ 2 .. Int(Sz/2) ] do
# for k in [ 1 .. n - 1 ] do
# d := temp[n][k][1];
# if LBT[2*n][2*k][1] < d then
# LBT[2*n][2*k] := [ d , 8 ];
# number := number + 1;
# fi;
# od;
# od;
# if info then Print(number," changes with ConversionField\n" ); fi;
# return number > 0;
# end);
# fi;
#F begin of rules for upperbound
# Shortening
Add(RulesList, function()
local n, k, number;
number := 0;
for n in [ 2 .. Sz-1 ] do
for k in [ 1 .. n - 1 ] do
if UBT[ n + 1 ][ k + 1 ][ 1 ] > UBT[ n ][ k ][ 1 ] then
UBT[ n + 1 ][ k + 1 ] := [ UBT[ n ][ k ][ 1 ], 11 ];
number := number + 1;
fi;
od;
od;
if info then Print(number," changes with Shortening\n" ); fi;
return number > 0;
end);
# Construction B
Add(RulesList, function()
local n, k, dd, s, number;
number := 0;
for n in [2..Sz] do
for k in [1..n-1] do
for s in [1..Sz-n-1] do
if s >= UBT[n+s][n-k+1][1] and
UBT[n+s][k+s-1][1] > UBT[n][k][1] then
UBT[n+s][k+s-1] := [ UBT[n][k][1], [14, s] ];
number := number + 1;
fi;
od;
od;
od;
if info then Print(number," changes with Construction B\n" ); fi;
return number > 0;
end);
# Extending
Add(RulesList, function()
local n, k, number;
number := 0;
for n in Reversed([2..Sz]) do
for k in [1..n-2] do
if q=2 and IsOddInt(UBT[n][k][1]) then
if UBT[n-1][k][1] > UBT[n][k][1]-1 then
UBT[n-1][k] := [ UBT[n][k][1]-1, 13 ];
number := number + 1;
fi;
else
if UBT[n-1][k][1] > UBT[n][k][1] then
UBT[n-1][k] := [ UBT[n][k][1], 13 ];
number := number + 1;
fi;
fi;
od;
od;
if info then Print(number," changes with Extending\n" ); fi;
return number > 0;
end);
# Puncturing
Add(RulesList, function()
local n, k, number;
number := 0;
for n in [ 2 .. Sz-1 ] do
for k in [ 2 .. n - 1 ] do
if UBT[ n + 1 ][ k ][ 1 ] > UBT[ n ][ k ][ 1 ] + 1 then
UBT[ n + 1 ][ k ] := [ UBT[ n ][ k ][ 1 ] + 1, 12 ];
number := number + 1;
fi;
od;
od;
if info then Print(number," changes with Puncturing\n" ); fi;
return number > 0;
end);
#F begin of rules for upperbound (not working)
#
# # Taking the residue
# Add(RulesList, function()
# local n, k;
# for n in [ 2 .. Sz-1 ] do
# for k in [ 2 .. n - 1 ] do
# if UBT[ n + q * UBT[ n ][ k ][ 1 ] ][ k + 1 ] >
# UBT[ n ][ k ][ 1 ] * q then
# UBT[ n + q * UBT[ n ] [ k ][ 1 ] ][ k + 1 ] :=
# [UBT[ n ][ k ][ 1 ] * q, [7, n + q * UBT[n][k][1]]];
# number := number + 1;
# fi;
# od;
# od;
# end);
#F begin of body
LBT := InitialTable( Sz, true );
LBT := FillPoints ( LBT, true );
UBT := InitialTable( Sz, false );
UBT := FillPoints ( UBT, false );
NumberUnchanged := 0;
RuleNumber := 1;
repeat
if RulesList[RuleNumber]() then
NumberUnchanged := 0;
else
NumberUnchanged := NumberUnchanged + 1;
fi;
if RuleNumber = Length(RulesList) then
RuleNumber := 1;
if info then Print("\n"); fi;
else
RuleNumber := RuleNumber + 1;
fi;
until NumberUnchanged >= Length(RulesList);
# This way of saving the tables to a file make use of a nasty trick,
# used to speed up things heavily
##LR - This trick is not yet working in GAP4. Until it does,
## the tables will not be printed to the file.
if info then Print("\nSaving the bound tables...\n"); fi;
file := Filename(LOADED_PACKAGES.guava,
Concatenation("tbl/bdtable",String(q),".g") );
PrintTo(file, "#A BOUNDS FOR q = ", String(q), help,
"\n\nGUAVA_BOUNDS_TABLE[1", WriteToFile(LBT),
"\n\nGUAVA_BOUNDS_TABLE[2", WriteToFile(UBT) );
return [LBT,UBT]; #just used for testing the program
end);
InstallOtherMethod(CreateBoundsTable, "Sz, fieldsize", true,
[IsInt, IsInt], 0,
function(Sz, q)
return CreateBoundsTable(Sz, q, false);
end);
InstallOtherMethod(CreateBoundsTable, "Sz, field, info", true,
[IsInt, IsField, IsBool], 0,
function(Sz, F, info)
return CreateBoundsTable(Sz, Size(F), info);
end);
InstallOtherMethod(CreateBoundsTable, "Sz, field", true,
[IsInt, IsField], 0,
function(Sz, F)
return CreateBoundsTable(Sz, Size(F), false);
end);
|