1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
|
@c -*-texinfo-*-
@c This is part of the GNU Guile Reference Manual.
@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008
@c Free Software Foundation, Inc.
@c See the file guile.texi for copying conditions.
@page
@node Simple Data Types
@section Simple Generic Data Types
This chapter describes those of Guile's simple data types which are
primarily used for their role as items of generic data. By
@dfn{simple} we mean data types that are not primarily used as
containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
For the documentation of such @dfn{compound} data types, see
@ref{Compound Data Types}.
@c One of the great strengths of Scheme is that there is no straightforward
@c distinction between ``data'' and ``functionality''. For example,
@c Guile's support for dynamic linking could be described:
@c @itemize @bullet
@c @item
@c either in a ``data-centric'' way, as the behaviour and properties of the
@c ``dynamically linked object'' data type, and the operations that may be
@c applied to instances of this type
@c @item
@c or in a ``functionality-centric'' way, as the set of procedures that
@c constitute Guile's support for dynamic linking, in the context of the
@c module system.
@c @end itemize
@c The contents of this chapter are, therefore, a matter of judgment. By
@c @dfn{generic}, we mean to select those data types whose typical use as
@c @emph{data} in a wide variety of programming contexts is more important
@c than their use in the implementation of a particular piece of
@c @emph{functionality}. The last section of this chapter provides
@c references for all the data types that are documented not here but in a
@c ``functionality-centric'' way elsewhere in the manual.
@menu
* Booleans:: True/false values.
* Numbers:: Numerical data types.
* Characters:: Single characters.
* Character Sets:: Sets of characters.
* Strings:: Sequences of characters.
* Regular Expressions:: Pattern matching and substitution.
* Symbols:: Symbols.
* Keywords:: Self-quoting, customizable display keywords.
* Other Types:: "Functionality-centric" data types.
@end menu
@node Booleans
@subsection Booleans
@tpindex Booleans
The two boolean values are @code{#t} for true and @code{#f} for false.
Boolean values are returned by predicate procedures, such as the general
equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
(@pxref{Equality}) and numerical and string comparison operators like
@code{string=?} (@pxref{String Comparison}) and @code{<=}
(@pxref{Comparison}).
@lisp
(<= 3 8)
@result{} #t
(<= 3 -3)
@result{} #f
(equal? "house" "houses")
@result{} #f
(eq? #f #f)
@result{}
#t
@end lisp
In test condition contexts like @code{if} and @code{cond} (@pxref{if
cond case}), where a group of subexpressions will be evaluated only if a
@var{condition} expression evaluates to ``true'', ``true'' means any
value at all except @code{#f}.
@lisp
(if #t "yes" "no")
@result{} "yes"
(if 0 "yes" "no")
@result{} "yes"
(if #f "yes" "no")
@result{} "no"
@end lisp
A result of this asymmetry is that typical Scheme source code more often
uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
represent an @code{if} or @code{cond} false value, whereas @code{#t} is
not necessary to represent an @code{if} or @code{cond} true value.
It is important to note that @code{#f} is @strong{not} equivalent to any
other Scheme value. In particular, @code{#f} is not the same as the
number 0 (like in C and C++), and not the same as the ``empty list''
(like in some Lisp dialects).
In C, the two Scheme boolean values are available as the two constants
@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
Care must be taken with the false value @code{SCM_BOOL_F}: it is not
false when used in C conditionals. In order to test for it, use
@code{scm_is_false} or @code{scm_is_true}.
@rnindex not
@deffn {Scheme Procedure} not x
@deffnx {C Function} scm_not (x)
Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
@end deffn
@rnindex boolean?
@deffn {Scheme Procedure} boolean? obj
@deffnx {C Function} scm_boolean_p (obj)
Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
return @code{#f}.
@end deffn
@deftypevr {C Macro} SCM SCM_BOOL_T
The @code{SCM} representation of the Scheme object @code{#t}.
@end deftypevr
@deftypevr {C Macro} SCM SCM_BOOL_F
The @code{SCM} representation of the Scheme object @code{#f}.
@end deftypevr
@deftypefn {C Function} int scm_is_true (SCM obj)
Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
@end deftypefn
@deftypefn {C Function} int scm_is_false (SCM obj)
Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
@end deftypefn
@deftypefn {C Function} int scm_is_bool (SCM obj)
Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
return @code{0}.
@end deftypefn
@deftypefn {C Function} SCM scm_from_bool (int val)
Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
@end deftypefn
@deftypefn {C Function} int scm_to_bool (SCM val)
Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
You should probably use @code{scm_is_true} instead of this function
when you just want to test a @code{SCM} value for trueness.
@end deftypefn
@node Numbers
@subsection Numerical data types
@tpindex Numbers
Guile supports a rich ``tower'' of numerical types --- integer,
rational, real and complex --- and provides an extensive set of
mathematical and scientific functions for operating on numerical
data. This section of the manual documents those types and functions.
You may also find it illuminating to read R5RS's presentation of numbers
in Scheme, which is particularly clear and accessible: see
@ref{Numbers,,,r5rs,R5RS}.
@menu
* Numerical Tower:: Scheme's numerical "tower".
* Integers:: Whole numbers.
* Reals and Rationals:: Real and rational numbers.
* Complex Numbers:: Complex numbers.
* Exactness:: Exactness and inexactness.
* Number Syntax:: Read syntax for numerical data.
* Integer Operations:: Operations on integer values.
* Comparison:: Comparison predicates.
* Conversion:: Converting numbers to and from strings.
* Complex:: Complex number operations.
* Arithmetic:: Arithmetic functions.
* Scientific:: Scientific functions.
* Primitive Numerics:: Primitive numeric functions.
* Bitwise Operations:: Logical AND, OR, NOT, and so on.
* Random:: Random number generation.
@end menu
@node Numerical Tower
@subsubsection Scheme's Numerical ``Tower''
@rnindex number?
Scheme's numerical ``tower'' consists of the following categories of
numbers:
@table @dfn
@item integers
Whole numbers, positive or negative; e.g.@: --5, 0, 18.
@item rationals
The set of numbers that can be expressed as @math{@var{p}/@var{q}}
where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
pi (an irrational number) doesn't. These include integers
(@math{@var{n}/1}).
@item real numbers
The set of numbers that describes all possible positions along a
one-dimensional line. This includes rationals as well as irrational
numbers.
@item complex numbers
The set of numbers that describes all possible positions in a two
dimensional space. This includes real as well as imaginary numbers
(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
@minus{}1.)
@end table
It is called a tower because each category ``sits on'' the one that
follows it, in the sense that every integer is also a rational, every
rational is also real, and every real number is also a complex number
(but with zero imaginary part).
In addition to the classification into integers, rationals, reals and
complex numbers, Scheme also distinguishes between whether a number is
represented exactly or not. For example, the result of
@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
Instead, it stores an inexact approximation, using the C type
@code{double}.
Guile can represent exact rationals of any magnitude, inexact
rationals that fit into a C @code{double}, and inexact complex numbers
with @code{double} real and imaginary parts.
The @code{number?} predicate may be applied to any Scheme value to
discover whether the value is any of the supported numerical types.
@deffn {Scheme Procedure} number? obj
@deffnx {C Function} scm_number_p (obj)
Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
@end deffn
For example:
@lisp
(number? 3)
@result{} #t
(number? "hello there!")
@result{} #f
(define pi 3.141592654)
(number? pi)
@result{} #t
@end lisp
@deftypefn {C Function} int scm_is_number (SCM obj)
This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
@end deftypefn
The next few subsections document each of Guile's numerical data types
in detail.
@node Integers
@subsubsection Integers
@tpindex Integer numbers
@rnindex integer?
Integers are whole numbers, that is numbers with no fractional part,
such as 2, 83, and @minus{}3789.
Integers in Guile can be arbitrarily big, as shown by the following
example.
@lisp
(define (factorial n)
(let loop ((n n) (product 1))
(if (= n 0)
product
(loop (- n 1) (* product n)))))
(factorial 3)
@result{} 6
(factorial 20)
@result{} 2432902008176640000
(- (factorial 45))
@result{} -119622220865480194561963161495657715064383733760000000000
@end lisp
Readers whose background is in programming languages where integers are
limited by the need to fit into just 4 or 8 bytes of memory may find
this surprising, or suspect that Guile's representation of integers is
inefficient. In fact, Guile achieves a near optimal balance of
convenience and efficiency by using the host computer's native
representation of integers where possible, and a more general
representation where the required number does not fit in the native
form. Conversion between these two representations is automatic and
completely invisible to the Scheme level programmer.
The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
inexact integers. They are explained in detail in the next section,
together with reals and rationals.
C has a host of different integer types, and Guile offers a host of
functions to convert between them and the @code{SCM} representation.
For example, a C @code{int} can be handled with @code{scm_to_int} and
@code{scm_from_int}. Guile also defines a few C integer types of its
own, to help with differences between systems.
C integer types that are not covered can be handled with the generic
@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
signed types, or with @code{scm_to_unsigned_integer} and
@code{scm_from_unsigned_integer} for unsigned types.
Scheme integers can be exact and inexact. For example, a number
written as @code{3.0} with an explicit decimal-point is inexact, but
it is also an integer. The functions @code{integer?} and
@code{scm_is_integer} report true for such a number, but the functions
@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
allow exact integers and thus report false. Likewise, the conversion
functions like @code{scm_to_signed_integer} only accept exact
integers.
The motivation for this behavior is that the inexactness of a number
should not be lost silently. If you want to allow inexact integers,
you can explicitely insert a call to @code{inexact->exact} or to its C
equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
be converted by this call into exact integers; inexact non-integers
will become exact fractions.)
@deffn {Scheme Procedure} integer? x
@deffnx {C Function} scm_integer_p (x)
Return @code{#t} if @var{x} is an exact or inexact integer number, else
@code{#f}.
@lisp
(integer? 487)
@result{} #t
(integer? 3.0)
@result{} #t
(integer? -3.4)
@result{} #f
(integer? +inf.0)
@result{} #t
@end lisp
@end deffn
@deftypefn {C Function} int scm_is_integer (SCM x)
This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
@end deftypefn
@defvr {C Type} scm_t_int8
@defvrx {C Type} scm_t_uint8
@defvrx {C Type} scm_t_int16
@defvrx {C Type} scm_t_uint16
@defvrx {C Type} scm_t_int32
@defvrx {C Type} scm_t_uint32
@defvrx {C Type} scm_t_int64
@defvrx {C Type} scm_t_uint64
@defvrx {C Type} scm_t_intmax
@defvrx {C Type} scm_t_uintmax
The C types are equivalent to the corresponding ISO C types but are
defined on all platforms, with the exception of @code{scm_t_int64} and
@code{scm_t_uint64}, which are only defined when a 64-bit type is
available. For example, @code{scm_t_int8} is equivalent to
@code{int8_t}.
You can regard these definitions as a stop-gap measure until all
platforms provide these types. If you know that all the platforms
that you are interested in already provide these types, it is better
to use them directly instead of the types provided by Guile.
@end defvr
@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
Return @code{1} when @var{x} represents an exact integer that is
between @var{min} and @var{max}, inclusive.
These functions can be used to check whether a @code{SCM} value will
fit into a given range, such as the range of a given C integer type.
If you just want to convert a @code{SCM} value to a given C integer
type, use one of the conversion functions directly.
@end deftypefn
@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
When @var{x} represents an exact integer that is between @var{min} and
@var{max} inclusive, return that integer. Else signal an error,
either a `wrong-type' error when @var{x} is not an exact integer, or
an `out-of-range' error when it doesn't fit the given range.
@end deftypefn
@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
Return the @code{SCM} value that represents the integer @var{x}. This
function will always succeed and will always return an exact number.
@end deftypefn
@deftypefn {C Function} char scm_to_char (SCM x)
@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
@deftypefnx {C Function} short scm_to_short (SCM x)
@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
@deftypefnx {C Function} int scm_to_int (SCM x)
@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
@deftypefnx {C Function} long scm_to_long (SCM x)
@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
When @var{x} represents an exact integer that fits into the indicated
C type, return that integer. Else signal an error, either a
`wrong-type' error when @var{x} is not an exact integer, or an
`out-of-range' error when it doesn't fit the given range.
The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
the corresponding types are.
@end deftypefn
@deftypefn {C Function} SCM scm_from_char (char x)
@deftypefnx {C Function} SCM scm_from_schar (signed char x)
@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
@deftypefnx {C Function} SCM scm_from_short (short x)
@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
@deftypefnx {C Function} SCM scm_from_int (int x)
@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
@deftypefnx {C Function} SCM scm_from_long (long x)
@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
@deftypefnx {C Function} SCM scm_from_long_long (long long x)
@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
Return the @code{SCM} value that represents the integer @var{x}.
These functions will always succeed and will always return an exact
number.
@end deftypefn
@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
Assign @var{val} to the multiple precision integer @var{rop}.
@var{val} must be an exact integer, otherwise an error will be
signalled. @var{rop} must have been initialized with @code{mpz_init}
before this function is called. When @var{rop} is no longer needed
the occupied space must be freed with @code{mpz_clear}.
@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
@end deftypefn
@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
Return the @code{SCM} value that represents @var{val}.
@end deftypefn
@node Reals and Rationals
@subsubsection Real and Rational Numbers
@tpindex Real numbers
@tpindex Rational numbers
@rnindex real?
@rnindex rational?
Mathematically, the real numbers are the set of numbers that describe
all possible points along a continuous, infinite, one-dimensional line.
The rational numbers are the set of all numbers that can be written as
fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
All rational numbers are also real, but there are real numbers that
are not rational, for example @m{\sqrt2, the square root of 2}, and
@m{\pi,pi}.
Guile can represent both exact and inexact rational numbers, but it
can not represent irrational numbers. Exact rationals are represented
by storing the numerator and denominator as two exact integers.
Inexact rationals are stored as floating point numbers using the C
type @code{double}.
Exact rationals are written as a fraction of integers. There must be
no whitespace around the slash:
@lisp
1/2
-22/7
@end lisp
Even though the actual encoding of inexact rationals is in binary, it
may be helpful to think of it as a decimal number with a limited
number of significant figures and a decimal point somewhere, since
this corresponds to the standard notation for non-whole numbers. For
example:
@lisp
0.34
-0.00000142857931198
-5648394822220000000000.0
4.0
@end lisp
The limited precision of Guile's encoding means that any ``real'' number
in Guile can be written in a rational form, by multiplying and then dividing
by sufficient powers of 10 (or in fact, 2). For example,
@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
100000000000000000. In Guile's current incarnation, therefore, the
@code{rational?} and @code{real?} predicates are equivalent.
Dividing by an exact zero leads to a error message, as one might
expect. However, dividing by an inexact zero does not produce an
error. Instead, the result of the division is either plus or minus
infinity, depending on the sign of the divided number.
The infinities are written @samp{+inf.0} and @samp{-inf.0},
respectivly. This syntax is also recognized by @code{read} as an
extension to the usual Scheme syntax.
Dividing zero by zero yields something that is not a number at all:
@samp{+nan.0}. This is the special `not a number' value.
On platforms that follow @acronym{IEEE} 754 for their floating point
arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
are implemented using the corresponding @acronym{IEEE} 754 values.
They behave in arithmetic operations like @acronym{IEEE} 754 describes
it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
The infinities are inexact integers and are considered to be both even
and odd. While @samp{+nan.0} is not @code{=} to itself, it is
@code{eqv?} to itself.
To test for the special values, use the functions @code{inf?} and
@code{nan?}.
@deffn {Scheme Procedure} real? obj
@deffnx {C Function} scm_real_p (obj)
Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
that the sets of integer and rational values form subsets of the set
of real numbers, so the predicate will also be fulfilled if @var{obj}
is an integer number or a rational number.
@end deffn
@deffn {Scheme Procedure} rational? x
@deffnx {C Function} scm_rational_p (x)
Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
Note that the set of integer values forms a subset of the set of
rational numbers, i. e. the predicate will also be fulfilled if
@var{x} is an integer number.
Since Guile can not represent irrational numbers, every number
satisfying @code{real?} also satisfies @code{rational?} in Guile.
@end deffn
@deffn {Scheme Procedure} rationalize x eps
@deffnx {C Function} scm_rationalize (x, eps)
Returns the @emph{simplest} rational number differing
from @var{x} by no more than @var{eps}.
As required by @acronym{R5RS}, @code{rationalize} only returns an
exact result when both its arguments are exact. Thus, you might need
to use @code{inexact->exact} on the arguments.
@lisp
(rationalize (inexact->exact 1.2) 1/100)
@result{} 6/5
@end lisp
@end deffn
@deffn {Scheme Procedure} inf? x
@deffnx {C Function} scm_inf_p (x)
Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
@code{#f} otherwise.
@end deffn
@deffn {Scheme Procedure} nan? x
@deffnx {C Function} scm_nan_p (x)
Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
@end deffn
@deffn {Scheme Procedure} nan
@deffnx {C Function} scm_nan ()
Return NaN.
@end deffn
@deffn {Scheme Procedure} inf
@deffnx {C Function} scm_inf ()
Return Inf.
@end deffn
@deffn {Scheme Procedure} numerator x
@deffnx {C Function} scm_numerator (x)
Return the numerator of the rational number @var{x}.
@end deffn
@deffn {Scheme Procedure} denominator x
@deffnx {C Function} scm_denominator (x)
Return the denominator of the rational number @var{x}.
@end deffn
@deftypefn {C Function} int scm_is_real (SCM val)
@deftypefnx {C Function} int scm_is_rational (SCM val)
Equivalent to @code{scm_is_true (scm_real_p (val))} and
@code{scm_is_true (scm_rational_p (val))}, respectively.
@end deftypefn
@deftypefn {C Function} double scm_to_double (SCM val)
Returns the number closest to @var{val} that is representable as a
@code{double}. Returns infinity for a @var{val} that is too large in
magnitude. The argument @var{val} must be a real number.
@end deftypefn
@deftypefn {C Function} SCM scm_from_double (double val)
Return the @code{SCM} value that representats @var{val}. The returned
value is inexact according to the predicate @code{inexact?}, but it
will be exactly equal to @var{val}.
@end deftypefn
@node Complex Numbers
@subsubsection Complex Numbers
@tpindex Complex numbers
@rnindex complex?
Complex numbers are the set of numbers that describe all possible points
in a two-dimensional space. The two coordinates of a particular point
in this space are known as the @dfn{real} and @dfn{imaginary} parts of
the complex number that describes that point.
In Guile, complex numbers are written in rectangular form as the sum of
their real and imaginary parts, using the symbol @code{i} to indicate
the imaginary part.
@lisp
3+4i
@result{}
3.0+4.0i
(* 3-8i 2.3+0.3i)
@result{}
9.3-17.5i
@end lisp
@cindex polar form
@noindent
Polar form can also be used, with an @samp{@@} between magnitude and
angle,
@lisp
1@@3.141592 @result{} -1.0 (approx)
-1@@1.57079 @result{} 0.0-1.0i (approx)
@end lisp
Guile represents a complex number with a non-zero imaginary part as a
pair of inexact rationals, so the real and imaginary parts of a
complex number have the same properties of inexactness and limited
precision as single inexact rational numbers. Guile can not represent
exact complex numbers with non-zero imaginary parts.
@deffn {Scheme Procedure} complex? z
@deffnx {C Function} scm_complex_p (z)
Return @code{#t} if @var{x} is a complex number, @code{#f}
otherwise. Note that the sets of real, rational and integer
values form subsets of the set of complex numbers, i. e. the
predicate will also be fulfilled if @var{x} is a real,
rational or integer number.
@end deffn
@deftypefn {C Function} int scm_is_complex (SCM val)
Equivalent to @code{scm_is_true (scm_complex_p (val))}.
@end deftypefn
@node Exactness
@subsubsection Exact and Inexact Numbers
@tpindex Exact numbers
@tpindex Inexact numbers
@rnindex exact?
@rnindex inexact?
@rnindex exact->inexact
@rnindex inexact->exact
R5RS requires that a calculation involving inexact numbers always
produces an inexact result. To meet this requirement, Guile
distinguishes between an exact integer value such as @samp{5} and the
corresponding inexact real value which, to the limited precision
available, has no fractional part, and is printed as @samp{5.0}. Guile
will only convert the latter value to the former when forced to do so by
an invocation of the @code{inexact->exact} procedure.
@deffn {Scheme Procedure} exact? z
@deffnx {C Function} scm_exact_p (z)
Return @code{#t} if the number @var{z} is exact, @code{#f}
otherwise.
@lisp
(exact? 2)
@result{} #t
(exact? 0.5)
@result{} #f
(exact? (/ 2))
@result{} #t
@end lisp
@end deffn
@deffn {Scheme Procedure} inexact? z
@deffnx {C Function} scm_inexact_p (z)
Return @code{#t} if the number @var{z} is inexact, @code{#f}
else.
@end deffn
@deffn {Scheme Procedure} inexact->exact z
@deffnx {C Function} scm_inexact_to_exact (z)
Return an exact number that is numerically closest to @var{z}, when
there is one. For inexact rationals, Guile returns the exact rational
that is numerically equal to the inexact rational. Inexact complex
numbers with a non-zero imaginary part can not be made exact.
@lisp
(inexact->exact 0.5)
@result{} 1/2
@end lisp
The following happens because 12/10 is not exactly representable as a
@code{double} (on most platforms). However, when reading a decimal
number that has been marked exact with the ``#e'' prefix, Guile is
able to represent it correctly.
@lisp
(inexact->exact 1.2)
@result{} 5404319552844595/4503599627370496
#e1.2
@result{} 6/5
@end lisp
@end deffn
@c begin (texi-doc-string "guile" "exact->inexact")
@deffn {Scheme Procedure} exact->inexact z
@deffnx {C Function} scm_exact_to_inexact (z)
Convert the number @var{z} to its inexact representation.
@end deffn
@node Number Syntax
@subsubsection Read Syntax for Numerical Data
The read syntax for integers is a string of digits, optionally
preceded by a minus or plus character, a code indicating the
base in which the integer is encoded, and a code indicating whether
the number is exact or inexact. The supported base codes are:
@table @code
@item #b
@itemx #B
the integer is written in binary (base 2)
@item #o
@itemx #O
the integer is written in octal (base 8)
@item #d
@itemx #D
the integer is written in decimal (base 10)
@item #x
@itemx #X
the integer is written in hexadecimal (base 16)
@end table
If the base code is omitted, the integer is assumed to be decimal. The
following examples show how these base codes are used.
@lisp
-13
@result{} -13
#d-13
@result{} -13
#x-13
@result{} -19
#b+1101
@result{} 13
#o377
@result{} 255
@end lisp
The codes for indicating exactness (which can, incidentally, be applied
to all numerical values) are:
@table @code
@item #e
@itemx #E
the number is exact
@item #i
@itemx #I
the number is inexact.
@end table
If the exactness indicator is omitted, the number is exact unless it
contains a radix point. Since Guile can not represent exact complex
numbers, an error is signalled when asking for them.
@lisp
(exact? 1.2)
@result{} #f
(exact? #e1.2)
@result{} #t
(exact? #e+1i)
ERROR: Wrong type argument
@end lisp
Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
plus and minus infinity, respectively. The value must be written
exactly as shown, that is, they always must have a sign and exactly
one zero digit after the decimal point. It also understands
@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
The sign is ignored for `not-a-number' and the value is always printed
as @samp{+nan.0}.
@node Integer Operations
@subsubsection Operations on Integer Values
@rnindex odd?
@rnindex even?
@rnindex quotient
@rnindex remainder
@rnindex modulo
@rnindex gcd
@rnindex lcm
@deffn {Scheme Procedure} odd? n
@deffnx {C Function} scm_odd_p (n)
Return @code{#t} if @var{n} is an odd number, @code{#f}
otherwise.
@end deffn
@deffn {Scheme Procedure} even? n
@deffnx {C Function} scm_even_p (n)
Return @code{#t} if @var{n} is an even number, @code{#f}
otherwise.
@end deffn
@c begin (texi-doc-string "guile" "quotient")
@c begin (texi-doc-string "guile" "remainder")
@deffn {Scheme Procedure} quotient n d
@deffnx {Scheme Procedure} remainder n d
@deffnx {C Function} scm_quotient (n, d)
@deffnx {C Function} scm_remainder (n, d)
Return the quotient or remainder from @var{n} divided by @var{d}. The
quotient is rounded towards zero, and the remainder will have the same
sign as @var{n}. In all cases quotient and remainder satisfy
@math{@var{n} = @var{q}*@var{d} + @var{r}}.
@lisp
(remainder 13 4) @result{} 1
(remainder -13 4) @result{} -1
@end lisp
@end deffn
@c begin (texi-doc-string "guile" "modulo")
@deffn {Scheme Procedure} modulo n d
@deffnx {C Function} scm_modulo (n, d)
Return the remainder from @var{n} divided by @var{d}, with the same
sign as @var{d}.
@lisp
(modulo 13 4) @result{} 1
(modulo -13 4) @result{} 3
(modulo 13 -4) @result{} -3
(modulo -13 -4) @result{} -1
@end lisp
@end deffn
@c begin (texi-doc-string "guile" "gcd")
@deffn {Scheme Procedure} gcd x@dots{}
@deffnx {C Function} scm_gcd (x, y)
Return the greatest common divisor of all arguments.
If called without arguments, 0 is returned.
The C function @code{scm_gcd} always takes two arguments, while the
Scheme function can take an arbitrary number.
@end deffn
@c begin (texi-doc-string "guile" "lcm")
@deffn {Scheme Procedure} lcm x@dots{}
@deffnx {C Function} scm_lcm (x, y)
Return the least common multiple of the arguments.
If called without arguments, 1 is returned.
The C function @code{scm_lcm} always takes two arguments, while the
Scheme function can take an arbitrary number.
@end deffn
@deffn {Scheme Procedure} modulo-expt n k m
@deffnx {C Function} scm_modulo_expt (n, k, m)
Return @var{n} raised to the integer exponent
@var{k}, modulo @var{m}.
@lisp
(modulo-expt 2 3 5)
@result{} 3
@end lisp
@end deffn
@node Comparison
@subsubsection Comparison Predicates
@rnindex zero?
@rnindex positive?
@rnindex negative?
The C comparison functions below always takes two arguments, while the
Scheme functions can take an arbitrary number. Also keep in mind that
the C functions return one of the Scheme boolean values
@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
y))} when testing the two Scheme numbers @code{x} and @code{y} for
equality, for example.
@c begin (texi-doc-string "guile" "=")
@deffn {Scheme Procedure} =
@deffnx {C Function} scm_num_eq_p (x, y)
Return @code{#t} if all parameters are numerically equal.
@end deffn
@c begin (texi-doc-string "guile" "<")
@deffn {Scheme Procedure} <
@deffnx {C Function} scm_less_p (x, y)
Return @code{#t} if the list of parameters is monotonically
increasing.
@end deffn
@c begin (texi-doc-string "guile" ">")
@deffn {Scheme Procedure} >
@deffnx {C Function} scm_gr_p (x, y)
Return @code{#t} if the list of parameters is monotonically
decreasing.
@end deffn
@c begin (texi-doc-string "guile" "<=")
@deffn {Scheme Procedure} <=
@deffnx {C Function} scm_leq_p (x, y)
Return @code{#t} if the list of parameters is monotonically
non-decreasing.
@end deffn
@c begin (texi-doc-string "guile" ">=")
@deffn {Scheme Procedure} >=
@deffnx {C Function} scm_geq_p (x, y)
Return @code{#t} if the list of parameters is monotonically
non-increasing.
@end deffn
@c begin (texi-doc-string "guile" "zero?")
@deffn {Scheme Procedure} zero? z
@deffnx {C Function} scm_zero_p (z)
Return @code{#t} if @var{z} is an exact or inexact number equal to
zero.
@end deffn
@c begin (texi-doc-string "guile" "positive?")
@deffn {Scheme Procedure} positive? x
@deffnx {C Function} scm_positive_p (x)
Return @code{#t} if @var{x} is an exact or inexact number greater than
zero.
@end deffn
@c begin (texi-doc-string "guile" "negative?")
@deffn {Scheme Procedure} negative? x
@deffnx {C Function} scm_negative_p (x)
Return @code{#t} if @var{x} is an exact or inexact number less than
zero.
@end deffn
@node Conversion
@subsubsection Converting Numbers To and From Strings
@rnindex number->string
@rnindex string->number
@deffn {Scheme Procedure} number->string n [radix]
@deffnx {C Function} scm_number_to_string (n, radix)
Return a string holding the external representation of the
number @var{n} in the given @var{radix}. If @var{n} is
inexact, a radix of 10 will be used.
@end deffn
@deffn {Scheme Procedure} string->number string [radix]
@deffnx {C Function} scm_string_to_number (string, radix)
Return a number of the maximally precise representation
expressed by the given @var{string}. @var{radix} must be an
exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
is a default radix that may be overridden by an explicit radix
prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then
@code{string->number} returns @code{#f}.
@end deffn
@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
As per @code{string->number} above, but taking a C string, as pointer
and length. The string characters should be in the current locale
encoding (@code{locale} in the name refers only to that, there's no
locale-dependent parsing).
@end deftypefn
@node Complex
@subsubsection Complex Number Operations
@rnindex make-rectangular
@rnindex make-polar
@rnindex real-part
@rnindex imag-part
@rnindex magnitude
@rnindex angle
@deffn {Scheme Procedure} make-rectangular real imaginary
@deffnx {C Function} scm_make_rectangular (real, imaginary)
Return a complex number constructed of the given @var{real} and
@var{imaginary} parts.
@end deffn
@deffn {Scheme Procedure} make-polar x y
@deffnx {C Function} scm_make_polar (x, y)
@cindex polar form
Return the complex number @var{x} * e^(i * @var{y}).
@end deffn
@c begin (texi-doc-string "guile" "real-part")
@deffn {Scheme Procedure} real-part z
@deffnx {C Function} scm_real_part (z)
Return the real part of the number @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "imag-part")
@deffn {Scheme Procedure} imag-part z
@deffnx {C Function} scm_imag_part (z)
Return the imaginary part of the number @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "magnitude")
@deffn {Scheme Procedure} magnitude z
@deffnx {C Function} scm_magnitude (z)
Return the magnitude of the number @var{z}. This is the same as
@code{abs} for real arguments, but also allows complex numbers.
@end deffn
@c begin (texi-doc-string "guile" "angle")
@deffn {Scheme Procedure} angle z
@deffnx {C Function} scm_angle (z)
Return the angle of the complex number @var{z}.
@end deffn
@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
Like @code{scm_make_rectangular} or @code{scm_make_polar},
respectively, but these functions take @code{double}s as their
arguments.
@end deftypefn
@deftypefn {C Function} double scm_c_real_part (z)
@deftypefnx {C Function} double scm_c_imag_part (z)
Returns the real or imaginary part of @var{z} as a @code{double}.
@end deftypefn
@deftypefn {C Function} double scm_c_magnitude (z)
@deftypefnx {C Function} double scm_c_angle (z)
Returns the magnitude or angle of @var{z} as a @code{double}.
@end deftypefn
@node Arithmetic
@subsubsection Arithmetic Functions
@rnindex max
@rnindex min
@rnindex +
@rnindex *
@rnindex -
@rnindex /
@findex 1+
@findex 1-
@rnindex abs
@rnindex floor
@rnindex ceiling
@rnindex truncate
@rnindex round
The C arithmetic functions below always takes two arguments, while the
Scheme functions can take an arbitrary number. When you need to
invoke them with just one argument, for example to compute the
equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
one: @code{scm_difference (x, SCM_UNDEFINED)}.
@c begin (texi-doc-string "guile" "+")
@deffn {Scheme Procedure} + z1 @dots{}
@deffnx {C Function} scm_sum (z1, z2)
Return the sum of all parameter values. Return 0 if called without any
parameters.
@end deffn
@c begin (texi-doc-string "guile" "-")
@deffn {Scheme Procedure} - z1 z2 @dots{}
@deffnx {C Function} scm_difference (z1, z2)
If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
the sum of all but the first argument are subtracted from the first
argument.
@end deffn
@c begin (texi-doc-string "guile" "*")
@deffn {Scheme Procedure} * z1 @dots{}
@deffnx {C Function} scm_product (z1, z2)
Return the product of all arguments. If called without arguments, 1 is
returned.
@end deffn
@c begin (texi-doc-string "guile" "/")
@deffn {Scheme Procedure} / z1 z2 @dots{}
@deffnx {C Function} scm_divide (z1, z2)
Divide the first argument by the product of the remaining arguments. If
called with one argument @var{z1}, 1/@var{z1} is returned.
@end deffn
@deffn {Scheme Procedure} 1+ z
@deffnx {C Function} scm_oneplus (z)
Return @math{@var{z} + 1}.
@end deffn
@deffn {Scheme Procedure} 1- z
@deffnx {C function} scm_oneminus (z)
Return @math{@var{z} - 1}.
@end deffn
@c begin (texi-doc-string "guile" "abs")
@deffn {Scheme Procedure} abs x
@deffnx {C Function} scm_abs (x)
Return the absolute value of @var{x}.
@var{x} must be a number with zero imaginary part. To calculate the
magnitude of a complex number, use @code{magnitude} instead.
@end deffn
@c begin (texi-doc-string "guile" "max")
@deffn {Scheme Procedure} max x1 x2 @dots{}
@deffnx {C Function} scm_max (x1, x2)
Return the maximum of all parameter values.
@end deffn
@c begin (texi-doc-string "guile" "min")
@deffn {Scheme Procedure} min x1 x2 @dots{}
@deffnx {C Function} scm_min (x1, x2)
Return the minimum of all parameter values.
@end deffn
@c begin (texi-doc-string "guile" "truncate")
@deffn {Scheme Procedure} truncate x
@deffnx {C Function} scm_truncate_number (x)
Round the inexact number @var{x} towards zero.
@end deffn
@c begin (texi-doc-string "guile" "round")
@deffn {Scheme Procedure} round x
@deffnx {C Function} scm_round_number (x)
Round the inexact number @var{x} to the nearest integer. When exactly
halfway between two integers, round to the even one.
@end deffn
@c begin (texi-doc-string "guile" "floor")
@deffn {Scheme Procedure} floor x
@deffnx {C Function} scm_floor (x)
Round the number @var{x} towards minus infinity.
@end deffn
@c begin (texi-doc-string "guile" "ceiling")
@deffn {Scheme Procedure} ceiling x
@deffnx {C Function} scm_ceiling (x)
Round the number @var{x} towards infinity.
@end deffn
@deftypefn {C Function} double scm_c_truncate (double x)
@deftypefnx {C Function} double scm_c_round (double x)
Like @code{scm_truncate_number} or @code{scm_round_number},
respectively, but these functions take and return @code{double}
values.
@end deftypefn
@node Scientific
@subsubsection Scientific Functions
The following procedures accept any kind of number as arguments,
including complex numbers.
@rnindex sqrt
@c begin (texi-doc-string "guile" "sqrt")
@deffn {Scheme Procedure} sqrt z
Return the square root of @var{z}. Of the two possible roots
(positive and negative), the one with the a positive real part is
returned, or if that's zero then a positive imaginary part. Thus,
@example
(sqrt 9.0) @result{} 3.0
(sqrt -9.0) @result{} 0.0+3.0i
(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
@end example
@end deffn
@rnindex expt
@c begin (texi-doc-string "guile" "expt")
@deffn {Scheme Procedure} expt z1 z2
Return @var{z1} raised to the power of @var{z2}.
@end deffn
@rnindex sin
@c begin (texi-doc-string "guile" "sin")
@deffn {Scheme Procedure} sin z
Return the sine of @var{z}.
@end deffn
@rnindex cos
@c begin (texi-doc-string "guile" "cos")
@deffn {Scheme Procedure} cos z
Return the cosine of @var{z}.
@end deffn
@rnindex tan
@c begin (texi-doc-string "guile" "tan")
@deffn {Scheme Procedure} tan z
Return the tangent of @var{z}.
@end deffn
@rnindex asin
@c begin (texi-doc-string "guile" "asin")
@deffn {Scheme Procedure} asin z
Return the arcsine of @var{z}.
@end deffn
@rnindex acos
@c begin (texi-doc-string "guile" "acos")
@deffn {Scheme Procedure} acos z
Return the arccosine of @var{z}.
@end deffn
@rnindex atan
@c begin (texi-doc-string "guile" "atan")
@deffn {Scheme Procedure} atan z
@deffnx {Scheme Procedure} atan y x
Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
@end deffn
@rnindex exp
@c begin (texi-doc-string "guile" "exp")
@deffn {Scheme Procedure} exp z
Return e to the power of @var{z}, where e is the base of natural
logarithms (2.71828@dots{}).
@end deffn
@rnindex log
@c begin (texi-doc-string "guile" "log")
@deffn {Scheme Procedure} log z
Return the natural logarithm of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "log10")
@deffn {Scheme Procedure} log10 z
Return the base 10 logarithm of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "sinh")
@deffn {Scheme Procedure} sinh z
Return the hyperbolic sine of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "cosh")
@deffn {Scheme Procedure} cosh z
Return the hyperbolic cosine of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "tanh")
@deffn {Scheme Procedure} tanh z
Return the hyperbolic tangent of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "asinh")
@deffn {Scheme Procedure} asinh z
Return the hyperbolic arcsine of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "acosh")
@deffn {Scheme Procedure} acosh z
Return the hyperbolic arccosine of @var{z}.
@end deffn
@c begin (texi-doc-string "guile" "atanh")
@deffn {Scheme Procedure} atanh z
Return the hyperbolic arctangent of @var{z}.
@end deffn
@node Primitive Numerics
@subsubsection Primitive Numeric Functions
Many of Guile's numeric procedures which accept any kind of numbers as
arguments, including complex numbers, are implemented as Scheme
procedures that use the following real number-based primitives. These
primitives signal an error if they are called with complex arguments.
@c begin (texi-doc-string "guile" "$abs")
@deffn {Scheme Procedure} $abs x
Return the absolute value of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$sqrt")
@deffn {Scheme Procedure} $sqrt x
Return the square root of @var{x}.
@end deffn
@deffn {Scheme Procedure} $expt x y
@deffnx {C Function} scm_sys_expt (x, y)
Return @var{x} raised to the power of @var{y}. This
procedure does not accept complex arguments.
@end deffn
@c begin (texi-doc-string "guile" "$sin")
@deffn {Scheme Procedure} $sin x
Return the sine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$cos")
@deffn {Scheme Procedure} $cos x
Return the cosine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$tan")
@deffn {Scheme Procedure} $tan x
Return the tangent of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$asin")
@deffn {Scheme Procedure} $asin x
Return the arcsine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$acos")
@deffn {Scheme Procedure} $acos x
Return the arccosine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$atan")
@deffn {Scheme Procedure} $atan x
Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
@math{PI/2}.
@end deffn
@deffn {Scheme Procedure} $atan2 x y
@deffnx {C Function} scm_sys_atan2 (x, y)
Return the arc tangent of the two arguments @var{x} and
@var{y}. This is similar to calculating the arc tangent of
@var{x} / @var{y}, except that the signs of both arguments
are used to determine the quadrant of the result. This
procedure does not accept complex arguments.
@end deffn
@c begin (texi-doc-string "guile" "$exp")
@deffn {Scheme Procedure} $exp x
Return e to the power of @var{x}, where e is the base of natural
logarithms (2.71828@dots{}).
@end deffn
@c begin (texi-doc-string "guile" "$log")
@deffn {Scheme Procedure} $log x
Return the natural logarithm of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$sinh")
@deffn {Scheme Procedure} $sinh x
Return the hyperbolic sine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$cosh")
@deffn {Scheme Procedure} $cosh x
Return the hyperbolic cosine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$tanh")
@deffn {Scheme Procedure} $tanh x
Return the hyperbolic tangent of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$asinh")
@deffn {Scheme Procedure} $asinh x
Return the hyperbolic arcsine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$acosh")
@deffn {Scheme Procedure} $acosh x
Return the hyperbolic arccosine of @var{x}.
@end deffn
@c begin (texi-doc-string "guile" "$atanh")
@deffn {Scheme Procedure} $atanh x
Return the hyperbolic arctangent of @var{x}.
@end deffn
C functions for the above are provided by the standard mathematics
library. Naturally these expect and return @code{double} arguments
(@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
@multitable {xx} {Scheme Procedure} {C Function}
@item @tab Scheme Procedure @tab C Function
@item @tab @code{$abs} @tab @code{fabs}
@item @tab @code{$sqrt} @tab @code{sqrt}
@item @tab @code{$sin} @tab @code{sin}
@item @tab @code{$cos} @tab @code{cos}
@item @tab @code{$tan} @tab @code{tan}
@item @tab @code{$asin} @tab @code{asin}
@item @tab @code{$acos} @tab @code{acos}
@item @tab @code{$atan} @tab @code{atan}
@item @tab @code{$atan2} @tab @code{atan2}
@item @tab @code{$exp} @tab @code{exp}
@item @tab @code{$expt} @tab @code{pow}
@item @tab @code{$log} @tab @code{log}
@item @tab @code{$sinh} @tab @code{sinh}
@item @tab @code{$cosh} @tab @code{cosh}
@item @tab @code{$tanh} @tab @code{tanh}
@item @tab @code{$asinh} @tab @code{asinh}
@item @tab @code{$acosh} @tab @code{acosh}
@item @tab @code{$atanh} @tab @code{atanh}
@end multitable
@code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
not be available on older systems. Guile provides the following
equivalents (on all systems).
@deftypefn {C Function} double scm_asinh (double x)
@deftypefnx {C Function} double scm_acosh (double x)
@deftypefnx {C Function} double scm_atanh (double x)
Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
respectively.
@end deftypefn
@node Bitwise Operations
@subsubsection Bitwise Operations
For the following bitwise functions, negative numbers are treated as
infinite precision twos-complements. For instance @math{-6} is bits
@math{@dots{}111010}, with infinitely many ones on the left. It can
be seen that adding 6 (binary 110) to such a bit pattern gives all
zeros.
@deffn {Scheme Procedure} logand n1 n2 @dots{}
@deffnx {C Function} scm_logand (n1, n2)
Return the bitwise @sc{and} of the integer arguments.
@lisp
(logand) @result{} -1
(logand 7) @result{} 7
(logand #b111 #b011 #b001) @result{} 1
@end lisp
@end deffn
@deffn {Scheme Procedure} logior n1 n2 @dots{}
@deffnx {C Function} scm_logior (n1, n2)
Return the bitwise @sc{or} of the integer arguments.
@lisp
(logior) @result{} 0
(logior 7) @result{} 7
(logior #b000 #b001 #b011) @result{} 3
@end lisp
@end deffn
@deffn {Scheme Procedure} logxor n1 n2 @dots{}
@deffnx {C Function} scm_loxor (n1, n2)
Return the bitwise @sc{xor} of the integer arguments. A bit is
set in the result if it is set in an odd number of arguments.
@lisp
(logxor) @result{} 0
(logxor 7) @result{} 7
(logxor #b000 #b001 #b011) @result{} 2
(logxor #b000 #b001 #b011 #b011) @result{} 1
@end lisp
@end deffn
@deffn {Scheme Procedure} lognot n
@deffnx {C Function} scm_lognot (n)
Return the integer which is the ones-complement of the integer
argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
@lisp
(number->string (lognot #b10000000) 2)
@result{} "-10000001"
(number->string (lognot #b0) 2)
@result{} "-1"
@end lisp
@end deffn
@deffn {Scheme Procedure} logtest j k
@deffnx {C Function} scm_logtest (j, k)
Test whether @var{j} and @var{k} have any 1 bits in common. This is
equivalent to @code{(not (zero? (logand j k)))}, but without actually
calculating the @code{logand}, just testing for non-zero.
@lisp
(logtest #b0100 #b1011) @result{} #f
(logtest #b0100 #b0111) @result{} #t
@end lisp
@end deffn
@deffn {Scheme Procedure} logbit? index j
@deffnx {C Function} scm_logbit_p (index, j)
Test whether bit number @var{index} in @var{j} is set. @var{index}
starts from 0 for the least significant bit.
@lisp
(logbit? 0 #b1101) @result{} #t
(logbit? 1 #b1101) @result{} #f
(logbit? 2 #b1101) @result{} #t
(logbit? 3 #b1101) @result{} #t
(logbit? 4 #b1101) @result{} #f
@end lisp
@end deffn
@deffn {Scheme Procedure} ash n cnt
@deffnx {C Function} scm_ash (n, cnt)
Return @var{n} shifted left by @var{cnt} bits, or shifted right if
@var{cnt} is negative. This is an ``arithmetic'' shift.
This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
when @var{cnt} is negative it's a division, rounded towards negative
infinity. (Note that this is not the same rounding as @code{quotient}
does.)
With @var{n} viewed as an infinite precision twos complement,
@code{ash} means a left shift introducing zero bits, or a right shift
dropping bits.
@lisp
(number->string (ash #b1 3) 2) @result{} "1000"
(number->string (ash #b1010 -1) 2) @result{} "101"
;; -23 is bits ...11101001, -6 is bits ...111010
(ash -23 -2) @result{} -6
@end lisp
@end deffn
@deffn {Scheme Procedure} logcount n
@deffnx {C Function} scm_logcount (n)
Return the number of bits in integer @var{n}. If @var{n} is
positive, the 1-bits in its binary representation are counted.
If negative, the 0-bits in its two's-complement binary
representation are counted. If zero, 0 is returned.
@lisp
(logcount #b10101010)
@result{} 4
(logcount 0)
@result{} 0
(logcount -2)
@result{} 1
@end lisp
@end deffn
@deffn {Scheme Procedure} integer-length n
@deffnx {C Function} scm_integer_length (n)
Return the number of bits necessary to represent @var{n}.
For positive @var{n} this is how many bits to the most significant one
bit. For negative @var{n} it's how many bits to the most significant
zero bit in twos complement form.
@lisp
(integer-length #b10101010) @result{} 8
(integer-length #b1111) @result{} 4
(integer-length 0) @result{} 0
(integer-length -1) @result{} 0
(integer-length -256) @result{} 8
(integer-length -257) @result{} 9
@end lisp
@end deffn
@deffn {Scheme Procedure} integer-expt n k
@deffnx {C Function} scm_integer_expt (n, k)
Return @var{n} raised to the power @var{k}. @var{k} must be an exact
integer, @var{n} can be any number.
Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
@math{0^0} is 1.
@lisp
(integer-expt 2 5) @result{} 32
(integer-expt -3 3) @result{} -27
(integer-expt 5 -3) @result{} 1/125
(integer-expt 0 0) @result{} 1
@end lisp
@end deffn
@deffn {Scheme Procedure} bit-extract n start end
@deffnx {C Function} scm_bit_extract (n, start, end)
Return the integer composed of the @var{start} (inclusive)
through @var{end} (exclusive) bits of @var{n}. The
@var{start}th bit becomes the 0-th bit in the result.
@lisp
(number->string (bit-extract #b1101101010 0 4) 2)
@result{} "1010"
(number->string (bit-extract #b1101101010 4 9) 2)
@result{} "10110"
@end lisp
@end deffn
@node Random
@subsubsection Random Number Generation
Pseudo-random numbers are generated from a random state object, which
can be created with @code{seed->random-state}. The @var{state}
parameter to the various functions below is optional, it defaults to
the state object in the @code{*random-state*} variable.
@deffn {Scheme Procedure} copy-random-state [state]
@deffnx {C Function} scm_copy_random_state (state)
Return a copy of the random state @var{state}.
@end deffn
@deffn {Scheme Procedure} random n [state]
@deffnx {C Function} scm_random (n, state)
Return a number in [0, @var{n}).
Accepts a positive integer or real n and returns a
number of the same type between zero (inclusive) and
@var{n} (exclusive). The values returned have a uniform
distribution.
@end deffn
@deffn {Scheme Procedure} random:exp [state]
@deffnx {C Function} scm_random_exp (state)
Return an inexact real in an exponential distribution with mean
1. For an exponential distribution with mean @var{u} use @code{(*
@var{u} (random:exp))}.
@end deffn
@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
Fills @var{vect} with inexact real random numbers the sum of whose
squares is equal to 1.0. Thinking of @var{vect} as coordinates in
space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
the coordinates are uniformly distributed over the surface of the unit
n-sphere.
@end deffn
@deffn {Scheme Procedure} random:normal [state]
@deffnx {C Function} scm_random_normal (state)
Return an inexact real in a normal distribution. The distribution
used has mean 0 and standard deviation 1. For a normal distribution
with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
(* @var{d} (random:normal)))}.
@end deffn
@deffn {Scheme Procedure} random:normal-vector! vect [state]
@deffnx {C Function} scm_random_normal_vector_x (vect, state)
Fills @var{vect} with inexact real random numbers that are
independent and standard normally distributed
(i.e., with mean 0 and variance 1).
@end deffn
@deffn {Scheme Procedure} random:solid-sphere! vect [state]
@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
Fills @var{vect} with inexact real random numbers the sum of whose
squares is less than 1.0. Thinking of @var{vect} as coordinates in
space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
the coordinates are uniformly distributed within the unit
@var{n}-sphere.
@c FIXME: What does this mean, particularly the n-sphere part?
@end deffn
@deffn {Scheme Procedure} random:uniform [state]
@deffnx {C Function} scm_random_uniform (state)
Return a uniformly distributed inexact real random number in
[0,1).
@end deffn
@deffn {Scheme Procedure} seed->random-state seed
@deffnx {C Function} scm_seed_to_random_state (seed)
Return a new random state using @var{seed}.
@end deffn
@defvar *random-state*
The global random state used by the above functions when the
@var{state} parameter is not given.
@end defvar
Note that the initial value of @code{*random-state*} is the same every
time Guile starts up. Therefore, if you don't pass a @var{state}
parameter to the above procedures, and you don't set
@code{*random-state*} to @code{(seed->random-state your-seed)}, where
@code{your-seed} is something that @emph{isn't} the same every time,
you'll get the same sequence of ``random'' numbers on every run.
For example, unless the relevant source code has changed, @code{(map
random (cdr (iota 30)))}, if the first use of random numbers since
Guile started up, will always give:
@lisp
(map random (cdr (iota 19)))
@result{}
(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
@end lisp
To use the time of day as the random seed, you can use code like this:
@lisp
(let ((time (gettimeofday)))
(set! *random-state*
(seed->random-state (+ (car time)
(cdr time)))))
@end lisp
@noindent
And then (depending on the time of day, of course):
@lisp
(map random (cdr (iota 19)))
@result{}
(0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
@end lisp
For security applications, such as password generation, you should use
more bits of seed. Otherwise an open source password generator could
be attacked by guessing the seed@dots{} but that's a subject for
another manual.
@node Characters
@subsection Characters
@tpindex Characters
In Scheme, a character literal is written as @code{#\@var{name}} where
@var{name} is the name of the character that you want. Printable
characters have their usual single character name; for example,
@code{#\a} is a lower case @code{a}.
Most of the ``control characters'' (those below codepoint 32) in the
@acronym{ASCII} character set, as well as the space, may be referred
to by longer names: for example, @code{#\tab}, @code{#\esc},
@code{#\stx}, and so on. The following table describes the
@acronym{ASCII} names for each character.
@multitable @columnfractions .25 .25 .25 .25
@item 0 = @code{#\nul}
@tab 1 = @code{#\soh}
@tab 2 = @code{#\stx}
@tab 3 = @code{#\etx}
@item 4 = @code{#\eot}
@tab 5 = @code{#\enq}
@tab 6 = @code{#\ack}
@tab 7 = @code{#\bel}
@item 8 = @code{#\bs}
@tab 9 = @code{#\ht}
@tab 10 = @code{#\nl}
@tab 11 = @code{#\vt}
@item 12 = @code{#\np}
@tab 13 = @code{#\cr}
@tab 14 = @code{#\so}
@tab 15 = @code{#\si}
@item 16 = @code{#\dle}
@tab 17 = @code{#\dc1}
@tab 18 = @code{#\dc2}
@tab 19 = @code{#\dc3}
@item 20 = @code{#\dc4}
@tab 21 = @code{#\nak}
@tab 22 = @code{#\syn}
@tab 23 = @code{#\etb}
@item 24 = @code{#\can}
@tab 25 = @code{#\em}
@tab 26 = @code{#\sub}
@tab 27 = @code{#\esc}
@item 28 = @code{#\fs}
@tab 29 = @code{#\gs}
@tab 30 = @code{#\rs}
@tab 31 = @code{#\us}
@item 32 = @code{#\sp}
@end multitable
The ``delete'' character (octal 177) may be referred to with the name
@code{#\del}.
Several characters have more than one name:
@multitable {@code{#\backspace}} {Original}
@item Alias @tab Original
@item @code{#\space} @tab @code{#\sp}
@item @code{#\newline} @tab @code{#\nl}
@item @code{#\tab} @tab @code{#\ht}
@item @code{#\backspace} @tab @code{#\bs}
@item @code{#\return} @tab @code{#\cr}
@item @code{#\page} @tab @code{#\np}
@item @code{#\null} @tab @code{#\nul}
@end multitable
@rnindex char?
@deffn {Scheme Procedure} char? x
@deffnx {C Function} scm_char_p (x)
Return @code{#t} iff @var{x} is a character, else @code{#f}.
@end deffn
@rnindex char=?
@deffn {Scheme Procedure} char=? x y
Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
@end deffn
@rnindex char<?
@deffn {Scheme Procedure} char<? x y
Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
else @code{#f}.
@end deffn
@rnindex char<=?
@deffn {Scheme Procedure} char<=? x y
Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
@acronym{ASCII} sequence, else @code{#f}.
@end deffn
@rnindex char>?
@deffn {Scheme Procedure} char>? x y
Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
sequence, else @code{#f}.
@end deffn
@rnindex char>=?
@deffn {Scheme Procedure} char>=? x y
Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
@acronym{ASCII} sequence, else @code{#f}.
@end deffn
@rnindex char-ci=?
@deffn {Scheme Procedure} char-ci=? x y
Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
case, else @code{#f}.
@end deffn
@rnindex char-ci<?
@deffn {Scheme Procedure} char-ci<? x y
Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
ignoring case, else @code{#f}.
@end deffn
@rnindex char-ci<=?
@deffn {Scheme Procedure} char-ci<=? x y
Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
@acronym{ASCII} sequence ignoring case, else @code{#f}.
@end deffn
@rnindex char-ci>?
@deffn {Scheme Procedure} char-ci>? x y
Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
sequence ignoring case, else @code{#f}.
@end deffn
@rnindex char-ci>=?
@deffn {Scheme Procedure} char-ci>=? x y
Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
@acronym{ASCII} sequence ignoring case, else @code{#f}.
@end deffn
@rnindex char-alphabetic?
@deffn {Scheme Procedure} char-alphabetic? chr
@deffnx {C Function} scm_char_alphabetic_p (chr)
Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
@end deffn
@rnindex char-numeric?
@deffn {Scheme Procedure} char-numeric? chr
@deffnx {C Function} scm_char_numeric_p (chr)
Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
@end deffn
@rnindex char-whitespace?
@deffn {Scheme Procedure} char-whitespace? chr
@deffnx {C Function} scm_char_whitespace_p (chr)
Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
@end deffn
@rnindex char-upper-case?
@deffn {Scheme Procedure} char-upper-case? chr
@deffnx {C Function} scm_char_upper_case_p (chr)
Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
@end deffn
@rnindex char-lower-case?
@deffn {Scheme Procedure} char-lower-case? chr
@deffnx {C Function} scm_char_lower_case_p (chr)
Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
@end deffn
@deffn {Scheme Procedure} char-is-both? chr
@deffnx {C Function} scm_char_is_both_p (chr)
Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
@code{#f}.
@end deffn
@rnindex char->integer
@deffn {Scheme Procedure} char->integer chr
@deffnx {C Function} scm_char_to_integer (chr)
Return the number corresponding to ordinal position of @var{chr} in the
@acronym{ASCII} sequence.
@end deffn
@rnindex integer->char
@deffn {Scheme Procedure} integer->char n
@deffnx {C Function} scm_integer_to_char (n)
Return the character at position @var{n} in the @acronym{ASCII} sequence.
@end deffn
@rnindex char-upcase
@deffn {Scheme Procedure} char-upcase chr
@deffnx {C Function} scm_char_upcase (chr)
Return the uppercase character version of @var{chr}.
@end deffn
@rnindex char-downcase
@deffn {Scheme Procedure} char-downcase chr
@deffnx {C Function} scm_char_downcase (chr)
Return the lowercase character version of @var{chr}.
@end deffn
@node Character Sets
@subsection Character Sets
The features described in this section correspond directly to SRFI-14.
The data type @dfn{charset} implements sets of characters
(@pxref{Characters}). Because the internal representation of
character sets is not visible to the user, a lot of procedures for
handling them are provided.
Character sets can be created, extended, tested for the membership of a
characters and be compared to other character sets.
The Guile implementation of character sets currently deals only with
8-bit characters. In the future, when Guile gets support for
international character sets, this will change, but the functions
provided here will always then be able to efficiently cope with very
large character sets.
@menu
* Character Set Predicates/Comparison::
* Iterating Over Character Sets:: Enumerate charset elements.
* Creating Character Sets:: Making new charsets.
* Querying Character Sets:: Test charsets for membership etc.
* Character-Set Algebra:: Calculating new charsets.
* Standard Character Sets:: Variables containing predefined charsets.
@end menu
@node Character Set Predicates/Comparison
@subsubsection Character Set Predicates/Comparison
Use these procedures for testing whether an object is a character set,
or whether several character sets are equal or subsets of each other.
@code{char-set-hash} can be used for calculating a hash value, maybe for
usage in fast lookup procedures.
@deffn {Scheme Procedure} char-set? obj
@deffnx {C Function} scm_char_set_p (obj)
Return @code{#t} if @var{obj} is a character set, @code{#f}
otherwise.
@end deffn
@deffn {Scheme Procedure} char-set= . char_sets
@deffnx {C Function} scm_char_set_eq (char_sets)
Return @code{#t} if all given character sets are equal.
@end deffn
@deffn {Scheme Procedure} char-set<= . char_sets
@deffnx {C Function} scm_char_set_leq (char_sets)
Return @code{#t} if every character set @var{cs}i is a subset
of character set @var{cs}i+1.
@end deffn
@deffn {Scheme Procedure} char-set-hash cs [bound]
@deffnx {C Function} scm_char_set_hash (cs, bound)
Compute a hash value for the character set @var{cs}. If
@var{bound} is given and non-zero, it restricts the
returned value to the range 0 @dots{} @var{bound - 1}.
@end deffn
@c ===================================================================
@node Iterating Over Character Sets
@subsubsection Iterating Over Character Sets
Character set cursors are a means for iterating over the members of a
character sets. After creating a character set cursor with
@code{char-set-cursor}, a cursor can be dereferenced with
@code{char-set-ref}, advanced to the next member with
@code{char-set-cursor-next}. Whether a cursor has passed past the last
element of the set can be checked with @code{end-of-char-set?}.
Additionally, mapping and (un-)folding procedures for character sets are
provided.
@deffn {Scheme Procedure} char-set-cursor cs
@deffnx {C Function} scm_char_set_cursor (cs)
Return a cursor into the character set @var{cs}.
@end deffn
@deffn {Scheme Procedure} char-set-ref cs cursor
@deffnx {C Function} scm_char_set_ref (cs, cursor)
Return the character at the current cursor position
@var{cursor} in the character set @var{cs}. It is an error to
pass a cursor for which @code{end-of-char-set?} returns true.
@end deffn
@deffn {Scheme Procedure} char-set-cursor-next cs cursor
@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
Advance the character set cursor @var{cursor} to the next
character in the character set @var{cs}. It is an error if the
cursor given satisfies @code{end-of-char-set?}.
@end deffn
@deffn {Scheme Procedure} end-of-char-set? cursor
@deffnx {C Function} scm_end_of_char_set_p (cursor)
Return @code{#t} if @var{cursor} has reached the end of a
character set, @code{#f} otherwise.
@end deffn
@deffn {Scheme Procedure} char-set-fold kons knil cs
@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
Fold the procedure @var{kons} over the character set @var{cs},
initializing it with @var{knil}.
@end deffn
@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
This is a fundamental constructor for character sets.
@itemize @bullet
@item @var{g} is used to generate a series of ``seed'' values
from the initial seed: @var{seed}, (@var{g} @var{seed}),
(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
@item @var{p} tells us when to stop -- when it returns true
when applied to one of the seed values.
@item @var{f} maps each seed value to a character. These
characters are added to the base character set @var{base_cs} to
form the result; @var{base_cs} defaults to the empty set.
@end itemize
@end deffn
@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
This is a fundamental constructor for character sets.
@itemize @bullet
@item @var{g} is used to generate a series of ``seed'' values
from the initial seed: @var{seed}, (@var{g} @var{seed}),
(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
@item @var{p} tells us when to stop -- when it returns true
when applied to one of the seed values.
@item @var{f} maps each seed value to a character. These
characters are added to the base character set @var{base_cs} to
form the result; @var{base_cs} defaults to the empty set.
@end itemize
@end deffn
@deffn {Scheme Procedure} char-set-for-each proc cs
@deffnx {C Function} scm_char_set_for_each (proc, cs)
Apply @var{proc} to every character in the character set
@var{cs}. The return value is not specified.
@end deffn
@deffn {Scheme Procedure} char-set-map proc cs
@deffnx {C Function} scm_char_set_map (proc, cs)
Map the procedure @var{proc} over every character in @var{cs}.
@var{proc} must be a character -> character procedure.
@end deffn
@c ===================================================================
@node Creating Character Sets
@subsubsection Creating Character Sets
New character sets are produced with these procedures.
@deffn {Scheme Procedure} char-set-copy cs
@deffnx {C Function} scm_char_set_copy (cs)
Return a newly allocated character set containing all
characters in @var{cs}.
@end deffn
@deffn {Scheme Procedure} char-set . rest
@deffnx {C Function} scm_char_set (rest)
Return a character set containing all given characters.
@end deffn
@deffn {Scheme Procedure} list->char-set list [base_cs]
@deffnx {C Function} scm_list_to_char_set (list, base_cs)
Convert the character list @var{list} to a character set. If
the character set @var{base_cs} is given, the character in this
set are also included in the result.
@end deffn
@deffn {Scheme Procedure} list->char-set! list base_cs
@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
Convert the character list @var{list} to a character set. The
characters are added to @var{base_cs} and @var{base_cs} is
returned.
@end deffn
@deffn {Scheme Procedure} string->char-set str [base_cs]
@deffnx {C Function} scm_string_to_char_set (str, base_cs)
Convert the string @var{str} to a character set. If the
character set @var{base_cs} is given, the characters in this
set are also included in the result.
@end deffn
@deffn {Scheme Procedure} string->char-set! str base_cs
@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
Convert the string @var{str} to a character set. The
characters from the string are added to @var{base_cs}, and
@var{base_cs} is returned.
@end deffn
@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
Return a character set containing every character from @var{cs}
so that it satisfies @var{pred}. If provided, the characters
from @var{base_cs} are added to the result.
@end deffn
@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
Return a character set containing every character from @var{cs}
so that it satisfies @var{pred}. The characters are added to
@var{base_cs} and @var{base_cs} is returned.
@end deffn
@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
Return a character set containing all characters whose
character codes lie in the half-open range
[@var{lower},@var{upper}).
If @var{error} is a true value, an error is signalled if the
specified range contains characters which are not contained in
the implemented character range. If @var{error} is @code{#f},
these characters are silently left out of the resultung
character set.
The characters in @var{base_cs} are added to the result, if
given.
@end deffn
@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
Return a character set containing all characters whose
character codes lie in the half-open range
[@var{lower},@var{upper}).
If @var{error} is a true value, an error is signalled if the
specified range contains characters which are not contained in
the implemented character range. If @var{error} is @code{#f},
these characters are silently left out of the resultung
character set.
The characters are added to @var{base_cs} and @var{base_cs} is
returned.
@end deffn
@deffn {Scheme Procedure} ->char-set x
@deffnx {C Function} scm_to_char_set (x)
Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
@end deffn
@c ===================================================================
@node Querying Character Sets
@subsubsection Querying Character Sets
Access the elements and other information of a character set with these
procedures.
@deffn {Scheme Procedure} char-set-size cs
@deffnx {C Function} scm_char_set_size (cs)
Return the number of elements in character set @var{cs}.
@end deffn
@deffn {Scheme Procedure} char-set-count pred cs
@deffnx {C Function} scm_char_set_count (pred, cs)
Return the number of the elements int the character set
@var{cs} which satisfy the predicate @var{pred}.
@end deffn
@deffn {Scheme Procedure} char-set->list cs
@deffnx {C Function} scm_char_set_to_list (cs)
Return a list containing the elements of the character set
@var{cs}.
@end deffn
@deffn {Scheme Procedure} char-set->string cs
@deffnx {C Function} scm_char_set_to_string (cs)
Return a string containing the elements of the character set
@var{cs}. The order in which the characters are placed in the
string is not defined.
@end deffn
@deffn {Scheme Procedure} char-set-contains? cs ch
@deffnx {C Function} scm_char_set_contains_p (cs, ch)
Return @code{#t} iff the character @var{ch} is contained in the
character set @var{cs}.
@end deffn
@deffn {Scheme Procedure} char-set-every pred cs
@deffnx {C Function} scm_char_set_every (pred, cs)
Return a true value if every character in the character set
@var{cs} satisfies the predicate @var{pred}.
@end deffn
@deffn {Scheme Procedure} char-set-any pred cs
@deffnx {C Function} scm_char_set_any (pred, cs)
Return a true value if any character in the character set
@var{cs} satisfies the predicate @var{pred}.
@end deffn
@c ===================================================================
@node Character-Set Algebra
@subsubsection Character-Set Algebra
Character sets can be manipulated with the common set algebra operation,
such as union, complement, intersection etc. All of these procedures
provide side-effecting variants, which modify their character set
argument(s).
@deffn {Scheme Procedure} char-set-adjoin cs . rest
@deffnx {C Function} scm_char_set_adjoin (cs, rest)
Add all character arguments to the first argument, which must
be a character set.
@end deffn
@deffn {Scheme Procedure} char-set-delete cs . rest
@deffnx {C Function} scm_char_set_delete (cs, rest)
Delete all character arguments from the first argument, which
must be a character set.
@end deffn
@deffn {Scheme Procedure} char-set-adjoin! cs . rest
@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
Add all character arguments to the first argument, which must
be a character set.
@end deffn
@deffn {Scheme Procedure} char-set-delete! cs . rest
@deffnx {C Function} scm_char_set_delete_x (cs, rest)
Delete all character arguments from the first argument, which
must be a character set.
@end deffn
@deffn {Scheme Procedure} char-set-complement cs
@deffnx {C Function} scm_char_set_complement (cs)
Return the complement of the character set @var{cs}.
@end deffn
@deffn {Scheme Procedure} char-set-union . rest
@deffnx {C Function} scm_char_set_union (rest)
Return the union of all argument character sets.
@end deffn
@deffn {Scheme Procedure} char-set-intersection . rest
@deffnx {C Function} scm_char_set_intersection (rest)
Return the intersection of all argument character sets.
@end deffn
@deffn {Scheme Procedure} char-set-difference cs1 . rest
@deffnx {C Function} scm_char_set_difference (cs1, rest)
Return the difference of all argument character sets.
@end deffn
@deffn {Scheme Procedure} char-set-xor . rest
@deffnx {C Function} scm_char_set_xor (rest)
Return the exclusive-or of all argument character sets.
@end deffn
@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
Return the difference and the intersection of all argument
character sets.
@end deffn
@deffn {Scheme Procedure} char-set-complement! cs
@deffnx {C Function} scm_char_set_complement_x (cs)
Return the complement of the character set @var{cs}.
@end deffn
@deffn {Scheme Procedure} char-set-union! cs1 . rest
@deffnx {C Function} scm_char_set_union_x (cs1, rest)
Return the union of all argument character sets.
@end deffn
@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
Return the intersection of all argument character sets.
@end deffn
@deffn {Scheme Procedure} char-set-difference! cs1 . rest
@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
Return the difference of all argument character sets.
@end deffn
@deffn {Scheme Procedure} char-set-xor! cs1 . rest
@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
Return the exclusive-or of all argument character sets.
@end deffn
@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
Return the difference and the intersection of all argument
character sets.
@end deffn
@c ===================================================================
@node Standard Character Sets
@subsubsection Standard Character Sets
In order to make the use of the character set data type and procedures
useful, several predefined character set variables exist.
@cindex codeset
@cindex charset
@cindex locale
Currently, the contents of these character sets are recomputed upon a
successful @code{setlocale} call (@pxref{Locales}) in order to reflect
the characters available in the current locale's codeset. For
instance, @code{char-set:letter} contains 52 characters under an ASCII
locale (e.g., the default @code{C} locale) and 117 characters under an
ISO-8859-1 (``Latin-1'') locale.
@defvr {Scheme Variable} char-set:lower-case
@defvrx {C Variable} scm_char_set_lower_case
All lower-case characters.
@end defvr
@defvr {Scheme Variable} char-set:upper-case
@defvrx {C Variable} scm_char_set_upper_case
All upper-case characters.
@end defvr
@defvr {Scheme Variable} char-set:title-case
@defvrx {C Variable} scm_char_set_title_case
This is empty, because ASCII has no titlecase characters.
@end defvr
@defvr {Scheme Variable} char-set:letter
@defvrx {C Variable} scm_char_set_letter
All letters, e.g. the union of @code{char-set:lower-case} and
@code{char-set:upper-case}.
@end defvr
@defvr {Scheme Variable} char-set:digit
@defvrx {C Variable} scm_char_set_digit
All digits.
@end defvr
@defvr {Scheme Variable} char-set:letter+digit
@defvrx {C Variable} scm_char_set_letter_and_digit
The union of @code{char-set:letter} and @code{char-set:digit}.
@end defvr
@defvr {Scheme Variable} char-set:graphic
@defvrx {C Variable} scm_char_set_graphic
All characters which would put ink on the paper.
@end defvr
@defvr {Scheme Variable} char-set:printing
@defvrx {C Variable} scm_char_set_printing
The union of @code{char-set:graphic} and @code{char-set:whitespace}.
@end defvr
@defvr {Scheme Variable} char-set:whitespace
@defvrx {C Variable} scm_char_set_whitespace
All whitespace characters.
@end defvr
@defvr {Scheme Variable} char-set:blank
@defvrx {C Variable} scm_char_set_blank
All horizontal whitespace characters, that is @code{#\space} and
@code{#\tab}.
@end defvr
@defvr {Scheme Variable} char-set:iso-control
@defvrx {C Variable} scm_char_set_iso_control
The ISO control characters with the codes 0--31 and 127.
@end defvr
@defvr {Scheme Variable} char-set:punctuation
@defvrx {C Variable} scm_char_set_punctuation
The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
@end defvr
@defvr {Scheme Variable} char-set:symbol
@defvrx {C Variable} scm_char_set_symbol
The characters @code{$+<=>^`|~}.
@end defvr
@defvr {Scheme Variable} char-set:hex-digit
@defvrx {C Variable} scm_char_set_hex_digit
The hexadecimal digits @code{0123456789abcdefABCDEF}.
@end defvr
@defvr {Scheme Variable} char-set:ascii
@defvrx {C Variable} scm_char_set_ascii
All ASCII characters.
@end defvr
@defvr {Scheme Variable} char-set:empty
@defvrx {C Variable} scm_char_set_empty
The empty character set.
@end defvr
@defvr {Scheme Variable} char-set:full
@defvrx {C Variable} scm_char_set_full
This character set contains all possible characters.
@end defvr
@node Strings
@subsection Strings
@tpindex Strings
Strings are fixed-length sequences of characters. They can be created
by calling constructor procedures, but they can also literally get
entered at the @acronym{REPL} or in Scheme source files.
@c Guile provides a rich set of string processing procedures, because text
@c handling is very important when Guile is used as a scripting language.
Strings always carry the information about how many characters they are
composed of with them, so there is no special end-of-string character,
like in C. That means that Scheme strings can contain any character,
even the @samp{#\nul} character @samp{\0}.
To use strings efficiently, you need to know a bit about how Guile
implements them. In Guile, a string consists of two parts, a head and
the actual memory where the characters are stored. When a string (or
a substring of it) is copied, only a new head gets created, the memory
is usually not copied. The two heads start out pointing to the same
memory.
When one of these two strings is modified, as with @code{string-set!},
their common memory does get copied so that each string has its own
memory and modifying one does not accidently modify the other as well.
Thus, Guile's strings are `copy on write'; the actual copying of their
memory is delayed until one string is written to.
This implementation makes functions like @code{substring} very
efficient in the common case that no modifications are done to the
involved strings.
If you do know that your strings are getting modified right away, you
can use @code{substring/copy} instead of @code{substring}. This
function performs the copy immediately at the time of creation. This
is more efficient, especially in a multi-threaded program. Also,
@code{substring/copy} can avoid the problem that a short substring
holds on to the memory of a very large original string that could
otherwise be recycled.
If you want to avoid the copy altogether, so that modifications of one
string show up in the other, you can use @code{substring/shared}. The
strings created by this procedure are called @dfn{mutation sharing
substrings} since the substring and the original string share
modifications to each other.
If you want to prevent modifications, use @code{substring/read-only}.
Guile provides all procedures of SRFI-13 and a few more.
@menu
* String Syntax:: Read syntax for strings.
* String Predicates:: Testing strings for certain properties.
* String Constructors:: Creating new string objects.
* List/String Conversion:: Converting from/to lists of characters.
* String Selection:: Select portions from strings.
* String Modification:: Modify parts or whole strings.
* String Comparison:: Lexicographic ordering predicates.
* String Searching:: Searching in strings.
* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
* Reversing and Appending Strings:: Appending strings to form a new string.
* Mapping Folding and Unfolding:: Iterating over strings.
* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
* Conversion to/from C::
@end menu
@node String Syntax
@subsubsection String Read Syntax
@c In the following @code is used to get a good font in TeX etc, but
@c is omitted for Info format, so as not to risk any confusion over
@c whether surrounding ` ' quotes are part of the escape or are
@c special in a string (they're not).
The read syntax for strings is an arbitrarily long sequence of
characters enclosed in double quotes (@nicode{"}).
Backslash is an escape character and can be used to insert the
following special characters. @nicode{\"} and @nicode{\\} are R5RS
standard, the rest are Guile extensions, notice they follow C string
syntax.
@table @asis
@item @nicode{\\}
Backslash character.
@item @nicode{\"}
Double quote character (an unescaped @nicode{"} is otherwise the end
of the string).
@item @nicode{\0}
NUL character (ASCII 0).
@item @nicode{\a}
Bell character (ASCII 7).
@item @nicode{\f}
Formfeed character (ASCII 12).
@item @nicode{\n}
Newline character (ASCII 10).
@item @nicode{\r}
Carriage return character (ASCII 13).
@item @nicode{\t}
Tab character (ASCII 9).
@item @nicode{\v}
Vertical tab character (ASCII 11).
@item @nicode{\xHH}
Character code given by two hexadecimal digits. For example
@nicode{\x7f} for an ASCII DEL (127).
@end table
@noindent
The following are examples of string literals:
@lisp
"foo"
"bar plonk"
"Hello World"
"\"Hi\", he said."
@end lisp
@node String Predicates
@subsubsection String Predicates
The following procedures can be used to check whether a given string
fulfills some specified property.
@rnindex string?
@deffn {Scheme Procedure} string? obj
@deffnx {C Function} scm_string_p (obj)
Return @code{#t} if @var{obj} is a string, else @code{#f}.
@end deffn
@deftypefn {C Function} int scm_is_string (SCM obj)
Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
@end deftypefn
@deffn {Scheme Procedure} string-null? str
@deffnx {C Function} scm_string_null_p (str)
Return @code{#t} if @var{str}'s length is zero, and
@code{#f} otherwise.
@lisp
(string-null? "") @result{} #t
y @result{} "foo"
(string-null? y) @result{} #f
@end lisp
@end deffn
@deffn {Scheme Procedure} string-any char_pred s [start [end]]
@deffnx {C Function} scm_string_any (char_pred, s, start, end)
Check if @var{char_pred} is true for any character in string @var{s}.
@var{char_pred} can be a character to check for any equal to that, or
a character set (@pxref{Character Sets}) to check for any in that set,
or a predicate procedure to call.
For a procedure, calls @code{(@var{char_pred} c)} are made
successively on the characters from @var{start} to @var{end}. If
@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
stops and that return value is the return from @code{string-any}. The
call on the last character (ie.@: at @math{@var{end}-1}), if that
point is reached, is a tail call.
If there are no characters in @var{s} (ie.@: @var{start} equals
@var{end}) then the return is @code{#f}.
@end deffn
@deffn {Scheme Procedure} string-every char_pred s [start [end]]
@deffnx {C Function} scm_string_every (char_pred, s, start, end)
Check if @var{char_pred} is true for every character in string
@var{s}.
@var{char_pred} can be a character to check for every character equal
to that, or a character set (@pxref{Character Sets}) to check for
every character being in that set, or a predicate procedure to call.
For a procedure, calls @code{(@var{char_pred} c)} are made
successively on the characters from @var{start} to @var{end}. If
@var{char_pred} returns @code{#f}, @code{string-every} stops and
returns @code{#f}. The call on the last character (ie.@: at
@math{@var{end}-1}), if that point is reached, is a tail call and the
return from that call is the return from @code{string-every}.
If there are no characters in @var{s} (ie.@: @var{start} equals
@var{end}) then the return is @code{#t}.
@end deffn
@node String Constructors
@subsubsection String Constructors
The string constructor procedures create new string objects, possibly
initializing them with some specified character data. See also
@xref{String Selection}, for ways to create strings from existing
strings.
@c FIXME::martin: list->string belongs into `List/String Conversion'
@deffn {Scheme Procedure} string char@dots{}
@rnindex string
Return a newly allocated string made from the given character
arguments.
@example
(string #\x #\y #\z) @result{} "xyz"
(string) @result{} ""
@end example
@end deffn
@deffn {Scheme Procedure} list->string lst
@deffnx {C Function} scm_string (lst)
@rnindex list->string
Return a newly allocated string made from a list of characters.
@example
(list->string '(#\a #\b #\c)) @result{} "abc"
@end example
@end deffn
@deffn {Scheme Procedure} reverse-list->string lst
@deffnx {C Function} scm_reverse_list_to_string (lst)
Return a newly allocated string made from a list of characters, in
reverse order.
@example
(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
@end example
@end deffn
@rnindex make-string
@deffn {Scheme Procedure} make-string k [chr]
@deffnx {C Function} scm_make_string (k, chr)
Return a newly allocated string of
length @var{k}. If @var{chr} is given, then all elements of
the string are initialized to @var{chr}, otherwise the contents
of the @var{string} are unspecified.
@end deffn
@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
Like @code{scm_make_string}, but expects the length as a
@code{size_t}.
@end deftypefn
@deffn {Scheme Procedure} string-tabulate proc len
@deffnx {C Function} scm_string_tabulate (proc, len)
@var{proc} is an integer->char procedure. Construct a string
of size @var{len} by applying @var{proc} to each index to
produce the corresponding string element. The order in which
@var{proc} is applied to the indices is not specified.
@end deffn
@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
Append the string in the string list @var{ls}, using the string
@var{delim} as a delimiter between the elements of @var{ls}.
@var{grammar} is a symbol which specifies how the delimiter is
placed between the strings, and defaults to the symbol
@code{infix}.
@table @code
@item infix
Insert the separator between list elements. An empty string
will produce an empty list.
@item string-infix
Like @code{infix}, but will raise an error if given the empty
list.
@item suffix
Insert the separator after every list element.
@item prefix
Insert the separator before each list element.
@end table
@end deffn
@node List/String Conversion
@subsubsection List/String conversion
When processing strings, it is often convenient to first convert them
into a list representation by using the procedure @code{string->list},
work with the resulting list, and then convert it back into a string.
These procedures are useful for similar tasks.
@rnindex string->list
@deffn {Scheme Procedure} string->list str [start [end]]
@deffnx {C Function} scm_substring_to_list (str, start, end)
@deffnx {C Function} scm_string_to_list (str)
Convert the string @var{str} into a list of characters.
@end deffn
@deffn {Scheme Procedure} string-split str chr
@deffnx {C Function} scm_string_split (str, chr)
Split the string @var{str} into the a list of the substrings delimited
by appearances of the character @var{chr}. Note that an empty substring
between separator characters will result in an empty string in the
result list.
@lisp
(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
@result{}
("root" "x" "0" "0" "root" "/root" "/bin/bash")
(string-split "::" #\:)
@result{}
("" "" "")
(string-split "" #\:)
@result{}
("")
@end lisp
@end deffn
@node String Selection
@subsubsection String Selection
Portions of strings can be extracted by these procedures.
@code{string-ref} delivers individual characters whereas
@code{substring} can be used to extract substrings from longer strings.
@rnindex string-length
@deffn {Scheme Procedure} string-length string
@deffnx {C Function} scm_string_length (string)
Return the number of characters in @var{string}.
@end deffn
@deftypefn {C Function} size_t scm_c_string_length (SCM str)
Return the number of characters in @var{str} as a @code{size_t}.
@end deftypefn
@rnindex string-ref
@deffn {Scheme Procedure} string-ref str k
@deffnx {C Function} scm_string_ref (str, k)
Return character @var{k} of @var{str} using zero-origin
indexing. @var{k} must be a valid index of @var{str}.
@end deffn
@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
Return character @var{k} of @var{str} using zero-origin
indexing. @var{k} must be a valid index of @var{str}.
@end deftypefn
@rnindex string-copy
@deffn {Scheme Procedure} string-copy str [start [end]]
@deffnx {C Function} scm_substring_copy (str, start, end)
@deffnx {C Function} scm_string_copy (str)
Return a copy of the given string @var{str}.
The returned string shares storage with @var{str} initially, but it is
copied as soon as one of the two strings is modified.
@end deffn
@rnindex substring
@deffn {Scheme Procedure} substring str start [end]
@deffnx {C Function} scm_substring (str, start, end)
Return a new string formed from the characters
of @var{str} beginning with index @var{start} (inclusive) and
ending with index @var{end} (exclusive).
@var{str} must be a string, @var{start} and @var{end} must be
exact integers satisfying:
0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
The returned string shares storage with @var{str} initially, but it is
copied as soon as one of the two strings is modified.
@end deffn
@deffn {Scheme Procedure} substring/shared str start [end]
@deffnx {C Function} scm_substring_shared (str, start, end)
Like @code{substring}, but the strings continue to share their storage
even if they are modified. Thus, modifications to @var{str} show up
in the new string, and vice versa.
@end deffn
@deffn {Scheme Procedure} substring/copy str start [end]
@deffnx {C Function} scm_substring_copy (str, start, end)
Like @code{substring}, but the storage for the new string is copied
immediately.
@end deffn
@deffn {Scheme Procedure} substring/read-only str start [end]
@deffnx {C Function} scm_substring_read_only (str, start, end)
Like @code{substring}, but the resulting string can not be modified.
@end deffn
@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
@end deftypefn
@deffn {Scheme Procedure} string-take s n
@deffnx {C Function} scm_string_take (s, n)
Return the @var{n} first characters of @var{s}.
@end deffn
@deffn {Scheme Procedure} string-drop s n
@deffnx {C Function} scm_string_drop (s, n)
Return all but the first @var{n} characters of @var{s}.
@end deffn
@deffn {Scheme Procedure} string-take-right s n
@deffnx {C Function} scm_string_take_right (s, n)
Return the @var{n} last characters of @var{s}.
@end deffn
@deffn {Scheme Procedure} string-drop-right s n
@deffnx {C Function} scm_string_drop_right (s, n)
Return all but the last @var{n} characters of @var{s}.
@end deffn
@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
Take characters @var{start} to @var{end} from the string @var{s} and
either pad with @var{char} or truncate them to give @var{len}
characters.
@code{string-pad} pads or truncates on the left, so for example
@example
(string-pad "x" 3) @result{} " x"
(string-pad "abcde" 3) @result{} "cde"
@end example
@code{string-pad-right} pads or truncates on the right, so for example
@example
(string-pad-right "x" 3) @result{} "x "
(string-pad-right "abcde" 3) @result{} "abc"
@end example
@end deffn
@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
Trim occurrances of @var{char_pred} from the ends of @var{s}.
@code{string-trim} trims @var{char_pred} characters from the left
(start) of the string, @code{string-trim-right} trims them from the
right (end) of the string, @code{string-trim-both} trims from both
ends.
@var{char_pred} can be a character, a character set, or a predicate
procedure to call on each character. If @var{char_pred} is not given
the default is whitespace as per @code{char-set:whitespace}
(@pxref{Standard Character Sets}).
@example
(string-trim " x ") @result{} "x "
(string-trim-right "banana" #\a) @result{} "banan"
(string-trim-both ".,xy:;" char-set:punctuation)
@result{} "xy"
(string-trim-both "xyzzy" (lambda (c)
(or (eqv? c #\x)
(eqv? c #\y))))
@result{} "zz"
@end example
@end deffn
@node String Modification
@subsubsection String Modification
These procedures are for modifying strings in-place. This means that the
result of the operation is not a new string; instead, the original string's
memory representation is modified.
@rnindex string-set!
@deffn {Scheme Procedure} string-set! str k chr
@deffnx {C Function} scm_string_set_x (str, k, chr)
Store @var{chr} in element @var{k} of @var{str} and return
an unspecified value. @var{k} must be a valid index of
@var{str}.
@end deffn
@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
@end deftypefn
@rnindex string-fill!
@deffn {Scheme Procedure} string-fill! str chr [start [end]]
@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
@deffnx {C Function} scm_string_fill_x (str, chr)
Stores @var{chr} in every element of the given @var{str} and
returns an unspecified value.
@end deffn
@deffn {Scheme Procedure} substring-fill! str start end fill
@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
Change every character in @var{str} between @var{start} and
@var{end} to @var{fill}.
@lisp
(define y "abcdefg")
(substring-fill! y 1 3 #\r)
y
@result{} "arrdefg"
@end lisp
@end deffn
@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
into @var{str2} beginning at position @var{start2}.
@var{str1} and @var{str2} can be the same string.
@end deffn
@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
Copy the sequence of characters from index range [@var{start},
@var{end}) in string @var{s} to string @var{target}, beginning
at index @var{tstart}. The characters are copied left-to-right
or right-to-left as needed -- the copy is guaranteed to work,
even if @var{target} and @var{s} are the same string. It is an
error if the copy operation runs off the end of the target
string.
@end deffn
@node String Comparison
@subsubsection String Comparison
The procedures in this section are similar to the character ordering
predicates (@pxref{Characters}), but are defined on character sequences.
The first set is specified in R5RS and has names that end in @code{?}.
The second set is specified in SRFI-13 and the names have no ending
@code{?}. The predicates ending in @code{-ci} ignore the character case
when comparing strings.
@rnindex string=?
@deffn {Scheme Procedure} string=? s1 s2
Lexicographic equality predicate; return @code{#t} if the two
strings are the same length and contain the same characters in
the same positions, otherwise return @code{#f}.
The procedure @code{string-ci=?} treats upper and lower case
letters as though they were the same character, but
@code{string=?} treats upper and lower case as distinct
characters.
@end deffn
@rnindex string<?
@deffn {Scheme Procedure} string<? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically less than @var{s2}.
@end deffn
@rnindex string<=?
@deffn {Scheme Procedure} string<=? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically less than or equal to @var{s2}.
@end deffn
@rnindex string>?
@deffn {Scheme Procedure} string>? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically greater than @var{s2}.
@end deffn
@rnindex string>=?
@deffn {Scheme Procedure} string>=? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically greater than or equal to @var{s2}.
@end deffn
@rnindex string-ci=?
@deffn {Scheme Procedure} string-ci=? s1 s2
Case-insensitive string equality predicate; return @code{#t} if
the two strings are the same length and their component
characters match (ignoring case) at each position; otherwise
return @code{#f}.
@end deffn
@rnindex string-ci<?
@deffn {Scheme Procedure} string-ci<? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically less than @var{s2}
regardless of case.
@end deffn
@rnindex string<=?
@deffn {Scheme Procedure} string-ci<=? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically less than or equal
to @var{s2} regardless of case.
@end deffn
@rnindex string-ci>?
@deffn {Scheme Procedure} string-ci>? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically greater than
@var{s2} regardless of case.
@end deffn
@rnindex string-ci>=?
@deffn {Scheme Procedure} string-ci>=? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically greater than or
equal to @var{s2} regardless of case.
@end deffn
@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
mismatch index, depending upon whether @var{s1} is less than,
equal to, or greater than @var{s2}. The mismatch index is the
largest index @var{i} such that for every 0 <= @var{j} <
@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
@var{i} is the first position that does not match.
@end deffn
@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
mismatch index, depending upon whether @var{s1} is less than,
equal to, or greater than @var{s2}. The mismatch index is the
largest index @var{i} such that for every 0 <= @var{j} <
@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
@var{i} is the first position that does not match. The
character comparison is done case-insensitively.
@end deffn
@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
value otherwise.
@end deffn
@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} and @var{s2} are equal, a true
value otherwise.
@end deffn
@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
true value otherwise.
@end deffn
@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
true value otherwise.
@end deffn
@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is greater to @var{s2}, a true
value otherwise.
@end deffn
@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is less to @var{s2}, a true value
otherwise.
@end deffn
@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
value otherwise. The character comparison is done
case-insensitively.
@end deffn
@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} and @var{s2} are equal, a true
value otherwise. The character comparison is done
case-insensitively.
@end deffn
@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
true value otherwise. The character comparison is done
case-insensitively.
@end deffn
@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
true value otherwise. The character comparison is done
case-insensitively.
@end deffn
@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is greater to @var{s2}, a true
value otherwise. The character comparison is done
case-insensitively.
@end deffn
@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is less to @var{s2}, a true value
otherwise. The character comparison is done
case-insensitively.
@end deffn
@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
@deffnx {C Function} scm_substring_hash (s, bound, start, end)
Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
@end deffn
@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
@end deffn
@node String Searching
@subsubsection String Searching
@deffn {Scheme Procedure} string-index s char_pred [start [end]]
@deffnx {C Function} scm_string_index (s, char_pred, start, end)
Search through the string @var{s} from left to right, returning
the index of the first occurence of a character which
@itemize @bullet
@item
equals @var{char_pred}, if it is character,
@item
satisifies the predicate @var{char_pred}, if it is a procedure,
@item
is in the set @var{char_pred}, if it is a character set.
@end itemize
@end deffn
@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
Search through the string @var{s} from right to left, returning
the index of the last occurence of a character which
@itemize @bullet
@item
equals @var{char_pred}, if it is character,
@item
satisifies the predicate @var{char_pred}, if it is a procedure,
@item
is in the set if @var{char_pred} is a character set.
@end itemize
@end deffn
@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
Return the length of the longest common prefix of the two
strings.
@end deffn
@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
Return the length of the longest common prefix of the two
strings, ignoring character case.
@end deffn
@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
Return the length of the longest common suffix of the two
strings.
@end deffn
@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
Return the length of the longest common suffix of the two
strings, ignoring character case.
@end deffn
@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
Is @var{s1} a prefix of @var{s2}?
@end deffn
@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
Is @var{s1} a prefix of @var{s2}, ignoring character case?
@end deffn
@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
Is @var{s1} a suffix of @var{s2}?
@end deffn
@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
Is @var{s1} a suffix of @var{s2}, ignoring character case?
@end deffn
@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
Search through the string @var{s} from right to left, returning
the index of the last occurence of a character which
@itemize @bullet
@item
equals @var{char_pred}, if it is character,
@item
satisifies the predicate @var{char_pred}, if it is a procedure,
@item
is in the set if @var{char_pred} is a character set.
@end itemize
@end deffn
@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
Search through the string @var{s} from left to right, returning
the index of the first occurence of a character which
@itemize @bullet
@item
does not equal @var{char_pred}, if it is character,
@item
does not satisify the predicate @var{char_pred}, if it is a
procedure,
@item
is not in the set if @var{char_pred} is a character set.
@end itemize
@end deffn
@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
Search through the string @var{s} from right to left, returning
the index of the last occurence of a character which
@itemize @bullet
@item
does not equal @var{char_pred}, if it is character,
@item
does not satisfy the predicate @var{char_pred}, if it is a
procedure,
@item
is not in the set if @var{char_pred} is a character set.
@end itemize
@end deffn
@deffn {Scheme Procedure} string-count s char_pred [start [end]]
@deffnx {C Function} scm_string_count (s, char_pred, start, end)
Return the count of the number of characters in the string
@var{s} which
@itemize @bullet
@item
equals @var{char_pred}, if it is character,
@item
satisifies the predicate @var{char_pred}, if it is a procedure.
@item
is in the set @var{char_pred}, if it is a character set.
@end itemize
@end deffn
@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
Does string @var{s1} contain string @var{s2}? Return the index
in @var{s1} where @var{s2} occurs as a substring, or false.
The optional start/end indices restrict the operation to the
indicated substrings.
@end deffn
@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
Does string @var{s1} contain string @var{s2}? Return the index
in @var{s1} where @var{s2} occurs as a substring, or false.
The optional start/end indices restrict the operation to the
indicated substrings. Character comparison is done
case-insensitively.
@end deffn
@node Alphabetic Case Mapping
@subsubsection Alphabetic Case Mapping
These are procedures for mapping strings to their upper- or lower-case
equivalents, respectively, or for capitalizing strings.
@deffn {Scheme Procedure} string-upcase str [start [end]]
@deffnx {C Function} scm_substring_upcase (str, start, end)
@deffnx {C Function} scm_string_upcase (str)
Upcase every character in @code{str}.
@end deffn
@deffn {Scheme Procedure} string-upcase! str [start [end]]
@deffnx {C Function} scm_substring_upcase_x (str, start, end)
@deffnx {C Function} scm_string_upcase_x (str)
Destructively upcase every character in @code{str}.
@lisp
(string-upcase! y)
@result{} "ARRDEFG"
y
@result{} "ARRDEFG"
@end lisp
@end deffn
@deffn {Scheme Procedure} string-downcase str [start [end]]
@deffnx {C Function} scm_substring_downcase (str, start, end)
@deffnx {C Function} scm_string_downcase (str)
Downcase every character in @var{str}.
@end deffn
@deffn {Scheme Procedure} string-downcase! str [start [end]]
@deffnx {C Function} scm_substring_downcase_x (str, start, end)
@deffnx {C Function} scm_string_downcase_x (str)
Destructively downcase every character in @var{str}.
@lisp
y
@result{} "ARRDEFG"
(string-downcase! y)
@result{} "arrdefg"
y
@result{} "arrdefg"
@end lisp
@end deffn
@deffn {Scheme Procedure} string-capitalize str
@deffnx {C Function} scm_string_capitalize (str)
Return a freshly allocated string with the characters in
@var{str}, where the first character of every word is
capitalized.
@end deffn
@deffn {Scheme Procedure} string-capitalize! str
@deffnx {C Function} scm_string_capitalize_x (str)
Upcase the first character of every word in @var{str}
destructively and return @var{str}.
@lisp
y @result{} "hello world"
(string-capitalize! y) @result{} "Hello World"
y @result{} "Hello World"
@end lisp
@end deffn
@deffn {Scheme Procedure} string-titlecase str [start [end]]
@deffnx {C Function} scm_string_titlecase (str, start, end)
Titlecase every first character in a word in @var{str}.
@end deffn
@deffn {Scheme Procedure} string-titlecase! str [start [end]]
@deffnx {C Function} scm_string_titlecase_x (str, start, end)
Destructively titlecase every first character in a word in
@var{str}.
@end deffn
@node Reversing and Appending Strings
@subsubsection Reversing and Appending Strings
@deffn {Scheme Procedure} string-reverse str [start [end]]
@deffnx {C Function} scm_string_reverse (str, start, end)
Reverse the string @var{str}. The optional arguments
@var{start} and @var{end} delimit the region of @var{str} to
operate on.
@end deffn
@deffn {Scheme Procedure} string-reverse! str [start [end]]
@deffnx {C Function} scm_string_reverse_x (str, start, end)
Reverse the string @var{str} in-place. The optional arguments
@var{start} and @var{end} delimit the region of @var{str} to
operate on. The return value is unspecified.
@end deffn
@rnindex string-append
@deffn {Scheme Procedure} string-append . args
@deffnx {C Function} scm_string_append (args)
Return a newly allocated string whose characters form the
concatenation of the given strings, @var{args}.
@example
(let ((h "hello "))
(string-append h "world"))
@result{} "hello world"
@end example
@end deffn
@deffn {Scheme Procedure} string-append/shared . ls
@deffnx {C Function} scm_string_append_shared (ls)
Like @code{string-append}, but the result may share memory
with the argument strings.
@end deffn
@deffn {Scheme Procedure} string-concatenate ls
@deffnx {C Function} scm_string_concatenate (ls)
Append the elements of @var{ls} (which must be strings)
together into a single string. Guaranteed to return a freshly
allocated string.
@end deffn
@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
Without optional arguments, this procedure is equivalent to
@smalllisp
(string-concatenate (reverse ls))
@end smalllisp
If the optional argument @var{final_string} is specified, it is
consed onto the beginning to @var{ls} before performing the
list-reverse and string-concatenate operations. If @var{end}
is given, only the characters of @var{final_string} up to index
@var{end} are used.
Guaranteed to return a freshly allocated string.
@end deffn
@deffn {Scheme Procedure} string-concatenate/shared ls
@deffnx {C Function} scm_string_concatenate_shared (ls)
Like @code{string-concatenate}, but the result may share memory
with the strings in the list @var{ls}.
@end deffn
@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
Like @code{string-concatenate-reverse}, but the result may
share memory with the the strings in the @var{ls} arguments.
@end deffn
@node Mapping Folding and Unfolding
@subsubsection Mapping, Folding, and Unfolding
@deffn {Scheme Procedure} string-map proc s [start [end]]
@deffnx {C Function} scm_string_map (proc, s, start, end)
@var{proc} is a char->char procedure, it is mapped over
@var{s}. The order in which the procedure is applied to the
string elements is not specified.
@end deffn
@deffn {Scheme Procedure} string-map! proc s [start [end]]
@deffnx {C Function} scm_string_map_x (proc, s, start, end)
@var{proc} is a char->char procedure, it is mapped over
@var{s}. The order in which the procedure is applied to the
string elements is not specified. The string @var{s} is
modified in-place, the return value is not specified.
@end deffn
@deffn {Scheme Procedure} string-for-each proc s [start [end]]
@deffnx {C Function} scm_string_for_each (proc, s, start, end)
@var{proc} is mapped over @var{s} in left-to-right order. The
return value is not specified.
@end deffn
@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
right.
For example, to change characters to alternately upper and lower case,
@example
(define str (string-copy "studly"))
(string-for-each-index (lambda (i)
(string-set! str i
((if (even? i) char-upcase char-downcase)
(string-ref str i))))
str)
str @result{} "StUdLy"
@end example
@end deffn
@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
Fold @var{kons} over the characters of @var{s}, with @var{knil}
as the terminating element, from left to right. @var{kons}
must expect two arguments: The actual character and the last
result of @var{kons}' application.
@end deffn
@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
Fold @var{kons} over the characters of @var{s}, with @var{knil}
as the terminating element, from right to left. @var{kons}
must expect two arguments: The actual character and the last
result of @var{kons}' application.
@end deffn
@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
@itemize @bullet
@item @var{g} is used to generate a series of @emph{seed}
values from the initial @var{seed}: @var{seed}, (@var{g}
@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
@dots{}
@item @var{p} tells us when to stop -- when it returns true
when applied to one of these seed values.
@item @var{f} maps each seed value to the corresponding
character in the result string. These chars are assembled
into the string in a left-to-right order.
@item @var{base} is the optional initial/leftmost portion
of the constructed string; it default to the empty
string.
@item @var{make_final} is applied to the terminal seed
value (on which @var{p} returns true) to produce
the final/rightmost portion of the constructed string.
The default is nothing extra.
@end itemize
@end deffn
@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
@itemize @bullet
@item @var{g} is used to generate a series of @emph{seed}
values from the initial @var{seed}: @var{seed}, (@var{g}
@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
@dots{}
@item @var{p} tells us when to stop -- when it returns true
when applied to one of these seed values.
@item @var{f} maps each seed value to the corresponding
character in the result string. These chars are assembled
into the string in a right-to-left order.
@item @var{base} is the optional initial/rightmost portion
of the constructed string; it default to the empty
string.
@item @var{make_final} is applied to the terminal seed
value (on which @var{p} returns true) to produce
the final/leftmost portion of the constructed string.
It defaults to @code{(lambda (x) )}.
@end itemize
@end deffn
@node Miscellaneous String Operations
@subsubsection Miscellaneous String Operations
@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
This is the @emph{extended substring} procedure that implements
replicated copying of a substring of some string.
@var{s} is a string, @var{start} and @var{end} are optional
arguments that demarcate a substring of @var{s}, defaulting to
0 and the length of @var{s}. Replicate this substring up and
down index space, in both the positive and negative directions.
@code{xsubstring} returns the substring of this string
beginning at index @var{from}, and ending at @var{to}, which
defaults to @var{from} + (@var{end} - @var{start}).
@end deffn
@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
Exactly the same as @code{xsubstring}, but the extracted text
is written into the string @var{target} starting at index
@var{tstart}. The operation is not defined if @code{(eq?
@var{target} @var{s})} or these arguments share storage -- you
cannot copy a string on top of itself.
@end deffn
@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
Return the string @var{s1}, but with the characters
@var{start1} @dots{} @var{end1} replaced by the characters
@var{start2} @dots{} @var{end2} from @var{s2}.
@end deffn
@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
Split the string @var{s} into a list of substrings, where each
substring is a maximal non-empty contiguous sequence of
characters from the character set @var{token_set}, which
defaults to @code{char-set:graphic}.
If @var{start} or @var{end} indices are provided, they restrict
@code{string-tokenize} to operating on the indicated substring
of @var{s}.
@end deffn
@deffn {Scheme Procedure} string-filter s char_pred [start [end]]
@deffnx {C Function} scm_string_filter (s, char_pred, start, end)
Filter the string @var{s}, retaining only those characters which
satisfy @var{char_pred}.
If @var{char_pred} is a procedure, it is applied to each character as
a predicate, if it is a character, it is tested for equality and if it
is a character set, it is tested for membership.
@end deffn
@deffn {Scheme Procedure} string-delete s char_pred [start [end]]
@deffnx {C Function} scm_string_delete (s, char_pred, start, end)
Delete characters satisfying @var{char_pred} from @var{s}.
If @var{char_pred} is a procedure, it is applied to each character as
a predicate, if it is a character, it is tested for equality and if it
is a character set, it is tested for membership.
@end deffn
@node Conversion to/from C
@subsubsection Conversion to/from C
When creating a Scheme string from a C string or when converting a
Scheme string to a C string, the concept of character encoding becomes
important.
In C, a string is just a sequence of bytes, and the character encoding
describes the relation between these bytes and the actual characters
that make up the string. For Scheme strings, character encoding is
not an issue (most of the time), since in Scheme you never get to see
the bytes, only the characters.
Well, ideally, anyway. Right now, Guile simply equates Scheme
characters and bytes, ignoring the possibility of multi-byte encodings
completely. This will change in the future, where Guile will use
Unicode codepoints as its characters and UTF-8 or some other encoding
as its internal encoding. When you exclusively use the functions
listed in this section, you are `future-proof'.
Converting a Scheme string to a C string will often allocate fresh
memory to hold the result. You must take care that this memory is
properly freed eventually. In many cases, this can be achieved by
using @code{scm_dynwind_free} inside an appropriate dynwind context,
@xref{Dynamic Wind}.
@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
Creates a new Scheme string that has the same contents as @var{str}
when interpreted in the current locale character encoding.
For @code{scm_from_locale_string}, @var{str} must be null-terminated.
For @code{scm_from_locale_stringn}, @var{len} specifies the length of
@var{str} in bytes, and @var{str} does not need to be null-terminated.
If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
null-terminated and the real length will be found with @code{strlen}.
@end deftypefn
@deftypefn {C Function} SCM scm_take_locale_string (char *str)
@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
respectively, but also frees @var{str} with @code{free} eventually.
Thus, you can use this function when you would free @var{str} anyway
immediately after creating the Scheme string. In certain cases, Guile
can then use @var{str} directly as its internal representation.
@end deftypefn
@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
Returns a C string in the current locale encoding with the same
contents as @var{str}. The C string must be freed with @code{free}
eventually, maybe by using @code{scm_dynwind_free}, @xref{Dynamic
Wind}.
For @code{scm_to_locale_string}, the returned string is
null-terminated and an error is signalled when @var{str} contains
@code{#\nul} characters.
For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
@var{str} might contain @code{#\nul} characters and the length of the
returned string in bytes is stored in @code{*@var{lenp}}. The
returned string will not be null-terminated in this case. If
@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
@code{scm_to_locale_string}.
@end deftypefn
@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
Puts @var{str} as a C string in the current locale encoding into the
memory pointed to by @var{buf}. The buffer at @var{buf} has room for
@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
more than that. No terminating @code{'\0'} will be stored.
The return value of @code{scm_to_locale_stringbuf} is the number of
bytes that are needed for all of @var{str}, regardless of whether
@var{buf} was large enough to hold them. Thus, when the return value
is larger than @var{max_len}, only @var{max_len} bytes have been
stored and you probably need to try again with a larger buffer.
@end deftypefn
@node Regular Expressions
@subsection Regular Expressions
@tpindex Regular expressions
@cindex regular expressions
@cindex regex
@cindex emacs regexp
A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
describes a whole class of strings. A full description of regular
expressions and their syntax is beyond the scope of this manual;
an introduction can be found in the Emacs manual (@pxref{Regexps,
, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
in many general Unix reference books.
If your system does not include a POSIX regular expression library,
and you have not linked Guile with a third-party regexp library such
as Rx, these functions will not be available. You can tell whether
your Guile installation includes regular expression support by
checking whether @code{(provided? 'regex)} returns true.
The following regexp and string matching features are provided by the
@code{(ice-9 regex)} module. Before using the described functions,
you should load this module by executing @code{(use-modules (ice-9
regex))}.
@menu
* Regexp Functions:: Functions that create and match regexps.
* Match Structures:: Finding what was matched by a regexp.
* Backslash Escapes:: Removing the special meaning of regexp
meta-characters.
@end menu
@node Regexp Functions
@subsubsection Regexp Functions
By default, Guile supports POSIX extended regular expressions.
That means that the characters @samp{(}, @samp{)}, @samp{+} and
@samp{?} are special, and must be escaped if you wish to match the
literal characters.
This regular expression interface was modeled after that
implemented by SCSH, the Scheme Shell. It is intended to be
upwardly compatible with SCSH regular expressions.
Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
strings, since the underlying C functions treat that as the end of
string. If there's a zero byte an error is thrown.
Patterns and input strings are treated as being in the locale
character set if @code{setlocale} has been called (@pxref{Locales}),
and in a multibyte locale this includes treating multi-byte sequences
as a single character. (Guile strings are currently merely bytes,
though this may change in the future, @xref{Conversion to/from C}.)
@deffn {Scheme Procedure} string-match pattern str [start]
Compile the string @var{pattern} into a regular expression and compare
it with @var{str}. The optional numeric argument @var{start} specifies
the position of @var{str} at which to begin matching.
@code{string-match} returns a @dfn{match structure} which
describes what, if anything, was matched by the regular
expression. @xref{Match Structures}. If @var{str} does not match
@var{pattern} at all, @code{string-match} returns @code{#f}.
@end deffn
Two examples of a match follow. In the first example, the pattern
matches the four digits in the match string. In the second, the pattern
matches nothing.
@example
(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
@result{} #("blah2002" (4 . 8))
(string-match "[A-Za-z]" "123456")
@result{} #f
@end example
Each time @code{string-match} is called, it must compile its
@var{pattern} argument into a regular expression structure. This
operation is expensive, which makes @code{string-match} inefficient if
the same regular expression is used several times (for example, in a
loop). For better performance, you can compile a regular expression in
advance and then match strings against the compiled regexp.
@deffn {Scheme Procedure} make-regexp pat flag@dots{}
@deffnx {C Function} scm_make_regexp (pat, flaglst)
Compile the regular expression described by @var{pat}, and
return the compiled regexp structure. If @var{pat} does not
describe a legal regular expression, @code{make-regexp} throws
a @code{regular-expression-syntax} error.
The @var{flag} arguments change the behavior of the compiled
regular expression. The following values may be supplied:
@defvar regexp/icase
Consider uppercase and lowercase letters to be the same when
matching.
@end defvar
@defvar regexp/newline
If a newline appears in the target string, then permit the
@samp{^} and @samp{$} operators to match immediately after or
immediately before the newline, respectively. Also, the
@samp{.} and @samp{[^...]} operators will never match a newline
character. The intent of this flag is to treat the target
string as a buffer containing many lines of text, and the
regular expression as a pattern that may match a single one of
those lines.
@end defvar
@defvar regexp/basic
Compile a basic (``obsolete'') regexp instead of the extended
(``modern'') regexps that are the default. Basic regexps do
not consider @samp{|}, @samp{+} or @samp{?} to be special
characters, and require the @samp{@{...@}} and @samp{(...)}
metacharacters to be backslash-escaped (@pxref{Backslash
Escapes}). There are several other differences between basic
and extended regular expressions, but these are the most
significant.
@end defvar
@defvar regexp/extended
Compile an extended regular expression rather than a basic
regexp. This is the default behavior; this flag will not
usually be needed. If a call to @code{make-regexp} includes
both @code{regexp/basic} and @code{regexp/extended} flags, the
one which comes last will override the earlier one.
@end defvar
@end deffn
@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
Match the compiled regular expression @var{rx} against
@code{str}. If the optional integer @var{start} argument is
provided, begin matching from that position in the string.
Return a match structure describing the results of the match,
or @code{#f} if no match could be found.
The @var{flags} argument changes the matching behavior. The following
flag values may be supplied, use @code{logior} (@pxref{Bitwise
Operations}) to combine them,
@defvar regexp/notbol
Consider that the @var{start} offset into @var{str} is not the
beginning of a line and should not match operator @samp{^}.
If @var{rx} was created with the @code{regexp/newline} option above,
@samp{^} will still match after a newline in @var{str}.
@end defvar
@defvar regexp/noteol
Consider that the end of @var{str} is not the end of a line and should
not match operator @samp{$}.
If @var{rx} was created with the @code{regexp/newline} option above,
@samp{$} will still match before a newline in @var{str}.
@end defvar
@end deffn
@lisp
;; Regexp to match uppercase letters
(define r (make-regexp "[A-Z]*"))
;; Regexp to match letters, ignoring case
(define ri (make-regexp "[A-Z]*" regexp/icase))
;; Search for bob using regexp r
(match:substring (regexp-exec r "bob"))
@result{} "" ; no match
;; Search for bob using regexp ri
(match:substring (regexp-exec ri "Bob"))
@result{} "Bob" ; matched case insensitive
@end lisp
@deffn {Scheme Procedure} regexp? obj
@deffnx {C Function} scm_regexp_p (obj)
Return @code{#t} if @var{obj} is a compiled regular expression,
or @code{#f} otherwise.
@end deffn
@sp 1
@deffn {Scheme Procedure} list-matches regexp str [flags]
Return a list of match structures which are the non-overlapping
matches of @var{regexp} in @var{str}. @var{regexp} can be either a
pattern string or a compiled regexp. The @var{flags} argument is as
per @code{regexp-exec} above.
@example
(map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
@result{} ("abc" "def")
@end example
@end deffn
@deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
Apply @var{proc} to the non-overlapping matches of @var{regexp} in
@var{str}, to build a result. @var{regexp} can be either a pattern
string or a compiled regexp. The @var{flags} argument is as per
@code{regexp-exec} above.
@var{proc} is called as @code{(@var{proc} match prev)} where
@var{match} is a match structure and @var{prev} is the previous return
from @var{proc}. For the first call @var{prev} is the given
@var{init} parameter. @code{fold-matches} returns the final value
from @var{proc}.
For example to count matches,
@example
(fold-matches "[a-z][0-9]" "abc x1 def y2" 0
(lambda (match count)
(1+ count)))
@result{} 2
@end example
@end deffn
@sp 1
Regular expressions are commonly used to find patterns in one string
and replace them with the contents of another string. The following
functions are convenient ways to do this.
@c begin (scm-doc-string "regex.scm" "regexp-substitute")
@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
Write to @var{port} selected parts of the match structure @var{match}.
Or if @var{port} is @code{#f} then form a string from those parts and
return that.
Each @var{item} specifies a part to be written, and may be one of the
following,
@itemize @bullet
@item
A string. String arguments are written out verbatim.
@item
An integer. The submatch with that number is written
(@code{match:substring}). Zero is the entire match.
@item
The symbol @samp{pre}. The portion of the matched string preceding
the regexp match is written (@code{match:prefix}).
@item
The symbol @samp{post}. The portion of the matched string following
the regexp match is written (@code{match:suffix}).
@end itemize
For example, changing a match and retaining the text before and after,
@example
(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
'pre "37" 'post)
@result{} "number 37 is good"
@end example
Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
re-ordering and hyphenating the fields.
@lisp
(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
(define s "Date 20020429 12am.")
(regexp-substitute #f (string-match date-regex s)
'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
@result{} "Date 04-29-2002 12am. (20020429)"
@end lisp
@end deffn
@c begin (scm-doc-string "regex.scm" "regexp-substitute")
@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
@cindex search and replace
Write to @var{port} selected parts of matches of @var{regexp} in
@var{target}. If @var{port} is @code{#f} then form a string from
those parts and return that. @var{regexp} can be a string or a
compiled regex.
This is similar to @code{regexp-substitute}, but allows global
substitutions on @var{target}. Each @var{item} behaves as per
@code{regexp-substitute}, with the following differences,
@itemize @bullet
@item
A function. Called as @code{(@var{item} match)} with the match
structure for the @var{regexp} match, it should return a string to be
written to @var{port}.
@item
The symbol @samp{post}. This doesn't output anything, but instead
causes @code{regexp-substitute/global} to recurse on the unmatched
portion of @var{target}.
This @emph{must} be supplied to perform a global search and replace on
@var{target}; without it @code{regexp-substitute/global} returns after
a single match and output.
@end itemize
For example, to collapse runs of tabs and spaces to a single hyphen
each,
@example
(regexp-substitute/global #f "[ \t]+" "this is the text"
'pre "-" 'post)
@result{} "this-is-the-text"
@end example
Or using a function to reverse the letters in each word,
@example
(regexp-substitute/global #f "[a-z]+" "to do and not-do"
'pre (lambda (m) (string-reverse (match:substring m))) 'post)
@result{} "ot od dna ton-od"
@end example
Without the @code{post} symbol, just one regexp match is made. For
example the following is the date example from
@code{regexp-substitute} above, without the need for the separate
@code{string-match} call.
@lisp
(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
(define s "Date 20020429 12am.")
(regexp-substitute/global #f date-regex s
'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
@result{} "Date 04-29-2002 12am. (20020429)"
@end lisp
@end deffn
@node Match Structures
@subsubsection Match Structures
@cindex match structures
A @dfn{match structure} is the object returned by @code{string-match} and
@code{regexp-exec}. It describes which portion of a string, if any,
matched the given regular expression. Match structures include: a
reference to the string that was checked for matches; the starting and
ending positions of the regexp match; and, if the regexp included any
parenthesized subexpressions, the starting and ending positions of each
submatch.
In each of the regexp match functions described below, the @code{match}
argument must be a match structure returned by a previous call to
@code{string-match} or @code{regexp-exec}. Most of these functions
return some information about the original target string that was
matched against a regular expression; we will call that string
@var{target} for easy reference.
@c begin (scm-doc-string "regex.scm" "regexp-match?")
@deffn {Scheme Procedure} regexp-match? obj
Return @code{#t} if @var{obj} is a match structure returned by a
previous call to @code{regexp-exec}, or @code{#f} otherwise.
@end deffn
@c begin (scm-doc-string "regex.scm" "match:substring")
@deffn {Scheme Procedure} match:substring match [n]
Return the portion of @var{target} matched by subexpression number
@var{n}. Submatch 0 (the default) represents the entire regexp match.
If the regular expression as a whole matched, but the subexpression
number @var{n} did not match, return @code{#f}.
@end deffn
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:substring s)
@result{} "2002"
;; match starting at offset 6 in the string
(match:substring
(string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
@result{} "7654"
@end lisp
@c begin (scm-doc-string "regex.scm" "match:start")
@deffn {Scheme Procedure} match:start match [n]
Return the starting position of submatch number @var{n}.
@end deffn
In the following example, the result is 4, since the match starts at
character index 4:
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:start s)
@result{} 4
@end lisp
@c begin (scm-doc-string "regex.scm" "match:end")
@deffn {Scheme Procedure} match:end match [n]
Return the ending position of submatch number @var{n}.
@end deffn
In the following example, the result is 8, since the match runs between
characters 4 and 8 (i.e. the ``2002'').
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:end s)
@result{} 8
@end lisp
@c begin (scm-doc-string "regex.scm" "match:prefix")
@deffn {Scheme Procedure} match:prefix match
Return the unmatched portion of @var{target} preceding the regexp match.
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:prefix s)
@result{} "blah"
@end lisp
@end deffn
@c begin (scm-doc-string "regex.scm" "match:suffix")
@deffn {Scheme Procedure} match:suffix match
Return the unmatched portion of @var{target} following the regexp match.
@end deffn
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:suffix s)
@result{} "foo"
@end lisp
@c begin (scm-doc-string "regex.scm" "match:count")
@deffn {Scheme Procedure} match:count match
Return the number of parenthesized subexpressions from @var{match}.
Note that the entire regular expression match itself counts as a
subexpression, and failed submatches are included in the count.
@end deffn
@c begin (scm-doc-string "regex.scm" "match:string")
@deffn {Scheme Procedure} match:string match
Return the original @var{target} string.
@end deffn
@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:string s)
@result{} "blah2002foo"
@end lisp
@node Backslash Escapes
@subsubsection Backslash Escapes
Sometimes you will want a regexp to match characters like @samp{*} or
@samp{$} exactly. For example, to check whether a particular string
represents a menu entry from an Info node, it would be useful to match
it against a regexp like @samp{^* [^:]*::}. However, this won't work;
because the asterisk is a metacharacter, it won't match the @samp{*} at
the beginning of the string. In this case, we want to make the first
asterisk un-magic.
You can do this by preceding the metacharacter with a backslash
character @samp{\}. (This is also called @dfn{quoting} the
metacharacter, and is known as a @dfn{backslash escape}.) When Guile
sees a backslash in a regular expression, it considers the following
glyph to be an ordinary character, no matter what special meaning it
would ordinarily have. Therefore, we can make the above example work by
changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
the regular expression engine to match only a single asterisk in the
target string.
Since the backslash is itself a metacharacter, you may force a regexp to
match a backslash in the target string by preceding the backslash with
itself. For example, to find variable references in a @TeX{} program,
you might want to find occurrences of the string @samp{\let\} followed
by any number of alphabetic characters. The regular expression
@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
regexp each match a single backslash in the target string.
@c begin (scm-doc-string "regex.scm" "regexp-quote")
@deffn {Scheme Procedure} regexp-quote str
Quote each special character found in @var{str} with a backslash, and
return the resulting string.
@end deffn
@strong{Very important:} Using backslash escapes in Guile source code
(as in Emacs Lisp or C) can be tricky, because the backslash character
has special meaning for the Guile reader. For example, if Guile
encounters the character sequence @samp{\n} in the middle of a string
while processing Scheme code, it replaces those characters with a
newline character. Similarly, the character sequence @samp{\t} is
replaced by a horizontal tab. Several of these @dfn{escape sequences}
are processed by the Guile reader before your code is executed.
Unrecognized escape sequences are ignored: if the characters @samp{\*}
appear in a string, they will be translated to the single character
@samp{*}.
This translation is obviously undesirable for regular expressions, since
we want to be able to include backslashes in a string in order to
escape regexp metacharacters. Therefore, to make sure that a backslash
is preserved in a string in your Guile program, you must use @emph{two}
consecutive backslashes:
@lisp
(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
@end lisp
The string in this example is preprocessed by the Guile reader before
any code is executed. The resulting argument to @code{make-regexp} is
the string @samp{^\* [^:]*}, which is what we really want.
This also means that in order to write a regular expression that matches
a single backslash character, the regular expression string in the
source code must include @emph{four} backslashes. Each consecutive pair
of backslashes gets translated by the Guile reader to a single
backslash, and the resulting double-backslash is interpreted by the
regexp engine as matching a single backslash character. Hence:
@lisp
(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
@end lisp
The reason for the unwieldiness of this syntax is historical. Both
regular expression pattern matchers and Unix string processing systems
have traditionally used backslashes with the special meanings
described above. The POSIX regular expression specification and ANSI C
standard both require these semantics. Attempting to abandon either
convention would cause other kinds of compatibility problems, possibly
more severe ones. Therefore, without extending the Scheme reader to
support strings with different quoting conventions (an ungainly and
confusing extension when implemented in other languages), we must adhere
to this cumbersome escape syntax.
@node Symbols
@subsection Symbols
@tpindex Symbols
Symbols in Scheme are widely used in three ways: as items of discrete
data, as lookup keys for alists and hash tables, and to denote variable
references.
A @dfn{symbol} is similar to a string in that it is defined by a
sequence of characters. The sequence of characters is known as the
symbol's @dfn{name}. In the usual case --- that is, where the symbol's
name doesn't include any characters that could be confused with other
elements of Scheme syntax --- a symbol is written in a Scheme program by
writing the sequence of characters that make up the name, @emph{without}
any quotation marks or other special syntax. For example, the symbol
whose name is ``multiply-by-2'' is written, simply:
@lisp
multiply-by-2
@end lisp
Notice how this differs from a @emph{string} with contents
``multiply-by-2'', which is written with double quotation marks, like
this:
@lisp
"multiply-by-2"
@end lisp
Looking beyond how they are written, symbols are different from strings
in two important respects.
The first important difference is uniqueness. If the same-looking
string is read twice from two different places in a program, the result
is two @emph{different} string objects whose contents just happen to be
the same. If, on the other hand, the same-looking symbol is read twice
from two different places in a program, the result is the @emph{same}
symbol object both times.
Given two read symbols, you can use @code{eq?} to test whether they are
the same (that is, have the same name). @code{eq?} is the most
efficient comparison operator in Scheme, and comparing two symbols like
this is as fast as comparing, for example, two numbers. Given two
strings, on the other hand, you must use @code{equal?} or
@code{string=?}, which are much slower comparison operators, to
determine whether the strings have the same contents.
@lisp
(define sym1 (quote hello))
(define sym2 (quote hello))
(eq? sym1 sym2) @result{} #t
(define str1 "hello")
(define str2 "hello")
(eq? str1 str2) @result{} #f
(equal? str1 str2) @result{} #t
@end lisp
The second important difference is that symbols, unlike strings, are not
self-evaluating. This is why we need the @code{(quote @dots{})}s in the
example above: @code{(quote hello)} evaluates to the symbol named
"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
symbol named "hello" and evaluated as a variable reference @dots{} about
which more below (@pxref{Symbol Variables}).
@menu
* Symbol Data:: Symbols as discrete data.
* Symbol Keys:: Symbols as lookup keys.
* Symbol Variables:: Symbols as denoting variables.
* Symbol Primitives:: Operations related to symbols.
* Symbol Props:: Function slots and property lists.
* Symbol Read Syntax:: Extended read syntax for symbols.
* Symbol Uninterned:: Uninterned symbols.
@end menu
@node Symbol Data
@subsubsection Symbols as Discrete Data
Numbers and symbols are similar to the extent that they both lend
themselves to @code{eq?} comparison. But symbols are more descriptive
than numbers, because a symbol's name can be used directly to describe
the concept for which that symbol stands.
For example, imagine that you need to represent some colours in a
computer program. Using numbers, you would have to choose arbitrarily
some mapping between numbers and colours, and then take care to use that
mapping consistently:
@lisp
;; 1=red, 2=green, 3=purple
(if (eq? (colour-of car) 1)
...)
@end lisp
@noindent
You can make the mapping more explicit and the code more readable by
defining constants:
@lisp
(define red 1)
(define green 2)
(define purple 3)
(if (eq? (colour-of car) red)
...)
@end lisp
@noindent
But the simplest and clearest approach is not to use numbers at all, but
symbols whose names specify the colours that they refer to:
@lisp
(if (eq? (colour-of car) 'red)
...)
@end lisp
The descriptive advantages of symbols over numbers increase as the set
of concepts that you want to describe grows. Suppose that a car object
can have other properties as well, such as whether it has or uses:
@itemize @bullet
@item
automatic or manual transmission
@item
leaded or unleaded fuel
@item
power steering (or not).
@end itemize
@noindent
Then a car's combined property set could be naturally represented and
manipulated as a list of symbols:
@lisp
(properties-of car1)
@result{}
(red manual unleaded power-steering)
(if (memq 'power-steering (properties-of car1))
(display "Unfit people can drive this car.\n")
(display "You'll need strong arms to drive this car!\n"))
@print{}
Unfit people can drive this car.
@end lisp
Remember, the fundamental property of symbols that we are relying on
here is that an occurrence of @code{'red} in one part of a program is an
@emph{indistinguishable} symbol from an occurrence of @code{'red} in
another part of a program; this means that symbols can usefully be
compared using @code{eq?}. At the same time, symbols have naturally
descriptive names. This combination of efficiency and descriptive power
makes them ideal for use as discrete data.
@node Symbol Keys
@subsubsection Symbols as Lookup Keys
Given their efficiency and descriptive power, it is natural to use
symbols as the keys in an association list or hash table.
To illustrate this, consider a more structured representation of the car
properties example from the preceding subsection. Rather than
mixing all the properties up together in a flat list, we could use an
association list like this:
@lisp
(define car1-properties '((colour . red)
(transmission . manual)
(fuel . unleaded)
(steering . power-assisted)))
@end lisp
Notice how this structure is more explicit and extensible than the flat
list. For example it makes clear that @code{manual} refers to the
transmission rather than, say, the windows or the locking of the car.
It also allows further properties to use the same symbols among their
possible values without becoming ambiguous:
@lisp
(define car1-properties '((colour . red)
(transmission . manual)
(fuel . unleaded)
(steering . power-assisted)
(seat-colour . red)
(locking . manual)))
@end lisp
With a representation like this, it is easy to use the efficient
@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
extract or change individual pieces of information:
@lisp
(assq-ref car1-properties 'fuel) @result{} unleaded
(assq-ref car1-properties 'transmission) @result{} manual
(assq-set! car1-properties 'seat-colour 'black)
@result{}
((colour . red)
(transmission . manual)
(fuel . unleaded)
(steering . power-assisted)
(seat-colour . black)
(locking . manual)))
@end lisp
Hash tables also have keys, and exactly the same arguments apply to the
use of symbols in hash tables as in association lists. The hash value
that Guile uses to decide where to add a symbol-keyed entry to a hash
table can be obtained by calling the @code{symbol-hash} procedure:
@deffn {Scheme Procedure} symbol-hash symbol
@deffnx {C Function} scm_symbol_hash (symbol)
Return a hash value for @var{symbol}.
@end deffn
See @ref{Hash Tables} for information about hash tables in general, and
for why you might choose to use a hash table rather than an association
list.
@node Symbol Variables
@subsubsection Symbols as Denoting Variables
When an unquoted symbol in a Scheme program is evaluated, it is
interpreted as a variable reference, and the result of the evaluation is
the appropriate variable's value.
For example, when the expression @code{(string-length "abcd")} is read
and evaluated, the sequence of characters @code{string-length} is read
as the symbol whose name is "string-length". This symbol is associated
with a variable whose value is the procedure that implements string
length calculation. Therefore evaluation of the @code{string-length}
symbol results in that procedure.
The details of the connection between an unquoted symbol and the
variable to which it refers are explained elsewhere. See @ref{Binding
Constructs}, for how associations between symbols and variables are
created, and @ref{Modules}, for how those associations are affected by
Guile's module system.
@node Symbol Primitives
@subsubsection Operations Related to Symbols
Given any Scheme value, you can determine whether it is a symbol using
the @code{symbol?} primitive:
@rnindex symbol?
@deffn {Scheme Procedure} symbol? obj
@deffnx {C Function} scm_symbol_p (obj)
Return @code{#t} if @var{obj} is a symbol, otherwise return
@code{#f}.
@end deffn
@deftypefn {C Function} int scm_is_symbol (SCM val)
Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
@end deftypefn
Once you know that you have a symbol, you can obtain its name as a
string by calling @code{symbol->string}. Note that Guile differs by
default from R5RS on the details of @code{symbol->string} as regards
case-sensitivity:
@rnindex symbol->string
@deffn {Scheme Procedure} symbol->string s
@deffnx {C Function} scm_symbol_to_string (s)
Return the name of symbol @var{s} as a string. By default, Guile reads
symbols case-sensitively, so the string returned will have the same case
variation as the sequence of characters that caused @var{s} to be
created.
If Guile is set to read symbols case-insensitively (as specified by
R5RS), and @var{s} comes into being as part of a literal expression
(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
by a call to the @code{read} or @code{string-ci->symbol} procedures,
Guile converts any alphabetic characters in the symbol's name to
lower case before creating the symbol object, so the string returned
here will be in lower case.
If @var{s} was created by @code{string->symbol}, the case of characters
in the string returned will be the same as that in the string that was
passed to @code{string->symbol}, regardless of Guile's case-sensitivity
setting at the time @var{s} was created.
It is an error to apply mutation procedures like @code{string-set!} to
strings returned by this procedure.
@end deffn
Most symbols are created by writing them literally in code. However it
is also possible to create symbols programmatically using the following
@code{string->symbol} and @code{string-ci->symbol} procedures:
@rnindex string->symbol
@deffn {Scheme Procedure} string->symbol string
@deffnx {C Function} scm_string_to_symbol (string)
Return the symbol whose name is @var{string}. This procedure can create
symbols with names containing special characters or letters in the
non-standard case, but it is usually a bad idea to create such symbols
because in some implementations of Scheme they cannot be read as
themselves.
@end deffn
@deffn {Scheme Procedure} string-ci->symbol str
@deffnx {C Function} scm_string_ci_to_symbol (str)
Return the symbol whose name is @var{str}. If Guile is currently
reading symbols case-insensitively, @var{str} is converted to lowercase
before the returned symbol is looked up or created.
@end deffn
The following examples illustrate Guile's detailed behaviour as regards
the case-sensitivity of symbols:
@lisp
(read-enable 'case-insensitive) ; R5RS compliant behaviour
(symbol->string 'flying-fish) @result{} "flying-fish"
(symbol->string 'Martin) @result{} "martin"
(symbol->string
(string->symbol "Malvina")) @result{} "Malvina"
(eq? 'mISSISSIppi 'mississippi) @result{} #t
(string->symbol "mISSISSIppi") @result{} mISSISSIppi
(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
(eq? 'LolliPop
(string->symbol (symbol->string 'LolliPop))) @result{} #t
(string=? "K. Harper, M.D."
(symbol->string
(string->symbol "K. Harper, M.D."))) @result{} #t
(read-disable 'case-insensitive) ; Guile default behaviour
(symbol->string 'flying-fish) @result{} "flying-fish"
(symbol->string 'Martin) @result{} "Martin"
(symbol->string
(string->symbol "Malvina")) @result{} "Malvina"
(eq? 'mISSISSIppi 'mississippi) @result{} #f
(string->symbol "mISSISSIppi") @result{} mISSISSIppi
(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
(eq? 'LolliPop
(string->symbol (symbol->string 'LolliPop))) @result{} #t
(string=? "K. Harper, M.D."
(symbol->string
(string->symbol "K. Harper, M.D."))) @result{} #t
@end lisp
From C, there are lower level functions that construct a Scheme symbol
from a C string in the current locale encoding.
When you want to do more from C, you should convert between symbols
and strings using @code{scm_symbol_to_string} and
@code{scm_string_to_symbol} and work with the strings.
@deffn {C Function} scm_from_locale_symbol (const char *name)
@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
Construct and return a Scheme symbol whose name is specified by
@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
specified explicitly by @var{len}.
@end deffn
@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
respectively, but also frees @var{str} with @code{free} eventually.
Thus, you can use this function when you would free @var{str} anyway
immediately after creating the Scheme string. In certain cases, Guile
can then use @var{str} directly as its internal representation.
@end deftypefn
Finally, some applications, especially those that generate new Scheme
code dynamically, need to generate symbols for use in the generated
code. The @code{gensym} primitive meets this need:
@deffn {Scheme Procedure} gensym [prefix]
@deffnx {C Function} scm_gensym (prefix)
Create a new symbol with a name constructed from a prefix and a counter
value. The string @var{prefix} can be specified as an optional
argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
at each call. There is no provision for resetting the counter.
@end deffn
The symbols generated by @code{gensym} are @emph{likely} to be unique,
since their names begin with a space and it is only otherwise possible
to generate such symbols if a programmer goes out of their way to do
so. Uniqueness can be guaranteed by instead using uninterned symbols
(@pxref{Symbol Uninterned}), though they can't be usefully written out
and read back in.
@node Symbol Props
@subsubsection Function Slots and Property Lists
In traditional Lisp dialects, symbols are often understood as having
three kinds of value at once:
@itemize @bullet
@item
a @dfn{variable} value, which is used when the symbol appears in
code in a variable reference context
@item
a @dfn{function} value, which is used when the symbol appears in
code in a function name position (i.e. as the first element in an
unquoted list)
@item
a @dfn{property list} value, which is used when the symbol is given as
the first argument to Lisp's @code{put} or @code{get} functions.
@end itemize
Although Scheme (as one of its simplifications with respect to Lisp)
does away with the distinction between variable and function namespaces,
Guile currently retains some elements of the traditional structure in
case they turn out to be useful when implementing translators for other
languages, in particular Emacs Lisp.
Specifically, Guile symbols have two extra slots. for a symbol's
property list, and for its ``function value.'' The following procedures
are provided to access these slots.
@deffn {Scheme Procedure} symbol-fref symbol
@deffnx {C Function} scm_symbol_fref (symbol)
Return the contents of @var{symbol}'s @dfn{function slot}.
@end deffn
@deffn {Scheme Procedure} symbol-fset! symbol value
@deffnx {C Function} scm_symbol_fset_x (symbol, value)
Set the contents of @var{symbol}'s function slot to @var{value}.
@end deffn
@deffn {Scheme Procedure} symbol-pref symbol
@deffnx {C Function} scm_symbol_pref (symbol)
Return the @dfn{property list} currently associated with @var{symbol}.
@end deffn
@deffn {Scheme Procedure} symbol-pset! symbol value
@deffnx {C Function} scm_symbol_pset_x (symbol, value)
Set @var{symbol}'s property list to @var{value}.
@end deffn
@deffn {Scheme Procedure} symbol-property sym prop
From @var{sym}'s property list, return the value for property
@var{prop}. The assumption is that @var{sym}'s property list is an
association list whose keys are distinguished from each other using
@code{equal?}; @var{prop} should be one of the keys in that list. If
the property list has no entry for @var{prop}, @code{symbol-property}
returns @code{#f}.
@end deffn
@deffn {Scheme Procedure} set-symbol-property! sym prop val
In @var{sym}'s property list, set the value for property @var{prop} to
@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
none already exists. For the structure of the property list, see
@code{symbol-property}.
@end deffn
@deffn {Scheme Procedure} symbol-property-remove! sym prop
From @var{sym}'s property list, remove the entry for property
@var{prop}, if there is one. For the structure of the property list,
see @code{symbol-property}.
@end deffn
Support for these extra slots may be removed in a future release, and it
is probably better to avoid using them. For a more modern and Schemely
approach to properties, see @ref{Object Properties}.
@node Symbol Read Syntax
@subsubsection Extended Read Syntax for Symbols
The read syntax for a symbol is a sequence of letters, digits, and
@dfn{extended alphabetic characters}, beginning with a character that
cannot begin a number. In addition, the special cases of @code{+},
@code{-}, and @code{...} are read as symbols even though numbers can
begin with @code{+}, @code{-} or @code{.}.
Extended alphabetic characters may be used within identifiers as if
they were letters. The set of extended alphabetic characters is:
@example
! $ % & * + - . / : < = > ? @@ ^ _ ~
@end example
In addition to the standard read syntax defined above (which is taken
from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
Scheme})), Guile provides an extended symbol read syntax that allows the
inclusion of unusual characters such as space characters, newlines and
parentheses. If (for whatever reason) you need to write a symbol
containing characters not mentioned above, you can do so as follows.
@itemize @bullet
@item
Begin the symbol with the characters @code{#@{},
@item
write the characters of the symbol and
@item
finish the symbol with the characters @code{@}#}.
@end itemize
Here are a few examples of this form of read syntax. The first symbol
needs to use extended syntax because it contains a space character, the
second because it contains a line break, and the last because it looks
like a number.
@lisp
#@{foo bar@}#
#@{what
ever@}#
#@{4242@}#
@end lisp
Although Guile provides this extended read syntax for symbols,
widespread usage of it is discouraged because it is not portable and not
very readable.
@node Symbol Uninterned
@subsubsection Uninterned Symbols
What makes symbols useful is that they are automatically kept unique.
There are no two symbols that are distinct objects but have the same
name. But of course, there is no rule without exception. In addition
to the normal symbols that have been discussed up to now, you can also
create special @dfn{uninterned} symbols that behave slightly
differently.
To understand what is different about them and why they might be useful,
we look at how normal symbols are actually kept unique.
Whenever Guile wants to find the symbol with a specific name, for
example during @code{read} or when executing @code{string->symbol}, it
first looks into a table of all existing symbols to find out whether a
symbol with the given name already exists. When this is the case, Guile
just returns that symbol. When not, a new symbol with the name is
created and entered into the table so that it can be found later.
Sometimes you might want to create a symbol that is guaranteed `fresh',
i.e. a symbol that did not exist previously. You might also want to
somehow guarantee that no one else will ever unintentionally stumble
across your symbol in the future. These properties of a symbol are
often needed when generating code during macro expansion. When
introducing new temporary variables, you want to guarantee that they
don't conflict with variables in other people's code.
The simplest way to arrange for this is to create a new symbol but
not enter it into the global table of all symbols. That way, no one
will ever get access to your symbol by chance. Symbols that are not in
the table are called @dfn{uninterned}. Of course, symbols that
@emph{are} in the table are called @dfn{interned}.
You create new uninterned symbols with the function @code{make-symbol}.
You can test whether a symbol is interned or not with
@code{symbol-interned?}.
Uninterned symbols break the rule that the name of a symbol uniquely
identifies the symbol object. Because of this, they can not be written
out and read back in like interned symbols. Currently, Guile has no
support for reading uninterned symbols. Note that the function
@code{gensym} does not return uninterned symbols for this reason.
@deffn {Scheme Procedure} make-symbol name
@deffnx {C Function} scm_make_symbol (name)
Return a new uninterned symbol with the name @var{name}. The returned
symbol is guaranteed to be unique and future calls to
@code{string->symbol} will not return it.
@end deffn
@deffn {Scheme Procedure} symbol-interned? symbol
@deffnx {C Function} scm_symbol_interned_p (symbol)
Return @code{#t} if @var{symbol} is interned, otherwise return
@code{#f}.
@end deffn
For example:
@lisp
(define foo-1 (string->symbol "foo"))
(define foo-2 (string->symbol "foo"))
(define foo-3 (make-symbol "foo"))
(define foo-4 (make-symbol "foo"))
(eq? foo-1 foo-2)
@result{} #t
; Two interned symbols with the same name are the same object,
(eq? foo-1 foo-3)
@result{} #f
; but a call to make-symbol with the same name returns a
; distinct object.
(eq? foo-3 foo-4)
@result{} #f
; A call to make-symbol always returns a new object, even for
; the same name.
foo-3
@result{} #<uninterned-symbol foo 8085290>
; Uninterned symbols print differently from interned symbols,
(symbol? foo-3)
@result{} #t
; but they are still symbols,
(symbol-interned? foo-3)
@result{} #f
; just not interned.
@end lisp
@node Keywords
@subsection Keywords
@tpindex Keywords
Keywords are self-evaluating objects with a convenient read syntax that
makes them easy to type.
Guile's keyword support conforms to R5RS, and adds a (switchable) read
syntax extension to permit keywords to begin with @code{:} as well as
@code{#:}, or to end with @code{:}.
@menu
* Why Use Keywords?:: Motivation for keyword usage.
* Coding With Keywords:: How to use keywords.
* Keyword Read Syntax:: Read syntax for keywords.
* Keyword Procedures:: Procedures for dealing with keywords.
@end menu
@node Why Use Keywords?
@subsubsection Why Use Keywords?
Keywords are useful in contexts where a program or procedure wants to be
able to accept a large number of optional arguments without making its
interface unmanageable.
To illustrate this, consider a hypothetical @code{make-window}
procedure, which creates a new window on the screen for drawing into
using some graphical toolkit. There are many parameters that the caller
might like to specify, but which could also be sensibly defaulted, for
example:
@itemize @bullet
@item
color depth -- Default: the color depth for the screen
@item
background color -- Default: white
@item
width -- Default: 600
@item
height -- Default: 400
@end itemize
If @code{make-window} did not use keywords, the caller would have to
pass in a value for each possible argument, remembering the correct
argument order and using a special value to indicate the default value
for that argument:
@lisp
(make-window 'default ;; Color depth
'default ;; Background color
800 ;; Width
100 ;; Height
@dots{}) ;; More make-window arguments
@end lisp
With keywords, on the other hand, defaulted arguments are omitted, and
non-default arguments are clearly tagged by the appropriate keyword. As
a result, the invocation becomes much clearer:
@lisp
(make-window #:width 800 #:height 100)
@end lisp
On the other hand, for a simpler procedure with few arguments, the use
of keywords would be a hindrance rather than a help. The primitive
procedure @code{cons}, for example, would not be improved if it had to
be invoked as
@lisp
(cons #:car x #:cdr y)
@end lisp
So the decision whether to use keywords or not is purely pragmatic: use
them if they will clarify the procedure invocation at point of call.
@node Coding With Keywords
@subsubsection Coding With Keywords
If a procedure wants to support keywords, it should take a rest argument
and then use whatever means is convenient to extract keywords and their
corresponding arguments from the contents of that rest argument.
The following example illustrates the principle: the code for
@code{make-window} uses a helper procedure called
@code{get-keyword-value} to extract individual keyword arguments from
the rest argument.
@lisp
(define (get-keyword-value args keyword default)
(let ((kv (memq keyword args)))
(if (and kv (>= (length kv) 2))
(cadr kv)
default)))
(define (make-window . args)
(let ((depth (get-keyword-value args #:depth screen-depth))
(bg (get-keyword-value args #:bg "white"))
(width (get-keyword-value args #:width 800))
(height (get-keyword-value args #:height 100))
@dots{})
@dots{}))
@end lisp
But you don't need to write @code{get-keyword-value}. The @code{(ice-9
optargs)} module provides a set of powerful macros that you can use to
implement keyword-supporting procedures like this:
@lisp
(use-modules (ice-9 optargs))
(define (make-window . args)
(let-keywords args #f ((depth screen-depth)
(bg "white")
(width 800)
(height 100))
...))
@end lisp
@noindent
Or, even more economically, like this:
@lisp
(use-modules (ice-9 optargs))
(define* (make-window #:key (depth screen-depth)
(bg "white")
(width 800)
(height 100))
...)
@end lisp
For further details on @code{let-keywords}, @code{define*} and other
facilities provided by the @code{(ice-9 optargs)} module, see
@ref{Optional Arguments}.
@node Keyword Read Syntax
@subsubsection Keyword Read Syntax
Guile, by default, only recognizes a keyword syntax that is compatible
with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
external representation of the keyword named @code{NAME}. Keyword
objects print using this syntax as well, so values containing keyword
objects can be read back into Guile. When used in an expression,
keywords are self-quoting objects.
If the @code{keyword} read option is set to @code{'prefix}, Guile also
recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
of the form @code{:NAME} are read as symbols, as required by R5RS.
@cindex SRFI-88 keyword syntax
If the @code{keyword} read option is set to @code{'postfix}, Guile
recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
Otherwise, tokens of this form are read as symbols.
To enable and disable the alternative non-R5RS keyword syntax, you use
the @code{read-set!} procedure documented in @ref{User level options
interfaces} and @ref{Reader options}. Note that the @code{prefix} and
@code{postfix} syntax are mutually exclusive.
@smalllisp
(read-set! keywords 'prefix)
#:type
@result{}
#:type
:type
@result{}
#:type
(read-set! keywords 'postfix)
type:
@result{}
#:type
:type
@result{}
:type
(read-set! keywords #f)
#:type
@result{}
#:type
:type
@print{}
ERROR: In expression :type:
ERROR: Unbound variable: :type
ABORT: (unbound-variable)
@end smalllisp
@node Keyword Procedures
@subsubsection Keyword Procedures
@deffn {Scheme Procedure} keyword? obj
@deffnx {C Function} scm_keyword_p (obj)
Return @code{#t} if the argument @var{obj} is a keyword, else
@code{#f}.
@end deffn
@deffn {Scheme Procedure} keyword->symbol keyword
@deffnx {C Function} scm_keyword_to_symbol (keyword)
Return the symbol with the same name as @var{keyword}.
@end deffn
@deffn {Scheme Procedure} symbol->keyword symbol
@deffnx {C Function} scm_symbol_to_keyword (symbol)
Return the keyword with the same name as @var{symbol}.
@end deffn
@deftypefn {C Function} int scm_is_keyword (SCM obj)
Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
@end deftypefn
@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
(@var{str}, @var{len}))}, respectively.
@end deftypefn
@node Other Types
@subsection ``Functionality-Centric'' Data Types
Procedures and macros are documented in their own chapter: see
@ref{Procedures and Macros}.
Variable objects are documented as part of the description of Guile's
module system: see @ref{Variables}.
Asyncs, dynamic roots and fluids are described in the chapter on
scheduling: see @ref{Scheduling}.
Hooks are documented in the chapter on general utility functions: see
@ref{Hooks}.
Ports are described in the chapter on I/O: see @ref{Input and Output}.
@c Local Variables:
@c TeX-master: "guile.texi"
@c End:
|