File: count_recombinations_per_gene.py

package info (click to toggle)
gubbins 3.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,940 kB
  • sloc: ansic: 5,069; python: 4,964; sh: 236; makefile: 133; cpp: 27
file content (131 lines) | stat: -rwxr-xr-x 5,547 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#! python

# encoding: utf-8
# Wellcome Trust Sanger Institute and Imperial College London
# Copyright (C) 2023  Wellcome Trust Sanger Institute and Imperial College London
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
#

# Generic imports
import sys
import argparse
import re

# command line parsing
def get_options():

    parser = argparse.ArgumentParser(description='Mask recombinant regions detected by'
                                                    ' Gubbins from the input alignment',
                                     prog='mask_gubbins_aln')

    # input options
    parser.add_argument('--rec-gff',
                        help = 'GFF of recombinant regions detected by Gubbins',
                        required = True)
    parser.add_argument('--anno-gff',
                        help = 'GFF of annotation corresponding to the input alignment',
                        required = True)
    parser.add_argument('--out',
                        help = 'Output file name',
                        required = True)
    return parser.parse_args()

# main code
if __name__ == "__main__":

    # Get command line options
    args = get_options()
    
    # Read recombinant regions from GFF
    rec_start = []
    rec_end = []
    rec_affected = []
    taxon_pattern = re.compile('taxa="([^"]*)"')
    with open(args.rec_gff,'r') as gff_file:
        for line in gff_file.readlines():
            if not line.startswith('##'):
                # Calculate stats
                info = line.rstrip().split('\t')
                start = int(info[3])
                end = int(info[4])
                taxon_set = set(taxon_pattern.search(info[8]).group(1).split())
                # Record stats
                rec_start.append(start)
                rec_end.append(end)
                rec_affected.append(taxon_set)

    # Read annotation from GFF
    cds_start = []
    cds_end = []
    cds_name = []
    cds_index = []
    contig_starts = {}
    cumulative_length = 0
    with open(args.anno_gff,'r') as gff_file:
        for line in gff_file.readlines():
            if line.startswith('##sequence-region'):
                info = line.rstrip().split(' ')
                contig_starts[info[1]] = int(cumulative_length)
                cumulative_length = contig_starts[info[1]] + int(info[3])
            elif not line.startswith('##'):
                info = line.rstrip().split('\t')
                if len(info) >= 7:
                  if info[2] == 'CDS':
                      name = '-'
                      index = None
                      cds_data = info[8].replace('"','').split(';')
                      for datum in cds_data:
                          qualifier, value = datum.split('=')
                          if qualifier == 'locus_tag':
                              index = value
                          elif qualifier == 'gene':
                              name = value
                      if index is not None:
                          contig_start = contig_starts[info[0]]
                          cds_start.append(int(info[3]) + contig_start)
                          cds_end.append(int(info[4]) + contig_start)
                          cds_index.append(index)
                          cds_name.append(name)

    # Run checks on whether genes have been detected
    if len(cds_index) == 0:
        sys.stderr.write('No genes detected in annotation\n')
        sys.exit()
    elif not (len(cds_start) == len(cds_end) and len(cds_start) == len(cds_index) and len(cds_start) == len(cds_name)):
        sys.stderr.write('Error with extraction of information on annotation\n')
        sys.exit()
    elif not (len(rec_start) == len(rec_end) and len(rec_start) == len(rec_affected)):
        sys.stderr.write('Error with extraction of information on recombination\n')
        sys.exit()

    # Write out summary statistics
    with open(args.out,'w') as out_file:
        out_file.write('CDS\tGeneName\tStart\tEnd\tNumRec\tNumAffectedTaxa\tAffectedTaxa\n')
        for cnum,cindex in enumerate(cds_index):
            num_rec = 0
            affected_taxa = set()
            cstart = cds_start[cnum]
            cend = cds_end[cnum]
            for rnum,rstart in enumerate(rec_start):
                rend = rec_end[rnum]
                if (rstart < cend and rend > cend) or \
                   (rstart < cstart and rend > cstart) or \
                   (rstart > cstart and rend < cend):
                    num_rec = num_rec + 1
                    affected_taxa = affected_taxa.union(rec_affected[rnum])
            sorted_affected_taxa = list(affected_taxa)
            sorted_affected_taxa.sort()
            out_file.write(cds_index[cnum] + '\t' + cds_name[cnum] + '\t' + str(cds_start[cnum]) + '\t' + str(cds_end[cnum]) + '\t' + str(num_rec) + '\t' + str(len(affected_taxa)) + '\t' + ';'.join(sorted_affected_taxa) + '\n')