1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
|
;;; Continuation-passing style (CPS) intermediate language (IL)
;; Copyright (C) 2013, 2014, 2015, 2017, 2018 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Commentary:
;;;
;;; This pass converts Tree-IL to the continuation-passing style (CPS)
;;; language.
;;;
;;; CPS is a lower-level representation than Tree-IL. Converting to
;;; CPS, beyond adding names for all control points and all values,
;;; simplifies expressions in the following ways, among others:
;;;
;;; * Fixing the order of evaluation.
;;;
;;; * Converting assigned variables to boxed variables.
;;;
;;; * Requiring that Scheme's <letrec> has already been lowered to
;;; <fix>.
;;;
;;; * Inlining default-value initializers into lambda-case
;;; expressions.
;;;
;;; * Inlining prompt bodies.
;;;
;;; * Turning toplevel and module references into primcalls. This
;;; involves explicitly modelling the "scope" of toplevel lookups
;;; (indicating the module with respect to which toplevel bindings
;;; are resolved).
;;;
;;; The utility of CPS is that it gives a name to everything: every
;;; intermediate value, and every control point (continuation). As such
;;; it is more verbose than Tree-IL, but at the same time more simple as
;;; the number of concepts is reduced.
;;;
;;; Code:
(define-module (language tree-il compile-cps)
#:use-module (ice-9 match)
#:use-module ((srfi srfi-1) #:select (fold filter-map))
#:use-module (srfi srfi-26)
#:use-module ((system foreign) #:select (make-pointer pointer->scm))
#:use-module (language cps)
#:use-module (language cps utils)
#:use-module (language cps with-cps)
#:use-module (language cps primitives)
#:use-module (language tree-il analyze)
#:use-module (language tree-il optimize)
#:use-module (language tree-il)
#:use-module (language cps intmap)
#:export (compile-cps))
;;; Guile's semantics are that a toplevel lambda captures a reference on
;;; the current module, and that all contained lambdas use that module
;;; to resolve toplevel variables. This parameter tracks whether or not
;;; we are in a toplevel lambda. If we are in a lambda, the parameter
;;; is bound to a fresh name identifying the module that was current
;;; when the toplevel lambda is defined.
;;;
;;; This is more complicated than it need be. Ideally we should resolve
;;; all toplevel bindings to bindings from specific modules, unless the
;;; binding is unbound. This is always valid if the compilation unit
;;; sets the module explicitly, as when compiling a module, but it
;;; doesn't work for files auto-compiled for use with `load'.
;;;
(define current-topbox-scope (make-parameter #f))
(define scope-counter (make-parameter #f))
(define (fresh-scope-id)
(let ((scope-id (scope-counter)))
(scope-counter (1+ scope-id))
scope-id))
(define (toplevel-box cps src name bound? val-proc)
(define (lookup cps name bound? k)
(match (current-topbox-scope)
(#f
(with-cps cps
(build-term ($continue k src
($primcall 'resolve (name bound?))))))
(scope-id
(with-cps cps
($ (with-cps-constants ((scope scope-id))
(build-term
($continue k src
($primcall 'cached-toplevel-box (scope name bound?))))))))))
(with-cps cps
(letv box)
(let$ body (val-proc box))
(letk kbox ($kargs ('box) (box) ,body))
($ (with-cps-constants ((name name)
(bound? bound?))
($ (lookup name bound? kbox))))))
(define (module-box cps src module name public? bound? val-proc)
(with-cps cps
(letv box)
(let$ body (val-proc box))
(letk kbox ($kargs ('box) (box) ,body))
($ (with-cps-constants ((module module)
(name name)
(public? public?)
(bound? bound?))
(build-term ($continue kbox src
($primcall 'cached-module-box
(module name public? bound?))))))))
(define (capture-toplevel-scope cps src scope-id k)
(with-cps cps
(letv module)
(let$ body (with-cps-constants ((scope scope-id))
(build-term
($continue k src
($primcall 'cache-current-module! (module scope))))))
(letk kmodule ($kargs ('module) (module) ,body))
(build-term ($continue kmodule src
($primcall 'current-module ())))))
(define (fold-formals proc seed arity gensyms inits)
(match arity
(($ $arity req opt rest kw allow-other-keys?)
(let ()
(define (fold-req names gensyms seed)
(match names
(() (fold-opt opt gensyms inits seed))
((name . names)
(proc name (car gensyms) #f
(fold-req names (cdr gensyms) seed)))))
(define (fold-opt names gensyms inits seed)
(match names
(() (fold-rest rest gensyms inits seed))
((name . names)
(proc name (car gensyms) (car inits)
(fold-opt names (cdr gensyms) (cdr inits) seed)))))
(define (fold-rest rest gensyms inits seed)
(match rest
(#f (fold-kw kw gensyms inits seed))
(name (proc name (car gensyms) #f
(fold-kw kw (cdr gensyms) inits seed)))))
(define (fold-kw kw gensyms inits seed)
(match kw
(()
(unless (null? gensyms)
(error "too many gensyms"))
(unless (null? inits)
(error "too many inits"))
seed)
(((key name var) . kw)
;; Could be that var is not a gensym any more.
(when (symbol? var)
(unless (eq? var (car gensyms))
(error "unexpected keyword arg order")))
(proc name (car gensyms) (car inits)
(fold-kw kw (cdr gensyms) (cdr inits) seed)))))
(fold-req req gensyms seed)))))
(define (unbound? cps src var kt kf)
(define tc8-iflag 4)
(define unbound-val 9)
(define unbound-bits (logior (ash unbound-val 8) tc8-iflag))
(with-cps cps
($ (with-cps-constants ((unbound (pointer->scm
(make-pointer unbound-bits))))
(build-term ($continue kf src
($branch kt ($primcall 'eq? (var unbound)))))))))
(define (init-default-value cps name sym subst init body)
(match (hashq-ref subst sym)
((orig-var subst-var box?)
(let ((src (tree-il-src init)))
(define (maybe-box cps k make-body)
(if box?
(with-cps cps
(letv phi)
(letk kbox ($kargs (name) (phi)
($continue k src ($primcall 'box (phi)))))
($ (make-body kbox)))
(make-body cps k)))
(with-cps cps
(letk knext ($kargs (name) (subst-var) ,body))
($ (maybe-box
knext
(lambda (cps k)
(with-cps cps
(letk kbound ($kargs () () ($continue k src
($values (orig-var)))))
(letv val rest)
(letk krest ($kargs (name 'rest) (val rest)
($continue k src ($values (val)))))
(letk kreceive ($kreceive (list name) 'rest krest))
(let$ init (convert init kreceive subst))
(letk kunbound ($kargs () () ,init))
($ (unbound? src orig-var kunbound kbound)))))))))))
;;; The conversion from Tree-IL to CPS essentially wraps every
;;; expression in a $kreceive, which models the Tree-IL semantics that
;;; extra values are simply truncated. In CPS, this means that the
;;; $kreceive has a rest argument after the required arguments, if any,
;;; and that the rest argument is unused.
;;;
;;; All CPS expressions that can return a variable number of values
;;; (i.e., $call and $abort) must continue to $kreceive, which checks
;;; the return arity and on success passes the parsed values along to a
;;; $kargs. If the $call or $abort is in tail position they continue to
;;; $ktail instead, and then the values are parsed by the $kreceive of
;;; the non-tail caller.
;;;
;;; Other CPS terms like $values, $const, and the like all have a
;;; specific return arity, and must continue to $kargs instead of
;;; $kreceive or $ktail. This allows the compiler to reason precisely
;;; about their result values. To make sure that this is the case,
;;; whenever the CPS conversion would reify one of these terms it needs
;;; to ensure that the continuation actually accepts the return arity of
;;; the primcall.
;;;
;;; Some Tree-IL primcalls residualize CPS primcalls that return zero
;;; values, for example box-set!. In this case the Tree-IL semantics
;;; are that the result of the expression is the undefined value. That
;;; is to say, the result of this expression is #t:
;;;
;;; (let ((x 30)) (eq? (set! x 10) (if #f #f)))
;;;
;;; So in the case that the continuation expects a value but the
;;; primcall produces zero values, we insert the "unspecified" value.
;;;
(define (adapt-arity cps k src nvals)
(match nvals
(0
;; As mentioned above, in the Tree-IL semantics the primcall
;; produces the unspecified value, but in CPS it produces no
;; values. Therefore we plug the unspecified value into the
;; continuation.
(match (intmap-ref cps k)
(($ $ktail)
(with-cps cps
(let$ body (with-cps-constants ((unspecified *unspecified*))
(build-term
($continue k src ($values (unspecified))))))
(letk kvoid ($kargs () () ,body))
kvoid))
(($ $kargs ()) (with-cps cps k))
(($ $kreceive arity kargs)
(match arity
(($ $arity () () (not #f) () #f)
(with-cps cps
(letk kvoid ($kargs () () ($continue kargs src ($const '()))))
kvoid))
(($ $arity (_) () #f () #f)
(with-cps cps
(letk kvoid ($kargs () ()
($continue kargs src ($const *unspecified*))))
kvoid))
(($ $arity (_) () _ () #f)
(with-cps cps
(let$ void (with-cps-constants ((unspecified *unspecified*)
(rest '()))
(build-term
($continue kargs src
($values (unspecified rest))))))
(letk kvoid ($kargs () () ,void))
kvoid))
(_
;; Arity mismatch. Serialize a values call.
(with-cps cps
(let$ void (with-cps-constants ((unspecified *unspecified*))
(build-term
($continue k src
($primcall 'values (unspecified))))))
(letk kvoid ($kargs () () ,void))
kvoid))))))
(1
(match (intmap-ref cps k)
(($ $ktail)
(with-cps cps
(letv val)
(letk kval ($kargs ('val) (val)
($continue k src ($values (val)))))
kval))
(($ $kargs (_)) (with-cps cps k))
(($ $kreceive arity kargs)
(match arity
(($ $arity () () (not #f) () #f)
(with-cps cps
(letv val)
(let$ body (with-cps-constants ((nil '()))
(build-term
($continue kargs src ($primcall 'cons (val nil))))))
(letk kval ($kargs ('val) (val) ,body))
kval))
(($ $arity (_) () #f () #f)
(with-cps cps
kargs))
(($ $arity (_) () _ () #f)
(with-cps cps
(letv val)
(let$ body (with-cps-constants ((rest '()))
(build-term
($continue kargs src ($values (val rest))))))
(letk kval ($kargs ('val) (val) ,body))
kval))
(_
;; Arity mismatch. Serialize a values call.
(with-cps cps
(letv val)
(letk kval ($kargs ('val) (val)
($continue k src
($primcall 'values (val)))))
kval))))))))
;; cps exp k-name alist -> cps term
(define (convert cps exp k subst)
(define (zero-valued? exp)
(match exp
((or ($ <module-set>) ($ <toplevel-set>) ($ <toplevel-define>)
($ <lexical-set>))
#t)
(($ <let> src names syms vals body) (zero-valued? body))
;; Can't use <fix> here as the hack that <fix> uses to convert its
;; functions relies on continuation being single-valued.
;; (($ <fix> src names syms vals body) (zero-valued? body))
(($ <let-values> src exp body) (zero-valued? body))
(($ <seq> src head tail) (zero-valued? tail))
(($ <primcall> src name args)
(match (prim-instruction name)
(#f #f)
(inst
(match (prim-arity inst)
((out . in)
(and (eqv? out 0)
(eqv? in (length args))))))))
(_ #f)))
(define (single-valued? exp)
(match exp
((or ($ <void>) ($ <const>) ($ <primitive-ref>) ($ <module-ref>)
($ <toplevel-ref>) ($ <lambda>))
#t)
(($ <let> src names syms vals body) (single-valued? body))
(($ <fix> src names syms vals body) (single-valued? body))
(($ <let-values> src exp body) (single-valued? body))
(($ <seq> src head tail) (single-valued? tail))
(($ <primcall> src name args)
(match (prim-instruction name)
(#f #f)
(inst
(match (prim-arity inst)
((out . in)
(and (eqv? out 1)
(eqv? in (length args))))))))
(_ #f)))
;; exp (v-name -> term) -> term
(define (convert-arg cps exp k)
(match exp
(($ <lexical-ref> src name sym)
(match (hashq-ref subst sym)
((orig-var box #t)
(with-cps cps
(letv unboxed)
(let$ body (k unboxed))
(letk kunboxed ($kargs ('unboxed) (unboxed) ,body))
(build-term ($continue kunboxed src ($primcall 'box-ref (box))))))
((orig-var subst-var #f) (k cps subst-var))
(var (k cps var))))
((? single-valued?)
(with-cps cps
(letv arg)
(let$ body (k arg))
(letk karg ($kargs ('arg) (arg) ,body))
($ (convert exp karg subst))))
(_
(with-cps cps
(letv arg rest)
(let$ body (k arg))
(letk karg ($kargs ('arg 'rest) (arg rest) ,body))
(letk kreceive ($kreceive '(arg) 'rest karg))
($ (convert exp kreceive subst))))))
;; (exp ...) ((v-name ...) -> term) -> term
(define (convert-args cps exps k)
(match exps
(() (k cps '()))
((exp . exps)
(convert-arg cps exp
(lambda (cps name)
(convert-args cps exps
(lambda (cps names)
(k cps (cons name names)))))))))
(define (box-bound-var cps name sym body)
(match (hashq-ref subst sym)
((orig-var subst-var #t)
(with-cps cps
(letk k ($kargs (name) (subst-var) ,body))
(build-term ($continue k #f ($primcall 'box (orig-var))))))
(else
(with-cps cps body))))
(define (box-bound-vars cps names syms body)
(match (vector names syms)
(#((name . names) (sym . syms))
(with-cps cps
(let$ body (box-bound-var name sym body))
($ (box-bound-vars names syms body))))
(#(() ()) (with-cps cps body))))
(define (bound-var sym)
(match (hashq-ref subst sym)
((var . _) var)
((? exact-integer? var) var)))
(match exp
(($ <lexical-ref> src name sym)
(with-cps cps
(let$ k (adapt-arity k src 1))
(rewrite-term (hashq-ref subst sym)
((orig-var box #t) ($continue k src ($primcall 'box-ref (box))))
((orig-var subst-var #f) ($continue k src ($values (subst-var))))
(var ($continue k src ($values (var)))))))
(($ <void> src)
(with-cps cps
(let$ k (adapt-arity k src 1))
(build-term ($continue k src ($const *unspecified*)))))
(($ <const> src exp)
(with-cps cps
(let$ k (adapt-arity k src 1))
(build-term ($continue k src ($const exp)))))
(($ <primitive-ref> src name)
(with-cps cps
(let$ k (adapt-arity k src 1))
(build-term ($continue k src ($prim name)))))
(($ <lambda> fun-src meta body)
(let ()
(define (convert-clauses cps body ktail)
(match body
(#f (values cps #f))
(($ <lambda-case> src req opt rest kw inits gensyms body alternate)
(let* ((arity (make-$arity req (or opt '()) rest
(map (match-lambda
((kw name sym)
(list kw name (bound-var sym))))
(if kw (cdr kw) '()))
(and kw (car kw))))
(names (fold-formals (lambda (name sym init names)
(cons name names))
'()
arity gensyms inits)))
(define (fold-formals* cps f seed arity gensyms inits)
(match (fold-formals
(lambda (name sym init cps+seed)
(match cps+seed
((cps . seed)
(call-with-values (lambda ()
(f cps name sym init seed))
(lambda (cps seed) (cons cps seed))))))
(cons cps seed) arity gensyms inits)
((cps . seed) (values cps seed))))
(with-cps cps
(let$ kalt (convert-clauses alternate ktail))
(let$ body (convert body ktail subst))
(let$ body
(fold-formals*
(lambda (cps name sym init body)
(if init
(init-default-value cps name sym subst init body)
(box-bound-var cps name sym body)))
body arity gensyms inits))
(letk kargs ($kargs names (map bound-var gensyms) ,body))
(letk kclause ($kclause ,arity kargs kalt))
kclause)))))
(if (current-topbox-scope)
(with-cps cps
(letv self)
(letk ktail ($ktail))
(let$ kclause (convert-clauses body ktail))
(letk kfun ($kfun fun-src meta self ktail kclause))
(let$ k (adapt-arity k fun-src 1))
(build-term ($continue k fun-src ($fun kfun))))
(let ((scope-id (fresh-scope-id)))
(with-cps cps
(let$ body ((lambda (cps)
(parameterize ((current-topbox-scope scope-id))
(convert cps exp k subst)))))
(letk kscope ($kargs () () ,body))
($ (capture-toplevel-scope fun-src scope-id kscope)))))))
(($ <module-ref> src mod name public?)
(module-box
cps src mod name public? #t
(lambda (cps box)
(with-cps cps
(let$ k (adapt-arity k src 1))
(build-term ($continue k src ($primcall 'box-ref (box))))))))
(($ <module-set> src mod name public? exp)
(convert-arg cps exp
(lambda (cps val)
(module-box
cps src mod name public? #t
(lambda (cps box)
(with-cps cps
(let$ k (adapt-arity k src 0))
(build-term
($continue k src ($primcall 'box-set! (box val))))))))))
(($ <toplevel-ref> src name)
(toplevel-box
cps src name #t
(lambda (cps box)
(with-cps cps
(let$ k (adapt-arity k src 1))
(build-term ($continue k src ($primcall 'box-ref (box))))))))
(($ <toplevel-set> src name exp)
(convert-arg cps exp
(lambda (cps val)
(toplevel-box
cps src name #f
(lambda (cps box)
(with-cps cps
(let$ k (adapt-arity k src 0))
(build-term
($continue k src ($primcall 'box-set! (box val))))))))))
(($ <toplevel-define> src name exp)
(convert-arg cps exp
(lambda (cps val)
(with-cps cps
(let$ k (adapt-arity k src 0))
(letv box)
(letk kset ($kargs ('box) (box)
($continue k src ($primcall 'box-set! (box val)))))
($ (with-cps-constants ((name name))
(build-term
($continue kset src ($primcall 'define! (name))))))))))
(($ <call> src proc args)
(convert-args cps (cons proc args)
(match-lambda*
((cps (proc . args))
(with-cps cps
(build-term ($continue k src ($call proc args))))))))
(($ <primcall> src name args)
(cond
((eq? name 'equal?)
(convert-args cps args
(lambda (cps args)
(with-cps cps
(let$ k* (adapt-arity k src 1))
(letk kt ($kargs () () ($continue k* src ($const #t))))
(letk kf* ($kargs () ()
;; Here we continue to the original $kreceive
;; or $ktail, as equal? doesn't have a VM op.
($continue k src ($primcall 'equal? args))))
(build-term ($continue kf* src
($branch kt ($primcall 'eqv? args))))))))
((branching-primitive? name)
(convert-args cps args
(lambda (cps args)
(with-cps cps
(let$ k (adapt-arity k src 1))
(letk kt ($kargs () () ($continue k src ($const #t))))
(letk kf ($kargs () () ($continue k src ($const #f))))
(build-term ($continue kf src
($branch kt ($primcall name args))))))))
((and (eq? name 'not) (match args ((_) #t) (_ #f)))
(convert-args cps args
(lambda (cps args)
(with-cps cps
(let$ k (adapt-arity k src 1))
(letk kt ($kargs () () ($continue k src ($const #f))))
(letk kf ($kargs () () ($continue k src ($const #t))))
(build-term ($continue kf src
($branch kt ($values args))))))))
((and (eq? name 'list)
(and-map (match-lambda
((or ($ <const>)
($ <void>)
($ <lambda>)
($ <lexical-ref>)) #t)
(_ #f))
args))
;; See note below in `canonicalize' about `vector'. The same
;; thing applies to `list'.
(with-cps cps
(let$ k (adapt-arity k src 1))
($ ((lambda (cps)
(let lp ((cps cps) (args args) (k k))
(match args
(()
(with-cps cps
(build-term ($continue k src ($const '())))))
((arg . args)
(with-cps cps
(letv tail)
(let$ body (convert-arg arg
(lambda (cps head)
(with-cps cps
(build-term
($continue k src
($primcall 'cons (head tail))))))))
(letk ktail ($kargs ('tail) (tail) ,body))
($ (lp args ktail)))))))))))
((prim-instruction name)
=> (lambda (instruction)
(define (box+adapt-arity cps k src out)
(case instruction
((bv-f32-ref bv-f64-ref)
(with-cps cps
(letv f64)
(let$ k (adapt-arity k src out))
(letk kbox ($kargs ('f64) (f64)
($continue k src ($primcall 'f64->scm (f64)))))
kbox))
((char->integer
string-length vector-length
bv-length bv-u8-ref bv-u16-ref bv-u32-ref bv-u64-ref)
(with-cps cps
(letv u64)
(let$ k (adapt-arity k src out))
(letk kbox ($kargs ('u64) (u64)
($continue k src ($primcall 'u64->scm (u64)))))
kbox))
((bv-s8-ref bv-s16-ref bv-s32-ref bv-s64-ref)
(with-cps cps
(letv s64)
(let$ k (adapt-arity k src out))
(letk kbox ($kargs ('s64) (s64)
($continue k src ($primcall 's64->scm (s64)))))
kbox))
(else
(adapt-arity cps k src out))))
(define (unbox-arg cps arg unbox-op have-arg)
(with-cps cps
(letv unboxed)
(let$ body (have-arg unboxed))
(letk kunboxed ($kargs ('unboxed) (unboxed) ,body))
(build-term
($continue kunboxed src ($primcall unbox-op (arg))))))
(define (unbox-args cps args have-args)
(case instruction
((bv-f32-ref bv-f64-ref
bv-s8-ref bv-s16-ref bv-s32-ref bv-s64-ref
bv-u8-ref bv-u16-ref bv-u32-ref bv-u64-ref)
(match args
((bv idx)
(unbox-arg
cps idx 'scm->u64
(lambda (cps idx)
(have-args cps (list bv idx)))))))
((bv-f32-set! bv-f64-set!)
(match args
((bv idx val)
(unbox-arg
cps idx 'scm->u64
(lambda (cps idx)
(unbox-arg
cps val 'scm->f64
(lambda (cps val)
(have-args cps (list bv idx val)))))))))
((bv-s8-set! bv-s16-set! bv-s32-set! bv-s64-set!)
(match args
((bv idx val)
(unbox-arg
cps idx 'scm->u64
(lambda (cps idx)
(unbox-arg
cps val 'scm->s64
(lambda (cps val)
(have-args cps (list bv idx val)))))))))
((bv-u8-set! bv-u16-set! bv-u32-set! bv-u64-set!)
(match args
((bv idx val)
(unbox-arg
cps idx 'scm->u64
(lambda (cps idx)
(unbox-arg
cps val 'scm->u64
(lambda (cps val)
(have-args cps (list bv idx val)))))))))
((vector-ref struct-ref string-ref)
(match args
((obj idx)
(unbox-arg
cps idx 'scm->u64
(lambda (cps idx)
(have-args cps (list obj idx)))))))
((vector-set! struct-set! string-set!)
(match args
((obj idx val)
(unbox-arg
cps idx 'scm->u64
(lambda (cps idx)
(have-args cps (list obj idx val)))))))
((make-vector)
(match args
((length init)
(unbox-arg
cps length 'scm->u64
(lambda (cps length)
(have-args cps (list length init)))))))
((allocate-struct)
(match args
((vtable nfields)
(unbox-arg
cps nfields 'scm->u64
(lambda (cps nfields)
(have-args cps (list vtable nfields)))))))
((integer->char)
(match args
((integer)
(unbox-arg
cps integer 'scm->u64
(lambda (cps integer)
(have-args cps (list integer)))))))
(else (have-args cps args))))
(convert-args cps args
(lambda (cps args)
;; Tree-IL primcalls are sloppy, in that it could be
;; that they are called with too many or too few
;; arguments. In CPS we are more strict and only
;; residualize a $primcall if the argument count
;; matches.
(match (prim-arity instruction)
((out . in)
(if (= in (length args))
(with-cps cps
(let$ k (box+adapt-arity k src out))
($ (unbox-args
args
(lambda (cps args)
(with-cps cps
(build-term
($continue k src
($primcall instruction args))))))))
(with-cps cps
(letv prim)
(letk kprim ($kargs ('prim) (prim)
($continue k src ($call prim args))))
(build-term ($continue kprim src ($prim name)))))))))))
(else
;; We have something that's a primcall for Tree-IL but not for
;; CPS, which will get compiled as a call and so the right thing
;; to do is to continue to the given $ktail or $kreceive.
(convert-args cps args
(lambda (cps args)
(with-cps cps
(build-term
($continue k src ($primcall name args)))))))))
;; Prompts with inline handlers.
(($ <prompt> src escape-only? tag body
($ <lambda> hsrc hmeta
($ <lambda-case> _ hreq #f hrest #f () hsyms hbody #f)))
;; Handler:
;; khargs: check args returned to handler, -> khbody
;; khbody: the handler, -> k
;;
;; Post-body:
;; krest: collect return vals from body to list, -> kpop
;; kpop: pop the prompt, -> kprim
;; kprim: load the values primitive, -> kret
;; kret: (apply values rvals), -> k
;;
;; Escape prompts evaluate the body with the continuation of krest.
;; Otherwise we do a no-inline call to body, continuing to krest.
(convert-arg cps tag
(lambda (cps tag)
(let ((hnames (append hreq (if hrest (list hrest) '())))
(bound-vars (map bound-var hsyms)))
(define (convert-body cps khargs krest)
(if escape-only?
(with-cps cps
(let$ body (convert body krest subst))
(letk kbody ($kargs () () ,body))
(build-term ($continue kbody src ($prompt #t tag khargs))))
(convert-arg cps body
(lambda (cps thunk)
(with-cps cps
(letk kbody ($kargs () ()
($continue krest (tree-il-src body)
($primcall 'call-thunk/no-inline
(thunk)))))
(build-term ($continue kbody (tree-il-src body)
($prompt #f tag khargs))))))))
(with-cps cps
(letv prim vals)
(let$ hbody (convert hbody k subst))
(let$ hbody (box-bound-vars hnames hsyms hbody))
(letk khbody ($kargs hnames bound-vars ,hbody))
(letk khargs ($kreceive hreq hrest khbody))
(letk kprim ($kargs ('prim) (prim)
($continue k src ($primcall 'apply (prim vals)))))
(letk kret ($kargs () ()
($continue kprim src ($prim 'values))))
(letk kpop ($kargs ('rest) (vals)
($continue kret src ($primcall 'unwind ()))))
;; FIXME: Attach hsrc to $kreceive.
(letk krest ($kreceive '() 'rest kpop))
($ (convert-body khargs krest)))))))
(($ <abort> src tag args ($ <const> _ ()))
(convert-args cps (cons tag args)
(lambda (cps args*)
(with-cps cps
(build-term
($continue k src ($primcall 'abort-to-prompt args*)))))))
(($ <abort> src tag args tail)
(convert-args cps
(append (list (make-primitive-ref #f 'abort-to-prompt) tag)
args
(list tail))
(lambda (cps args*)
(with-cps cps
(build-term ($continue k src ($primcall 'apply args*)))))))
(($ <conditional> src test consequent alternate)
(define (convert-test cps test kt kf)
(match test
(($ <primcall> src (? branching-primitive? name) args)
(convert-args cps args
(lambda (cps args)
(with-cps cps
(build-term ($continue kf src
($branch kt ($primcall name args))))))))
(($ <conditional> src test consequent alternate)
(with-cps cps
(let$ t (convert-test consequent kt kf))
(let$ f (convert-test alternate kt kf))
(letk kt* ($kargs () () ,t))
(letk kf* ($kargs () () ,f))
($ (convert-test test kt* kf*))))
(_ (convert-arg cps test
(lambda (cps test)
(with-cps cps
(build-term ($continue kf src
($branch kt ($values (test)))))))))))
(with-cps cps
(let$ t (convert consequent k subst))
(let$ f (convert alternate k subst))
(letk kt ($kargs () () ,t))
(letk kf ($kargs () () ,f))
($ (convert-test test kt kf))))
(($ <lexical-set> src name gensym exp)
(convert-arg cps exp
(lambda (cps exp)
(match (hashq-ref subst gensym)
((orig-var box #t)
(with-cps cps
(let$ k (adapt-arity k src 0))
(build-term
($continue k src ($primcall 'box-set! (box exp))))))))))
(($ <seq> src head tail)
(if (zero-valued? head)
(with-cps cps
(let$ tail (convert tail k subst))
(letk kseq ($kargs () () ,tail))
($ (convert head kseq subst)))
(with-cps cps
(let$ tail (convert tail k subst))
(letv vals)
(letk kseq ($kargs ('vals) (vals) ,tail))
(letk kreceive ($kreceive '() 'vals kseq))
($ (convert head kreceive subst)))))
(($ <let> src names syms vals body)
(let lp ((cps cps) (names names) (syms syms) (vals vals))
(match (list names syms vals)
((() () ()) (convert cps body k subst))
(((name . names) (sym . syms) (val . vals))
(with-cps cps
(let$ body (lp names syms vals))
(let$ body (box-bound-var name sym body))
($ ((lambda (cps)
(if (single-valued? val)
(with-cps cps
(letk klet ($kargs (name) ((bound-var sym)) ,body))
($ (convert val klet subst)))
(with-cps cps
(letv rest)
(letk klet ($kargs (name 'rest) ((bound-var sym) rest) ,body))
(letk kreceive ($kreceive (list name) 'rest klet))
($ (convert val kreceive subst))))))))))))
(($ <fix> src names gensyms funs body)
;; Some letrecs can be contified; that happens later.
(define (convert-funs cps funs)
(match funs
(()
(with-cps cps '()))
((fun . funs)
(with-cps cps
(let$ fun (convert fun k subst))
(let$ funs (convert-funs funs))
(cons (match fun
(($ $continue _ _ (and fun ($ $fun)))
fun))
funs)))))
(if (current-topbox-scope)
(let ((vars (map bound-var gensyms)))
(with-cps cps
(let$ body (convert body k subst))
(letk krec ($kargs names vars ,body))
(let$ funs (convert-funs funs))
(build-term ($continue krec src ($rec names vars funs)))))
(let ((scope-id (fresh-scope-id)))
(with-cps cps
(let$ body ((lambda (cps)
(parameterize ((current-topbox-scope scope-id))
(convert cps exp k subst)))))
(letk kscope ($kargs () () ,body))
($ (capture-toplevel-scope src scope-id kscope))))))
(($ <let-values> src exp
($ <lambda-case> lsrc req #f rest #f () syms body #f))
(let ((names (append req (if rest (list rest) '())))
(bound-vars (map bound-var syms)))
(with-cps cps
(let$ body (convert body k subst))
(let$ body (box-bound-vars names syms body))
(letk kargs ($kargs names bound-vars ,body))
(letk kreceive ($kreceive req rest kargs))
($ (convert exp kreceive subst)))))))
(define (build-subst exp)
"Compute a mapping from lexical gensyms to CPS variable indexes. CPS
uses small integers to identify variables, instead of gensyms.
This subst table serves an additional purpose of mapping variables to
replacements. The usual reason to replace one variable by another is
assignment conversion. Default argument values is the other reason.
The result is a hash table mapping symbols to substitutions (in the case
that a variable is substituted) or to indexes. A substitution is a list
of the form:
(ORIG-INDEX SUBST-INDEX BOXED?)
A true value for BOXED? indicates that the replacement variable is in a
box. If a variable is not substituted, the mapped value is a small
integer."
(let ((table (make-hash-table)))
(define (down exp)
(match exp
(($ <lexical-set> src name sym exp)
(match (hashq-ref table sym)
((orig subst #t) #t)
((orig subst #f) (hashq-set! table sym (list orig subst #t)))
((? number? idx) (hashq-set! table sym (list idx (fresh-var) #t)))))
(($ <lambda-case> src req opt rest kw inits gensyms body alternate)
(fold-formals (lambda (name sym init seed)
(hashq-set! table sym
(if init
(list (fresh-var) (fresh-var) #f)
(fresh-var))))
#f
(make-$arity req (or opt '()) rest
(if kw (cdr kw) '()) (and kw (car kw)))
gensyms
inits))
(($ <let> src names gensyms vals body)
(for-each (lambda (sym)
(hashq-set! table sym (fresh-var)))
gensyms))
(($ <fix> src names gensyms vals body)
(for-each (lambda (sym)
(hashq-set! table sym (fresh-var)))
gensyms))
(_ #t))
(values))
(define (up exp) (values))
((make-tree-il-folder) exp down up)
table))
(define (cps-convert/thunk exp)
(parameterize ((label-counter 0)
(var-counter 0)
(scope-counter 0))
(with-cps empty-intmap
(letv init)
;; Allocate kinit first so that we know that the entry point's
;; label is zero. This simplifies data flow in the compiler if we
;; can just pass around the program as a map of continuations and
;; know that the entry point is label 0.
(letk kinit ,#f)
(letk ktail ($ktail))
(let$ body (convert exp ktail (build-subst exp)))
(letk kbody ($kargs () () ,body))
(letk kclause ($kclause ('() '() #f '() #f) kbody #f))
($ ((lambda (cps)
(let ((init (build-cont
($kfun (tree-il-src exp) '() init ktail kclause))))
(with-cps (persistent-intmap (intmap-replace! cps kinit init))
kinit))))))))
(define *comp-module* (make-fluid))
(define %warning-passes
`((unused-variable . ,unused-variable-analysis)
(unused-toplevel . ,unused-toplevel-analysis)
(shadowed-toplevel . ,shadowed-toplevel-analysis)
(unbound-variable . ,unbound-variable-analysis)
(macro-use-before-definition . ,macro-use-before-definition-analysis)
(arity-mismatch . ,arity-analysis)
(format . ,format-analysis)))
(define (optimize-tree-il x e opts)
(define warnings
(or (and=> (memq #:warnings opts) cadr)
'()))
;; Go through the warning passes.
(let ((analyses (filter-map (lambda (kind)
(assoc-ref %warning-passes kind))
warnings)))
(analyze-tree analyses x e))
(optimize x e opts))
(define (canonicalize exp)
(post-order
(lambda (exp)
(match exp
(($ <primcall> src 'vector
(and args
((or ($ <const>) ($ <void>) ($ <lambda>) ($ <lexical-ref>))
...)))
;; Some macros generate calls to "vector" with like 300
;; arguments. Since we eventually compile to make-vector and
;; vector-set!, it reduces live variable pressure to allocate the
;; vector first, then set values as they are produced, if we can
;; prove that no value can capture the continuation. (More on
;; that caveat here:
;; http://wingolog.org/archives/2013/11/02/scheme-quiz-time).
;;
;; Normally we would do this transformation in the compiler, but
;; it's quite tricky there and quite easy here, so hold your nose
;; while we drop some smelly code.
(let ((len (length args))
(v (gensym "v ")))
(make-let src
(list 'v)
(list v)
(list (make-primcall src 'make-vector
(list (make-const #f len)
(make-const #f #f))))
(fold (lambda (arg n tail)
(make-seq
src
(make-primcall
src 'vector-set!
(list (make-lexical-ref src 'v v)
(make-const #f n)
arg))
tail))
(make-lexical-ref src 'v v)
(reverse args) (reverse (iota len))))))
(($ <primcall> src 'struct-set! (struct index value))
;; Unhappily, and undocumentedly, struct-set! returns the value
;; that was set. There is code that relies on this. Hackety
;; hack...
(let ((v (gensym "v ")))
(make-let src
(list 'v)
(list v)
(list value)
(make-seq src
(make-primcall src 'struct-set!
(list struct
index
(make-lexical-ref src 'v v)))
(make-lexical-ref src 'v v)))))
;; Lower (logand x (lognot y)) to (logsub x y). We do it here
;; instead of in CPS because it gets rid of the lognot entirely;
;; if type folding can't prove Y to be an exact integer, then DCE
;; would have to leave it in the program for its possible
;; effects.
(($ <primcall> src 'logand (x ($ <primcall> _ 'lognot (y))))
(make-primcall src 'logsub (list x y)))
(($ <primcall> src 'logand (($ <primcall> _ 'lognot (y)) x))
(make-primcall src 'logsub (list x y)))
(($ <prompt> src escape-only? tag body
($ <lambda> hsrc hmeta
($ <lambda-case> _ hreq #f hrest #f () hsyms hbody #f)))
exp)
;; Eta-convert prompts without inline handlers.
(($ <prompt> src escape-only? tag body handler)
(let ((h (gensym "h "))
(args (gensym "args ")))
(make-let
src (list 'h) (list h) (list handler)
(make-seq
src
(make-conditional
src
(make-primcall src 'procedure? (list (make-lexical-ref #f 'h h)))
(make-void src)
(make-primcall
src 'scm-error
(list
(make-const #f 'wrong-type-arg)
(make-const #f "call-with-prompt")
(make-const #f "Wrong type (expecting procedure): ~S")
(make-primcall #f 'list (list (make-lexical-ref #f 'h h)))
(make-primcall #f 'list (list (make-lexical-ref #f 'h h))))))
(make-prompt
src escape-only? tag body
(make-lambda
src '()
(make-lambda-case
src '() #f 'args #f '() (list args)
(make-primcall
src 'apply
(list (make-lexical-ref #f 'h h)
(make-lexical-ref #f 'args args)))
#f)))))))
(_ exp)))
exp))
(define (compile-cps exp env opts)
(values (cps-convert/thunk
(canonicalize (optimize-tree-il exp env opts)))
env
env))
;;; Local Variables:
;;; eval: (put 'convert-arg 'scheme-indent-function 2)
;;; eval: (put 'convert-args 'scheme-indent-function 2)
;;; End:
|