1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
#! python
# encoding: utf-8
# Wellcome Trust Sanger Institute and Imperial College London
# Copyright (C) 2020 Wellcome Trust Sanger Institute and Imperial College London
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# Generic imports
import sys
import argparse
import re
# Phylogenetic imports
import dendropy
# Biopython imports
from Bio import AlignIO
from Bio import Phylo
from Bio import SeqIO
from Bio.Align import MultipleSeqAlignment
from Bio.Seq import Seq
# command line parsing
def get_options():
parser = argparse.ArgumentParser(description='Extract a clade from a Gubbins output',
prog='extract_gubbins_clade')
# input options
parser.add_argument('--clades',
help = 'Two column file assigning isolates (first column) to clades (second column)',
required = True)
parser.add_argument('--gff',
help = 'recombination prediction GFF file output by Gubbins',
required = True)
parser.add_argument('--snps',
help = 'branch base reconstruction EMBL file output by Gubbins',
required = True)
parser.add_argument('--exclude-regions',
help = 'Two column file specifying start and end of regions to be excluded',
required = False,
default = None)
parser.add_argument('--tree',
help = 'Labelled tree output by Gubbins',
required = True)
parser.add_argument('--print-trees',
help = 'Print clade trees',
default = False,
action = 'store_true')
parser.add_argument('--print-rec-lengths',
help = 'Print recombination lengths',
default = False,
action = 'store_true')
parser.add_argument('--out',
help = 'Output file prefix; suffix is "_clades.csv"',
required = True)
return parser.parse_args()
# main code
if __name__ == "__main__":
# Get command line options
args = get_options()
# Parse clades
clades = {}
clade_names = set()
with open(args.clades,'r') as clade_list:
for line in clade_list.readlines():
info = line.strip().split()
if len(info) == 2:
clades[info[0]] = info[1]
clade_names.add(info[1])
else:
sys.stderr.write('Line needs two columns: ' + line + '\n')
# Exclude regions
excluded_region_starts = []
excluded_region_ends = []
if args.exclude_regions is not None:
with open(args.exclude_regions,'r') as exclude_file:
for line in exclude_file.readlines():
coords = line.strip().split()
if int(coords[0]) < int(coords[1]):
excluded_region_starts.append(int(coords[0]))
excluded_region_ends.append(int(coords[1]))
else:
sys.stderr.write('Start of excluded region must be less than end\n')
sys.exit(1)
# Store SNP information
node_snps = {}
snp_total = 0
with open(args.snps,'r') as snp_file:
pos = 0
for line in snp_file.readlines():
info = line.strip().split()
if info[1] == 'variation':
pos = int(info[2])
if info[1].startswith('/node='):
node = info[1].replace('"','').split('->')
include_snp = True
for s,e in zip(excluded_region_starts,excluded_region_ends):
if pos >= s and pos <= e:
include_snp = False
break
if include_snp:
snp_total += 1
if node[1] in node_snps:
node_snps[node[1]].append(pos)
else:
node_snps[node[1]] = [pos]
# Store recombination information
node_rec_starts = {}
node_rec_ends = {}
with open(args.gff,'r') as gff_file:
for line in gff_file.readlines():
if not line.startswith('##'):
info = line.rstrip().split('\t')
start = int(info[3])
end = int(info[4])
node = info[8].split(';')[0].replace('"','').split('->')[1]
include_rec = True
for s,e in zip(excluded_region_starts,excluded_region_ends):
if start >= s and end <= e:
include_rec = False
if include_rec:
if node not in node_rec_starts:
node_rec_starts[node] = [start]
node_rec_ends[node] = [end]
else:
node_rec_starts[node].append(start)
node_rec_ends[node].append(end)
# Divide SNPs into recombinant and non-recombinant
rec_snps = {node:0 for node in node_snps}
pm_snps = {node:0 for node in node_snps}
for node in node_snps:
for p in node_snps[node]:
rec_snp = False
if node in node_rec_starts:
for s,e in zip(node_rec_starts[node],node_rec_ends[node]):
if p >= s and p <= e:
rec_snp = True
break
if rec_snp:
rec_snps[node] += 1
else:
pm_snps[node] += 1
# Parse tree
info_labels = ['total_snps','rec_snps','mutation_snps','recombinations']
tree_info_labels = ['n_taxa','n_branches','branch_length']
tree = dendropy.Tree.get(path = args.tree,
schema = 'newick',
preserve_underscores = True,
rooting='force-rooted')
taxon_names = [taxon.label for taxon in tree.taxon_namespace]
# Calculate statistics per clade
rec_length_string = ''
with open(args.out + '_clades.csv','w') as out_file:
out_file.write('Clade,')
out_file.write(','.join(info_labels + tree_info_labels))
out_file.write('\n')
for clade_name in clade_names:
out_file.write(clade_name + ',')
clade_members = [sequence for sequence in clades if clades[sequence] == clade_name]
# Check all isolates are in the tree
for isolate in clade_members:
if isolate not in taxon_names:
sys.stderr.write('Isolate ' + isolate + ' not in tree\n')
sys.stderr.write('Tree contains ' + ','.join(taxon_names) + '\n')
#exit(1)
# Extract clade tree
clade_tree = tree.clone(depth = 1)
clade_tree.retain_taxa_with_labels(clade_members)
# Print tree
if args.print_trees:
clade_tree_string = clade_tree.as_string(
schema='newick',
suppress_leaf_taxon_labels=False,
suppress_leaf_node_labels=True,
suppress_internal_taxon_labels=True,
suppress_internal_node_labels=True,
suppress_rooting=True,
suppress_edge_lengths=False,
unquoted_underscores=True,
preserve_spaces=False,
store_tree_weights=False,
suppress_annotations=True,
annotations_as_nhx=False,
suppress_item_comments=True,
node_label_element_separator=' '
)
with open(clade_name + '.tre','w') as tree_out:
tree_out.write(clade_tree_string.replace('\'', '') + '\n')
# Print statistics
clade_info = {label:0 for label in info_labels + tree_info_labels}
for node in clade_tree.preorder_node_iter():
if node != clade_tree.seed_node:
clade_info['n_branches'] += 1
clade_info['branch_length'] += node.edge_length
if node.is_leaf():
clade_info['n_taxa'] += 1
node_label_string = node.taxon.label
else:
node_label_string = node.label
if node_label_string in node_snps:
clade_info['total_snps'] += len(node_snps[node_label_string])
clade_info['rec_snps'] += rec_snps[node_label_string]
clade_info['mutation_snps'] += pm_snps[node_label_string]
if node_label_string in node_rec_starts:
clade_info['recombinations'] += len(node_rec_starts[node_label_string])
if args.print_rec_lengths:
for s,e in zip(node_rec_starts[node_label_string],node_rec_ends[node_label_string]):
rec_length_string += clade_name + ',' + str(1+e-s) + '\n'
out_file.write(','.join([str(clade_info[label]) for label in info_labels + tree_info_labels]))
out_file.write('\n')
if args.print_rec_lengths:
with open(args.out + '_rec_lengths.csv','w') as rec_out_file:
rec_out_file.write('Clade,Length\n' + rec_length_string)
|