File: util.gi

package info (click to toggle)
guava 3.6-2
  • links: PTS
  • area: main
  • in suites: lenny, squeeze, wheezy
  • size: 11,788 kB
  • ctags: 2,359
  • sloc: ansic: 20,846; xml: 10,043; sh: 2,855; makefile: 388
file content (249 lines) | stat: -rw-r--r-- 6,973 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#############################################################################
##
#A  util.gi                 GUAVA library                       Reinald Baart
#A                                                        &Jasper Cramwinckel
#A                                                           &Erik Roijackers
##
##  This file contains miscellaneous functions
##
#H  @(#)$Id: util.gi,v 1.5 2003/02/12 03:49:21 gap Exp $
##
Revision.("guava/lib/util_gi") :=
    "@(#)$Id: util.gi,v 1.5 2003/02/12 03:49:21 gap Exp $";

#############################################################################
##
#F  SphereContent( <n>, <e> [, <F>] ) . . . . . . . . . . .  contents of ball
##
##  SphereContent(n, e [, F]) calculates the contents of a ball of radius e in 
##  the space (GF(q))^n
##

InstallMethod(SphereContent, "n, radius, fieldsize", true, 
	[IsInt, IsInt, IsInt], 0, 
function(n, e, q) 
	local res, num, den, i, q_1;  
	q_1 := q - 1;
    res := 0;
    num := 1;
    den := 1;
    for i in [0..e] do
        res := res + (num * den);
        num := num * q_1;
        den := (den * (n-i)) / (i+1);
    od;
    return res;
end);

InstallOtherMethod(SphereContent, "n, radius, field", true, 
	[IsInt, IsInt, IsField], 0, 
function(n,e,F) 
	return SphereContent(n, e, Size(F)); 
end); 

InstallOtherMethod(SphereContent, "n, radius", true, [IsInt, IsInt], 0, 
function(n, e) 
	return SphereContent(n, e, 2); 
end); 


#############################################################################
##
#F  Krawtchouk( <k>, <i>, <n> [, <F>] ) . . . . . .  Krwatchouk number K_k(i)
##
##  Krawtchouk(k, i, n [, F]) calculates the Krawtchouk number K_k(i) 
##  over field of size q (or 2), wordlength n.
##  Pre: 0 <= k <= n
##

InstallMethod(Krawtchouk, "k, i, wordlength, fieldsize", true, 
	[IsInt, IsInt, IsInt, IsInt], 0, 
function(k, i, n, q) 
    local q_1;
	q_1 := q - 1;
    if k > n or k < 0 then
        Error("0 <= k <= n");
    elif not IsPrimePowerInt(q+1) then
        Error("q must be a prime power");
    fi;
    return Sum([0..k],j->Binomial(i,j)*Binomial(n-i,k-j)*(-1)^j*q_1^(k-j));
end);

InstallOtherMethod(Krawtchouk, "k, i, wordlength, field", true, 
	[IsInt, IsInt, IsInt, IsField], 0, 
function(k, i, n, F) 
	return Krawtchouk(k, i, n, Size(F));
end); 

InstallOtherMethod(Krawtchouk, "k, i, wordlength", true, 
	[IsInt, IsInt, IsInt], 0, 
function(k, i, n) 
	return Krawtchouk(k, i, n, 2); 
end); 

#############################################################################
##
#F  PermutedCols( <M>, <P> )  . . . . . . . . . .  permutes columns of matrix
##

InstallMethod(PermutedCols, "matrix, permutation", true, [IsMatrix, IsPerm], 0, 
function(M, P)
    if P = () then
        return M;
    else
        return List(M, i -> Permuted(i,P));
    fi;
end);

#############################################################################
##
#F  ReciprocalPolynomial( <p> [, <n>] ) . . . . . .  reciprocal of polynomial
##

InstallMethod(ReciprocalPolynomial, "poly, wordlength", true, 
	[IsUnivariatePolynomial, IsInt], 0, 
function(p, n) 
	local cl, F, fam, w;  
	w := Codeword(p, n+1); 
	cl := VectorCodeword(w); 
	F := CoefficientsRing(DefaultRing(PolyCodeword(w))); 
	fam := ElementsFamily(FamilyObj(F)); 
	return LaurentPolynomialByCoefficients(fam, Reversed(cl), 0); 
end); 


InstallOtherMethod(ReciprocalPolynomial, "poly", true, 
	[IsUnivariatePolynomial], 0, 
function(p) 
	local cl, F, fam, w;  
	w := Codeword(p); 
	cl := VectorCodeword(w); 
	F := CoefficientsRing(DefaultRing(PolyCodeword(w))); 
	fam := ElementsFamily(FamilyObj(F)); 
	return LaurentPolynomialByCoefficients(fam, Reversed(cl), 0); 
end); 


#############################################################################
##
#F  CyclotomicCosets( [<q>, ] <n> ) . . . .  cyclotomic cosets of <q> mod <n>
##

InstallMethod(CyclotomicCosets, "cyclotomic cosets of q mod n", 
	true, [IsInt,IsInt], 0, 
function(q, n) 
    local addel, set, res, nrelements, elements, start;
    if Gcd(q,n) <> 1 then
        Error("q and n must be relative primes");
    fi;
    res := [[0]];
    nrelements := 1;
    elements := Set([1..n-1]);
    repeat
        start := elements[1];
        addel := start;
        set := [];
        repeat
            Add(set, addel);
            RemoveSet(elements, addel);
            addel := addel * q mod n;
            nrelements := nrelements + 1;
        until addel = start;
        Add(res, set);
    until nrelements >= n;
    return res;
end);

InstallOtherMethod(CyclotomicCosets, "cyclotomic cosets of 2 mod n", 
	true, [IsInt], 0, 
function(n) 
	return CyclotomicCosets(2, n); 
end); 
 

#############################################################################
##
#F  PrimitiveUnityRoot( [<q>, ] <n> ) . .  primitive n'th power root of unity
##

InstallMethod(PrimitiveUnityRoot, "method for fieldsize, n (th power)", true, 
	[IsInt, IsInt], 0, 
function(q,n)
    local qm;
    qm := q ^ OrderMod(q,n);
	if not qm in [2..65536] then
    Error("GUAVA cannot compute in a finite field of size larger than 2^16");
    fi;
    return Z(qm)^((qm - 1) / n);
end);

InstallOtherMethod(PrimitiveUnityRoot, "method for field, n (th power)", true, 
	[IsField, IsInt], 0, 
function(F, n) 
	return PrimitiveUnityRoot(Size(F), n); 
end); 

InstallOtherMethod(PrimitiveUnityRoot, "method for n (th power)", true, 
	[IsInt], 0, 
function(n) 
	return PrimitiveUnityRoot(2, n); 
end); 

#############################################################################
##
#F  RemoveFiles( <arglist> )  . . . . . . . .  removes all files in <arglist>
##
##  used for functions which use external programs (like Leons stuff)
##

InstallGlobalFunction(RemoveFiles, 
function(arg)
    local f;
    for f in arg do
        Exec(Concatenation("rm -f ",f));
    od;
end);

#############################################################################
##
#F  NullVector( <n> [, <F> ] )  . .  vector consisting of <n> coordinates <o>
##

InstallMethod(NullVector, "length", true, [IsInt], 0, 
function(n) 
	return List([1..n], i->0); 
end); 

InstallOtherMethod(NullVector, "length, field", true, [IsInt, IsField], 0, 
function(n, F) 
	return List([1..n], i->Zero(F)); 
end); 

#############################################################################
##
#F  TransposedPolynomial( <p>, <m> ) . . . . . . . . . tranpose of polynomial
##
##  Returns the transpose of polynomial px mod (x^m-1)
##
InstallMethod(TransposedPolynomial, "poly, length", true, 
	[IsUnivariatePolynomial, IsInt], 0,
function(p, m)
	local i, c, v, F, fam;

	c := CoefficientsOfLaurentPolynomial(p)[1];
	c := MutableCopyMat(c);

	if Length(c) <> m then
		Append(c, List( [1..(m-Length(c))], i->Zero(c[1]) ));
	fi;

	v := [c[1]];
	i := Length(c);
	while (i > 1) do
		v := Concatenation(v, [ c[i] ]);
		i := i-1;
	od;
	F   := CoefficientsRing(DefaultRing(PolyCodeword(Codeword(v, m))));
	fam := ElementsFamily(FamilyObj(F));
	return LaurentPolynomialByCoefficients(fam, v, 0);
end);