1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
|
;;; Type analysis on CPS
;;; Copyright (C) 2014-2021,2023-2024 Free Software Foundation, Inc.
;;;
;;; This library is free software: you can redistribute it and/or modify
;;; it under the terms of the GNU Lesser General Public License as
;;; published by the Free Software Foundation, either version 3 of the
;;; License, or (at your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;;
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with this program. If not, see
;;; <http://www.gnu.org/licenses/>.
;;; Commentary:
;;;
;;; Type analysis computes the possible types and ranges that values may
;;; have at all program positions. This analysis can help to prove that
;;; a primcall has no side-effects, if its arguments have the
;;; appropriate type and range. It can also enable constant folding of
;;; type predicates and, in the future, enable the compiler to choose
;;; untagged, unboxed representations for numbers.
;;;
;;; For the purposes of this analysis, a "type" is an aspect of a value
;;; that will not change. Guile's CPS intermediate language does not
;;; carry manifest type information that asserts properties about given
;;; values; instead, we recover this information via flow analysis,
;;; garnering properties from type predicates, constant literals,
;;; primcall results, and primcalls that assert that their arguments are
;;; of particular types.
;;;
;;; A range denotes a subset of the set of values in a type, bounded by
;;; a minimum and a maximum. The precise meaning of a range depends on
;;; the type. For real numbers, the range indicates an inclusive lower
;;; and upper bound on the integer value of a type. For vectors, the
;;; range indicates the length of the vector. The range is the union of
;;; the signed and unsigned 64-bit ranges. Additionally, the minimum
;;; bound of a range may be -inf.0, and the maximum bound may be +inf.0.
;;; For some types, like pairs, the concept of "range" makes no sense.
;;; In these cases we consider the range to be -inf.0 to +inf.0.
;;;
;;; Types are represented as a bitfield. Fewer bits means a more precise
;;; type. Although normally only values that have a single type will
;;; have an associated range, this is not enforced. The range applies
;;; to all types in the bitfield. When control flow meets, the types and
;;; ranges meet with the union operator.
;;;
;;; It is not practical to precisely compute value ranges in all cases.
;;; For example, in the following case:
;;;
;;; (let lp ((n 0)) (when (foo) (lp (1+ n))))
;;;
;;; The first time that range analysis visits the program, N is
;;; determined to be the exact integer 0. The second time, it is an
;;; exact integer in the range [0, 1]; the third, [0, 2]; and so on.
;;; This analysis will terminate, but only after the positive half of
;;; the 64-bit range has been fully explored and we decide that the
;;; range of N is [0, +inf.0]. At the same time, we want to do range
;;; analysis and type analysis at the same time, as there are
;;; interactions between them, notably in the case of `sqrt' which
;;; returns a complex number if its argument cannot be proven to be
;;; non-negative. So what we do instead is to precisely propagate types
;;; and ranges when propagating forward, but after the first backwards
;;; branch is seen, we cause backward branches that would expand the
;;; range of a value to saturate that range towards positive or negative
;;; infinity (as appropriate).
;;;
;;; A naive approach to type analysis would build up a table that has
;;; entries for all variables at all program points, but this has
;;; N-squared complexity and quickly grows unmanageable. Instead, we
;;; use _intmaps_ from (language cps intmap) to share state between
;;; connected program points.
;;;
;;; Code:
(define-module (language cps types)
#:use-module (ice-9 match)
#:use-module (language cps)
#:use-module (language cps intmap)
#:use-module (language cps intset)
#:use-module (rnrs bytevectors)
#:use-module (srfi srfi-11)
#:use-module ((system syntax internal) #:select (syntax?))
#:use-module (system base target)
#:export (;; Specific types.
&fixnum
&bignum
&flonum
&complex
&fraction
&char
&special-immediate
&symbol
&keyword
&procedure
&pointer
&fluid
&pair
&immutable-vector
&mutable-vector
&box
&struct
&string
&bytevector
&bitvector
&array
&syntax
&other-heap-object
;; Special immediate values.
&null &nil &false &true &unspecified &undefined &eof
;; Union types.
&exact-integer &exact-number &real &number &vector
;; Untagged types.
&f64
&u64
&s64
;; Helper.
type<=?
;; Interface for type inference.
constant-type
infer-types
lookup-pre-type
lookup-post-type
primcall-types-check?))
(define-syntax define-flags
(lambda (x)
(syntax-case x ()
((_ all shift name ...)
(let ((count (length #'(name ...))))
(with-syntax (((n ...) (iota count))
(count count))
#'(begin
(define-syntax name (identifier-syntax (ash 1 n)))
...
(define-syntax all (identifier-syntax (1- (ash 1 count))))
(define-syntax shift (identifier-syntax count)))))))))
;; More precise types have fewer bits.
(define-flags &all-types &type-bits
&fixnum
&bignum
&flonum
&complex
&fraction
&char
&special-immediate
&symbol
&keyword
&procedure
&pointer
&fluid
&pair
&immutable-vector
&mutable-vector
&box
&struct
&string
&bytevector
&bitvector
&array
&syntax
&other-heap-object
&f64
&u64
&s64)
(define-syntax &no-type (identifier-syntax 0))
;; Special immediate values. Note that the values for the first 4 of
;; these are important; see uses below.
(define-syntax &null (identifier-syntax 0))
(define-syntax &nil (identifier-syntax 1))
(define-syntax &false (identifier-syntax 2))
(define-syntax &true (identifier-syntax 3))
(define-syntax &unspecified (identifier-syntax 4))
(define-syntax &undefined (identifier-syntax 5))
(define-syntax &eof (identifier-syntax 6))
(define-syntax &exact-integer
(identifier-syntax (logior &fixnum &bignum)))
(define-syntax &exact-number
(identifier-syntax (logior &fixnum &bignum &fraction)))
(define-syntax &real
(identifier-syntax (logior &fixnum &bignum &flonum &fraction)))
(define-syntax &heap-number
(identifier-syntax (logior &flonum &bignum &complex &fraction)))
(define-syntax &number
(identifier-syntax (logior &fixnum &bignum &flonum &complex &fraction)))
(define-syntax &vector
(identifier-syntax (logior &immutable-vector &mutable-vector)))
(define-syntax-rule (type<=? x type)
(zero? (logand x (lognot type))))
;; Versions of min and max that do not coerce exact numbers to become
;; inexact.
(define min
(case-lambda
((a b) (if (< a b) a b))
((a b c) (min (min a b) c))
((a b c d) (min (min a b) c d))))
(define max
(case-lambda
((a b) (if (> a b) a b))
((a b c) (max (max a b) c))
((a b c d) (max (max a b) c d))))
(define-syntax-rule (define-compile-time-value name val)
(define-syntax name
(make-variable-transformer
(lambda (x)
(syntax-case x (set!)
(var (identifier? #'var)
(datum->syntax #'var val)))))))
(define-compile-time-value &fx32-min (- #x20000000))
(define-compile-time-value &fx32-max #x1fffFFFF)
(define-compile-time-value &fx64-min (- #x2000000000000000))
(define-compile-time-value &fx64-max #x1fffFFFFffffFFFF)
(define-compile-time-value &s64-min (- #x8000000000000000))
(define-compile-time-value &s64-max #x7fffFFFFffffFFFF)
(define-compile-time-value &u64-max #xffffFFFFffffFFFF)
(define-syntax &range-min (identifier-syntax &s64-min))
(define-syntax &range-max (identifier-syntax &u64-max))
(define *max-codepoint* #x10ffff)
(define-inlinable (make-unclamped-type-entry type min max)
(vector type min max))
(define-inlinable (type-entry-type tentry)
(vector-ref tentry 0))
(define-inlinable (type-entry-min tentry)
(vector-ref tentry 1))
(define-inlinable (type-entry-max tentry)
(vector-ref tentry 2))
(define-inlinable (clamp-min val)
(cond
;; Fast path to avoid comparisons with bignums.
((<= most-negative-fixnum val most-positive-fixnum) val)
((< val &range-min) -inf.0)
((< &range-max val) &range-max)
(else val)))
(define-inlinable (clamp-max val)
(cond
;; Fast path to avoid comparisons with bignums.
((<= most-negative-fixnum val most-positive-fixnum) val)
((< &range-max val) +inf.0)
((< val &range-min) &range-min)
(else val)))
(define-inlinable (make-type-entry type min max)
(vector type (clamp-min min) (clamp-max max)))
(define all-types-entry (make-type-entry &all-types -inf.0 +inf.0))
(define* (var-type-entry typeset var #:optional (default all-types-entry))
(intmap-ref typeset var (lambda (_) default)))
(define (var-type typeset var)
(type-entry-type (var-type-entry typeset var)))
(define (var-min typeset var)
(type-entry-min (var-type-entry typeset var)))
(define (var-max typeset var)
(type-entry-max (var-type-entry typeset var)))
;; Is the type entry A contained entirely within B?
(define (type-entry<=? a b)
(match (cons a b)
((#(a-type a-min a-max) . #(b-type b-min b-max))
(and (eqv? b-type (logior a-type b-type))
(<= b-min a-min)
(>= b-max a-max)))))
(define (type-entry-union a b)
(cond
((type-entry<=? b a) a)
((type-entry<=? a b) b)
(else (make-type-entry
(logior (type-entry-type a) (type-entry-type b))
(min (type-entry-min a) (type-entry-min b))
(max (type-entry-max a) (type-entry-max b))))))
(define (type-entry-saturating-union a b)
(cond
((type-entry<=? b a) a)
(else
(make-type-entry
(logior (type-entry-type a) (type-entry-type b))
(let ((a-min (type-entry-min a))
(b-min (type-entry-min b)))
(cond
((not (< b-min a-min)) a-min)
((< 0 b-min) 0)
((< &fx32-min b-min) &fx32-min)
((< &fx64-min b-min) &fx64-min)
((< &range-min b-min) &range-min)
(else -inf.0)))
(let ((a-max (type-entry-max a))
(b-max (type-entry-max b)))
(cond
((not (> b-max a-max)) a-max)
((> &fx32-max b-max) &fx32-max)
((> &fx64-max b-max) &fx64-max)
((> &s64-max b-max) &s64-max)
((> &range-max b-max) &range-max)
(else +inf.0)))))))
(define (type-entry-intersection a b)
(cond
((type-entry<=? a b) a)
((type-entry<=? b a) b)
(else (make-type-entry
(logand (type-entry-type a) (type-entry-type b))
(max (type-entry-min a) (type-entry-min b))
(min (type-entry-max a) (type-entry-max b))))))
(define (adjoin-var typeset var entry)
(intmap-add typeset var entry type-entry-union))
(define (restrict-var typeset var entry)
(intmap-add typeset var entry type-entry-intersection))
(define (constant-type val)
"Compute the type and range of VAL. Return three values: the type,
minimum, and maximum."
(define (return type val)
(if val
(values type val val)
(values type -inf.0 +inf.0)))
(cond
((number? val)
(cond
((exact-integer? val)
(return (if (<= (target-most-negative-fixnum)
val
(target-most-positive-fixnum))
&fixnum
&bignum)
val))
((eqv? (imag-part val) 0)
(if (nan? val)
(values &flonum -inf.0 +inf.0)
(values
(if (exact? val) &fraction &flonum)
(if (rational? val) (inexact->exact (floor val)) val)
(if (rational? val) (inexact->exact (ceiling val)) val))))
(else (return &complex #f))))
((eq? val '()) (return &special-immediate &null))
((eq? val #nil) (return &special-immediate &nil))
((eq? val #t) (return &special-immediate &true))
((eq? val #f) (return &special-immediate &false))
((eqv? val *unspecified*) (return &special-immediate &unspecified))
((eof-object? val) (return &special-immediate &eof))
((char? val) (return &char (char->integer val)))
((symbol? val) (return &symbol #f))
((keyword? val) (return &keyword #f))
((pair? val) (return &pair #f))
((vector? val) (return &immutable-vector (vector-length val)))
((string? val) (return &string (string-length val)))
((bytevector? val) (return &bytevector (bytevector-length val)))
((bitvector? val) (return &bitvector (bitvector-length val)))
((array? val) (return &array (array-rank val)))
((syntax? val) (return &syntax 0))
((not (variable-bound? (make-variable val)))
(return &special-immediate &undefined))
(else (error "unhandled constant" val))))
(define (constant-type-entry val)
"Compute the type and range of VAL. Return three values: the type,
minimum, and maximum."
(call-with-values (lambda () (constant-type val))
(lambda (type min max)
(make-type-entry type min max))))
(define *type-checkers* (make-hash-table))
(define *type-inferrers* (make-hash-table))
(define-syntax-rule (define-type-helper name)
(define-syntax-parameter name
(lambda (stx)
(syntax-violation 'name
"macro used outside of define-type"
stx))))
(define-type-helper define!)
(define-type-helper restrict!)
(define-type-helper &type)
(define-type-helper &min)
(define-type-helper &max)
(define-syntax-rule (define-exact-integer! result min max)
(let ((min* min) (max* max))
(define! result
(if (<= (target-most-negative-fixnum)
min* max*
(target-most-positive-fixnum))
&fixnum
&exact-integer)
min* max*)))
;; Accessors to use in type inferrers where you know that the values
;; must be in some range for the computation to proceed (not throw an
;; error). Note that these accessors should be used even for &u64 and
;; &s64 values, whose definitions you would think would be apparent
;; already. However it could be that the graph isn't sorted, so we see
;; a use before a definition, in which case we need to clamp the generic
;; limits to the &u64/&s64 range.
(define-syntax-rule (&min/0 x) (max (&min x) 0))
(define-syntax-rule (&max/u64 x) (min (&max x) &u64-max))
(define-syntax-rule (&min/s64 x) (max (&min x) &s64-min))
(define-syntax-rule (&max/s64 x) (min (&max x) &s64-max))
(define-syntax-rule (&min/fixnum x) (max (&min x) (target-most-negative-fixnum)))
(define-syntax-rule (&max/fixnum x) (min (&max x) (target-most-positive-fixnum)))
(define-syntax-rule (&max/size x) (min (&max x) (target-max-size-t)))
(define-syntax-rule (&max/scm-size x) (min (&max x) (target-max-size-t/scm)))
(define-syntax-rule (define-type-checker/param (name param arg ...) body ...)
(hashq-set!
*type-checkers*
'name
(lambda (typeset param arg ...)
(syntax-parameterize
((&type (syntax-rules () ((_ val) (var-type typeset val))))
(&min (syntax-rules () ((_ val) (var-min typeset val))))
(&max (syntax-rules () ((_ val) (var-max typeset val)))))
body ...))))
(define-syntax-rule (define-type-checker (name arg ...) body ...)
(define-type-checker/param (name param arg ...) body ...))
(define-syntax-rule (check-type arg type min max)
;; If the arg is negative, it is a closure variable.
(and (>= arg 0)
(zero? (logand (lognot type) (&type arg)))
(<= min (&min arg))
(<= (&max arg) max)))
(define-syntax-rule (define-type-inferrer* (name param succ var ...) body ...)
(hashq-set!
*type-inferrers*
'name
(lambda (in succ param var ...)
(let ((out in))
(syntax-parameterize
((define!
(syntax-rules ()
((_ val type min max)
(set! out (adjoin-var out val
(make-type-entry type min max))))))
(restrict!
(syntax-rules ()
((_ val type min max)
(set! out (restrict-var out val
(make-type-entry type min max))))))
(&type (syntax-rules () ((_ val) (var-type in val))))
(&min (syntax-rules () ((_ val) (var-min in val))))
(&max (syntax-rules () ((_ val) (var-max in val)))))
body ...
out)))))
(define-syntax-rule (define-type-inferrer (name arg ...) body ...)
(define-type-inferrer* (name param succ arg ...) body ...))
(define-syntax-rule (define-type-inferrer/param (name param arg ...) body ...)
(define-type-inferrer* (name param succ arg ...) body ...))
(define-syntax-rule (define-predicate-inferrer (name arg ... true?) body ...)
(define-type-inferrer* (name param succ arg ...)
(let ((true? (not (zero? succ))))
body ...)))
(define-syntax-rule (define-predicate-inferrer/param
(name param arg ... true?) body ...)
(define-type-inferrer* (name param succ arg ...)
(let ((true? (not (zero? succ))))
body ...)))
(define-syntax define-simple-type-checker
(lambda (x)
(define (parse-spec l)
(syntax-case l ()
(() '())
(((type min max) . l) (cons #'(type min max) (parse-spec #'l)))
(((type min+max) . l) (cons #'(type min+max min+max) (parse-spec #'l)))
((type . l) (cons #'(type -inf.0 +inf.0) (parse-spec #'l)))))
(syntax-case x ()
((_ (name arg-spec ...) result-spec ...)
(with-syntax
(((arg ...) (generate-temporaries #'(arg-spec ...)))
(((arg-type arg-min arg-max) ...) (parse-spec #'(arg-spec ...))))
#'(define-type-checker (name arg ...)
(and (check-type arg arg-type arg-min arg-max)
...)))))))
(define-syntax define-simple-type-inferrer
(lambda (x)
(define (parse-spec l)
(syntax-case l ()
(() '())
(((type min max) . l) (cons #'(type min max) (parse-spec #'l)))
(((type min+max) . l) (cons #'(type min+max min+max) (parse-spec #'l)))
((type . l) (cons #'(type -inf.0 +inf.0) (parse-spec #'l)))))
(syntax-case x ()
((_ (name arg-spec ...) result-spec ...)
(with-syntax
(((arg ...) (generate-temporaries #'(arg-spec ...)))
(((arg-type arg-min arg-max) ...) (parse-spec #'(arg-spec ...)))
((res ...) (generate-temporaries #'(result-spec ...)))
(((res-type res-min res-max) ...) (parse-spec #'(result-spec ...))))
#'(define-type-inferrer (name arg ... res ...)
(restrict! arg arg-type arg-min arg-max)
...
(define! res res-type res-min res-max)
...))))))
(define-syntax-rule (define-simple-type (name arg-spec ...) result-spec ...)
(begin
(define-simple-type-checker (name arg-spec ...))
(define-simple-type-inferrer (name arg-spec ...) result-spec ...)))
(define-syntax-rule (define-simple-types
((name arg-spec ...) result-spec ...)
...)
(begin
(define-simple-type (name arg-spec ...) result-spec ...)
...))
(define-syntax-rule (define-type-checker-aliases orig alias ...)
(let ((check (hashq-ref *type-checkers* 'orig)))
(hashq-set! *type-checkers* 'alias check)
...))
(define-syntax-rule (define-type-inferrer-aliases orig alias ...)
(let ((check (hashq-ref *type-inferrers* 'orig)))
(hashq-set! *type-inferrers* 'alias check)
...))
(define-syntax-rule (define-type-aliases orig alias ...)
(begin
(define-type-checker-aliases orig alias ...)
(define-type-inferrer-aliases orig alias ...)))
;;; This list of primcall type definitions follows the order of
;;; effects-analysis.scm; please keep it in a similar order.
;;;
;;; There is no need to add checker definitions for expressions that do
;;; not exhibit the &type-check effect, as callers should not ask if
;;; such an expression does or does not type-check. For those that do
;;; exhibit &type-check, you should define a type inferrer unless the
;;; primcall will never typecheck.
;;;
;;; Likewise there is no need to define inferrers for primcalls which
;;; return &all-types values and which never raise exceptions from which
;;; we can infer the types of incoming values.
;;;
;;; Generic effect-free predicates.
;;;
(define-syntax-rule (infer-constant-comparison ctype cval val true?)
(let ()
(define (range-subtract lo hi x)
(values (if (eqv? lo x) (1+ lo) lo)
(if (eqv? hi x) (1- hi) hi)))
(cond
(true? (restrict! val ctype cval cval))
(else
(when (eqv? (&type val) ctype)
(let-values (((lo hi) (range-subtract (&min val) (&max val) cval)))
(restrict! val ctype lo hi)))))))
(define-predicate-inferrer/param (eq-constant? c val true?)
(call-with-values (lambda () (constant-type c))
(lambda (ctype cval cval*)
;; Either (= cval cval*), or the value is meaningless for this type.
(infer-constant-comparison ctype cval val true?))))
;; Can't usefully pass undefined as a parameter to eq-constant?, so we
;; keep its special predicate.
(define-predicate-inferrer (undefined? val true?)
(infer-constant-comparison &special-immediate &undefined val true?))
;; Various inferrers rely on these having contiguous values starting from 0.
(eval-when (expand)
(unless (< -1 &null &nil &false &true 4)
(error "unexpected special immediate values")))
(define-predicate-inferrer (null? val true?)
(cond
(true? (restrict! val &special-immediate &null &nil))
(else
(when (eqv? (&type val) &special-immediate)
(restrict! val &special-immediate (1+ &nil) +inf.0)))))
(define-predicate-inferrer (false? val true?)
(cond
(true? (restrict! val &special-immediate &nil &false))
(else
(when (and (eqv? (&type val) &special-immediate) (> (&min val) &null))
(restrict! val &special-immediate (1+ &false) +inf.0)))))
(define-predicate-inferrer (nil? val true?)
(cond
(true? (restrict! val &special-immediate &null &false))
(else
(when (eqv? (&type val) &special-immediate)
(restrict! val &special-immediate (1+ &false) +inf.0)))))
(define-predicate-inferrer (heap-object? val true?)
(define &immediate-types
(logior &fixnum &char &special-immediate))
(define &heap-object-types
(logand &all-types (lognot &immediate-types)))
(restrict! val (if true? &heap-object-types &immediate-types) -inf.0 +inf.0))
(define-predicate-inferrer (fixnum? val true?)
(cond
(true?
(restrict! val &fixnum
(target-most-negative-fixnum) (target-most-positive-fixnum)))
((type<=? (&type val) &exact-integer)
(cond
((<= (&max val) (target-most-positive-fixnum))
(restrict! val &bignum -inf.0 (1- (target-most-negative-fixnum))))
((>= (&min val) (target-most-negative-fixnum))
(restrict! val &bignum (1+ (target-most-positive-fixnum)) +inf.0))
(else
(restrict! val &bignum -inf.0 +inf.0))))
(else
(restrict! val (logand &all-types (lognot &fixnum)) -inf.0 +inf.0))))
(define-predicate-inferrer (bignum? val true?)
(cond
(true?
(cond
((<= (&max val) (target-most-positive-fixnum))
(restrict! val &bignum -inf.0 (1- (target-most-negative-fixnum))))
((>= (&min val) (target-most-negative-fixnum))
(restrict! val &bignum (1+ (target-most-positive-fixnum)) +inf.0))
(else
(restrict! val &bignum -inf.0 +inf.0))))
((type<=? (&type val) &exact-integer)
(restrict! val &fixnum
(target-most-negative-fixnum) (target-most-positive-fixnum)))
(else
(restrict! val (logand &all-types (lognot &bignum)) -inf.0 +inf.0))))
(define-syntax-rule (define-simple-predicate-inferrer predicate type)
(define-predicate-inferrer (predicate val true?)
(restrict! val (if true? type (lognot type)) -inf.0 +inf.0)))
(define-simple-predicate-inferrer bignum? &bignum)
(define-simple-predicate-inferrer bitvector? &bitvector)
(define-simple-predicate-inferrer bytevector? &bytevector)
(define-simple-predicate-inferrer char? &char)
(define-simple-predicate-inferrer compnum? &complex)
(define-simple-predicate-inferrer flonum? &flonum)
(define-simple-predicate-inferrer fixnum? &fixnum)
(define-simple-predicate-inferrer fluid? &fluid)
(define-simple-predicate-inferrer fracnum? &fraction)
(define-simple-predicate-inferrer immutable-vector? &immutable-vector)
(define-simple-predicate-inferrer keyword? &keyword)
(define-simple-predicate-inferrer mutable-vector? &mutable-vector)
(define-simple-predicate-inferrer pair? &pair)
(define-simple-predicate-inferrer pointer? &pointer)
(define-simple-predicate-inferrer program? &procedure)
(define-simple-predicate-inferrer string? &string)
(define-simple-predicate-inferrer struct? &struct)
(define-simple-predicate-inferrer symbol? &symbol)
(define-simple-predicate-inferrer syntax? &syntax)
(define-simple-predicate-inferrer variable? &box)
(define-simple-predicate-inferrer number? &number)
(define-type-inferrer-aliases number? rational? complex?)
(define-simple-predicate-inferrer heap-number? &heap-number)
(define-simple-predicate-inferrer real? &real)
(let ((&maybe-integer (logior &exact-integer &flonum &complex)))
(define-simple-predicate-inferrer integer? &maybe-integer))
(define-simple-predicate-inferrer exact-integer? &exact-integer)
(define-simple-predicate-inferrer exact? &exact-number)
(let ((&inexact-number (logior &flonum &complex)))
(define-simple-predicate-inferrer inexact? &inexact-number))
(define-type-inferrer-aliases eq? heap-numbers-equal?)
(define-predicate-inferrer (procedure? val true?)
;; Besides proper procedures, structs and smobs can also be applicable
;; in the guile-vm target.
(define applicable-types (logior &procedure &struct &other-heap-object))
(when true?
(restrict! val (logand (&type val) applicable-types)
(&min val) (&max val))))
(define-predicate-inferrer (vector? val true?)
(define ¬-vector (logand &all-types (lognot &vector)))
(restrict! val (if true? &vector ¬-vector) -inf.0 +inf.0))
(define-predicate-inferrer (eq? a b true?)
;; We can only propagate information down the true leg.
(when true?
(let ((type (logand (&type a) (&type b)))
(min (max (&min a) (&min b)))
(max (min (&max a) (&max b))))
(restrict! a type min max)
(restrict! b type min max))))
(define-type-inferrer-aliases eq? heap-numbers-equal?)
(define-type-inferrer/param (load-const/unlikely param result)
(let ((ent (constant-type-entry param)))
(define! result (type-entry-type ent)
(type-entry-min ent) (type-entry-max ent))))
(define-type-inferrer (u64->s64 u64 s64)
(if (<= (&max u64) &s64-max)
(define! s64 &s64 (&min u64) (&max u64))
(define! s64 &s64 &s64-min &s64-max)))
(define-type-inferrer (s64->u64 s64 u64)
(if (<= 0 (&min s64))
(define! u64 &u64 (&min s64) (&max s64))
(define! u64 &u64 0 &u64-max)))
;;;
;;; High-level object representation.
;;;
(define-type-inferrer/param (allocate-vector param size result)
(define! result &vector (&min/0 size) (&max/scm-size size)))
(define-type-inferrer/param (allocate-vector/immediate param result)
(define size param)
(define! result &vector size size))
(define-type-inferrer (vector-length v result)
(define! result &u64 (&min/0 v) (&max/scm-size v)))
(define-type-inferrer (vector-ref v idx result)
(restrict! v &vector (1+ (&min/0 idx)) (target-max-size-t/scm))
(define! result &all-types -inf.0 +inf.0))
(define-type-inferrer/param (vector-ref/immediate param v result)
(define idx param)
(restrict! v &vector (1+ idx) (target-max-size-t/scm))
(define! result &all-types -inf.0 +inf.0))
(define-type-inferrer (vector-set! v idx val)
(restrict! v &vector (1+ (&min/0 idx)) (target-max-size-t/scm)))
(define-type-inferrer/param (vector-set!/immediate param v val)
(define idx param)
(restrict! v &vector (1+ param) (target-max-size-t/scm)))
(define-type-inferrer (cons head tail result)
(define! result &pair -inf.0 +inf.0))
(define-type-inferrer (box val result)
(define! result &box -inf.0 +inf.0))
;; No inferrers for pair or box accessors; because type checks dominate
;; these accessors, they would add no information.
(define-type-inferrer/param (allocate-struct param vtable result)
(define nfields param)
;; It would be nice to be able to restrict the vtable-size of vtable,
;; but because vtables are themselves structs which have associated
;; size ranges, there's nowhere to put the vtable-size ranges. Humm!
(define! result &struct nfields nfields))
(define-type-inferrer (vtable-size vtable result)
(define! result &u64 0 (target-max-size-t/scm)))
;; No predicate inferrers for vtable-has-unboxed-fields? and
;; vtable-field-boxed?, as there is nowhere to store this info.
(define-type-inferrer (struct-vtable struct result)
(define! result &struct 0 (target-max-size-t/scm)))
(define-type-inferrer/param (struct-ref param struct result)
(define idx param)
(restrict! struct &struct (1+ idx) (target-max-size-t/scm))
(define! result &all-types -inf.0 +inf.0))
(define-type-inferrer/param (struct-set! param struct val)
(define idx param)
(restrict! struct &struct (1+ idx) (target-max-size-t/scm)))
(define-type-inferrer (bv-contents bv result)
(define! result &other-heap-object -inf.0 +inf.0))
(define-type-inferrer (bv-length bv result)
(define! result &u64 (&min/0 bv) (&max/size bv)))
(define-type-inferrer (string-length str result)
(define! result &u64 (&min/0 str) (&max/size str)))
(define-type-inferrer (string-ref str idx result)
(define! result &u64 0 *max-codepoint*))
(define-type-inferrer (symbol-hash sym result)
(define! result &u64 0 &u64-max))
(define-type-inferrer/param (make-closure param code result)
(define nfree param)
(define! result &procedure nfree nfree))
;; No information would be provided by closure-ref / closure-set!
;; inferrers.
;;;
;;; Low-level object representation.
;;;
(define (annotation->type ann)
(match ann
('pair &pair)
('vector &vector)
('string &string)
('stringbuf &string)
('symbol &symbol)
('bytevector &bytevector)
('box &box)
('closure &procedure)
('struct &struct)
('atomic-box &all-types)
('keyword &keyword)))
(define (annotation->mutable-type ann)
(match ann
('vector &mutable-vector)
(_ (annotation->type ann))))
(define-type-inferrer/param (allocate-words param size result)
(define! result (annotation->mutable-type param)
(&min/0 size) (&max/scm-size size)))
(define-type-inferrer/param (allocate-words/immediate param result)
(match param
((annotation . size)
(define! result (annotation->mutable-type annotation)
size size))))
(define-type-inferrer-aliases allocate-words allocate-pointerless-words)
(define-type-inferrer-aliases allocate-words/immediate
allocate-pointerless-words/immediate)
(define-type-inferrer/param (scm-ref param obj idx result)
(restrict! obj (annotation->type param)
(1+ (&min/0 idx)) (target-max-size-t/scm))
(define! result &all-types -inf.0 +inf.0))
(define-type-inferrer/param (scm-ref/immediate param obj result)
(match param
((annotation . idx)
(restrict! obj (annotation->type annotation) (1+ idx) +inf.0)
(define! result &all-types -inf.0 +inf.0))))
(define-type-inferrer/param (scm-ref/tag param obj result)
(restrict! obj (annotation->type param) -inf.0 +inf.0)
(define! result &all-types -inf.0 +inf.0))
(define-type-inferrer/param (scm-set!/tag param obj val)
(restrict! obj (annotation->mutable-type param) -inf.0 +inf.0))
(define-type-inferrer/param (scm-set! param obj idx val)
(restrict! obj (annotation->mutable-type param) (1+ (&min/0 idx)) +inf.0))
(define-type-inferrer/param (scm-set!/immediate param obj val)
(match param
((annotation . idx)
(restrict! obj (annotation->mutable-type annotation) (1+ idx) +inf.0))))
(define-type-inferrer/param (word-ref param obj idx result)
(restrict! obj (annotation->type param)
(1+ (&min/0 idx)) (target-max-size-t/scm))
(define! result &u64 0 &u64-max))
(define-type-inferrer/param (word-ref/immediate param obj result)
(match param
((annotation . idx)
(restrict! obj (annotation->type annotation) (1+ idx) +inf.0)
(define! result &u64 0 &u64-max))))
(define-type-inferrer/param (word-set! param obj idx word)
(restrict! obj (annotation->mutable-type param) (1+ (&min/0 idx)) +inf.0))
(define-type-inferrer/param (word-set!/immediate param obj word)
(match param
((annotation . idx)
(restrict! obj (annotation->mutable-type annotation) (1+ idx) +inf.0))))
(define-type-inferrer/param (pointer-ref/immediate param obj result)
(define! result &other-heap-object -inf.0 +inf.0))
(define-type-inferrer/param (tail-pointer-ref/immediate param obj result)
(define! result &other-heap-object -inf.0 +inf.0))
(define-type-inferrer/param (assume-u64 param val result)
(match param
((lo . hi)
(define! result &u64 (max lo (&min val)) (min hi (&max val))))))
(define-type-inferrer/param (assume-s64 param val result)
(match param
((lo . hi)
(define! result &s64 (max lo (&min val)) (min hi (&max val))))))
;;;
;;; Fluids. Note that we can't track bound-ness of fluids, as pop-fluid
;;; can change boundness.
;;;
(define-simple-types
((fluid-ref (&fluid 1)) &all-types)
((fluid-set! (&fluid 0 1) &all-types))
((push-fluid (&fluid 0 1) &all-types))
((pop-fluid))
((push-dynamic-state &all-types))
((pop-dynamic-state)))
;;;
;;; Symbols and keywords
;;;
(define-simple-types
((symbol->keyword &symbol) &keyword)
((keyword->symbol &keyword) &symbol)
((symbol->string &symbol) &string)
((string->symbol &string) &symbol)
((string-utf8-length &string) &u64)
((utf8->string &bytevector) &string))
;;;
;;; We don't currently track threads as an object type.
;;;
(define-simple-types
((current-thread) &all-types))
;;;
;;; Strings.
;;;
(define-simple-type (number->string &number) (&string 0 (target-max-size-t)))
(define-simple-type (string->number (&string 0 (target-max-size-t)))
((logior &number &special-immediate) -inf.0 +inf.0))
;;;
;;; Unboxed numbers.
;;;
(define-type-checker (scm->f64 scm)
(check-type scm &real -inf.0 +inf.0))
(define-type-inferrer (scm->f64 scm result)
(restrict! scm &real -inf.0 +inf.0)
(define! result &f64 (&min scm) (&max scm)))
(define-type-inferrer/param (load-f64 param result)
(define! result &f64 param param))
(define-type-checker (inexact scm)
(check-type scm &number -inf.0 +inf.0))
(define-type-inferrer (inexact scm result)
(restrict! scm &number -inf.0 +inf.0)
(let* ((in (logand (&type &number)))
(out (if (type<=? in &real)
&flonum
(logior &flonum &complex))))
(define! result out (&min scm) (&max scm))))
(define-type-checker (s64->f64 s64) #t)
(define-type-inferrer (s64->f64 s64 result)
(define! result &f64 (&min s64) (&max s64)))
(define-type-checker (f64->scm f64)
#t)
(define-type-inferrer (f64->scm f64 result)
(define! result &flonum (&min f64) (&max f64)))
(define-type-checker (scm->u64 scm)
(check-type scm &exact-integer 0 &u64-max))
(define-type-inferrer (scm->u64 scm result)
(restrict! scm &exact-integer 0 &u64-max)
(define! result &u64 (&min/0 scm) (&max/u64 scm)))
(define-type-inferrer/param (load-u64 param result)
(define! result &u64 param param))
(define-type-checker (scm->u64/truncate scm)
(check-type scm &exact-integer -inf.0 +inf.0))
(define-type-inferrer (scm->u64/truncate scm result)
(restrict! scm &exact-integer -inf.0 +inf.0)
(if (<= 0 (&min scm) (&max scm) &u64-max)
(define! result &u64 (&min scm) (&max scm))
(define! result &u64 0 &u64-max)))
(define-type-checker (u64->scm u64)
#t)
(define-type-inferrer (u64->scm u64 result)
(define-exact-integer! result (&min/0 u64) (&max/u64 u64)))
(define-type-aliases u64->scm u64->scm/unlikely)
(define-type-checker (scm->s64 scm)
(check-type scm &exact-integer &s64-min &s64-max))
(define-type-inferrer (scm->s64 scm result)
(restrict! scm &exact-integer &s64-min &s64-max)
(define! result &s64 (&min/s64 scm) (&max/s64 scm)))
(define-type-aliases s64->scm s64->scm/unlikely)
(define-type-inferrer/param (load-s64 param result)
(define! result &s64 param param))
(define-type-inferrer (untag-fixnum scm result)
(define! result &s64 (&min/fixnum scm) (&max/fixnum scm)))
(define-type-inferrer (tag-fixnum s64 result)
(define! result &fixnum (&min/fixnum s64) (&max/fixnum s64)))
(define-type-aliases tag-fixnum tag-fixnum/unlikely)
;;;
;;; Pointers
;;;
(define-syntax-rule (define-pointer-ref-inferrer ref type lo hi)
(define-type-inferrer (ref obj bv idx result)
(define! result type lo hi)))
(define-pointer-ref-inferrer u8-ref &u64 0 #xff)
(define-pointer-ref-inferrer u16-ref &u64 0 #xffff)
(define-pointer-ref-inferrer u32-ref &u64 0 #xffffffff)
(define-pointer-ref-inferrer u64-ref &u64 0 &u64-max)
(define-pointer-ref-inferrer s8-ref &s64 (- #x80) #x7f)
(define-pointer-ref-inferrer s16-ref &s64 (- #x8000) #x7fff)
(define-pointer-ref-inferrer s32-ref &s64 (- #x80000000) #x7fffffff)
(define-pointer-ref-inferrer s64-ref &s64 &s64-min &s64-max)
(define-pointer-ref-inferrer f32-ref &f64 -inf.0 +inf.0)
(define-pointer-ref-inferrer f64-ref &f64 -inf.0 +inf.0)
;;;
;;; Numbers.
;;;
(define-syntax-rule (infer-= a b true?)
(when true?
(let ((min (max (&min a) (&min b)))
(max (min (&max a) (&max b))))
(restrict! a &all-types min max)
(restrict! b &all-types min max))))
(define-syntax-rule (infer-integer-< a b true?)
(let ((min0 (&min a)) (max0 (&max a))
(min1 (&min b)) (max1 (&max b)))
(cond
(true?
(restrict! a &all-types min0 (min max0 (1- max1)))
(restrict! b &all-types (max (1+ min0) min1) max1))
(else
(restrict! a &all-types (max min0 min1) max0)
(restrict! b &all-types min1 (min max0 max1))))))
(define-simple-type-checker (= &number &number))
(define-predicate-inferrer (= a b true?)
(let ((types (logior (&type a) (&type b))))
(when (type<=? types &number)
;; OK if e.g. A is a NaN; in that case the range will be
;; -inf/+inf.
(infer-= a b true?))))
(define-simple-type-checker (< &real &real))
(define-predicate-inferrer (< a b true?)
(let ((types (logior (&type a) (&type b))))
(cond
((type<=? types &exact-integer)
(cond
((and (eqv? (&type a) &bignum) (eqv? (&type b) &fixnum))
(if true?
(restrict! a &bignum -inf.0 (1- (target-most-negative-fixnum)))
(restrict! a &bignum (1+ (target-most-positive-fixnum)) +inf.0)))
((and (eqv? (&type a) &fixnum) (eqv? (&type b) &bignum))
(if true?
(restrict! b &bignum (1+ (target-most-positive-fixnum)) +inf.0)
(restrict! b &bignum -inf.0 (1- (target-most-negative-fixnum)))))
(else
(infer-integer-< a b true?))))
;; Can't include &flonum because of NaN. Perhaps we should model
;; NaN with a separate type bit.
((type<=? types &exact-number)
(let ((min0 (&min a)) (max0 (&max a))
(min1 (&min b)) (max1 (&max b)))
(cond
(true?
(restrict! a &exact-number min0 (min max0 max1))
(restrict! b &exact-number (max min0 min1) max1))
(else
(restrict! a &exact-number (max min0 min1) max0)
(restrict! b &exact-number min1 (min max0 max1)))))))))
(define (infer-<= types succ param a b)
;; Infer "(<= a b)" as "(not (< b a))", knowing that we only make
;; inferences when NaN is impossible.
((hashq-ref *type-inferrers* '<) types (match succ (0 1) (1 0)) param b a))
(hashq-set! *type-inferrers* '<= infer-<=)
(define-predicate-inferrer (u64-= a b true?)
(infer-= a b true?))
(define-predicate-inferrer (u64-< a b true?)
(infer-integer-< a b true?))
(define-predicate-inferrer (s64-= a b true?)
(infer-= a b true?))
(define-predicate-inferrer (s64-< a b true?)
(infer-integer-< a b true?))
(define-predicate-inferrer/param (u64-imm-= b a true?)
(when true?
(restrict! a &u64 (max (&min a) b) (min (&max a) b))))
(define-predicate-inferrer/param (u64-imm-< b a true?)
(if true?
(restrict! a &u64 (&min a) (min (&max a) (1- b)))
(restrict! a &u64 (max (&min a) b) (&max a))))
(define-predicate-inferrer/param (imm-u64-< b a true?)
(if true?
(restrict! a &u64 (max (&min a) (1+ b)) (&max a))
(restrict! a &u64 (&min a) (min (&max a) b))))
(define-predicate-inferrer/param (s64-imm-= b a true?)
(when true?
(restrict! a &s64 (max (&min a) b) (min (&max a) b))))
(define-predicate-inferrer/param (s64-imm-< b a true?)
(if true?
(restrict! a &s64 (&min a) (min (&max a) (1- b)))
(restrict! a &s64 (max (&min a) b) (&max a))))
(define-predicate-inferrer/param (imm-s64-< b a true?)
(if true?
(restrict! a &s64 (max (&min a) (1+ b)) (&max a))
(restrict! a &s64 (&min a) (min (&max a) b))))
;; Unfortunately, we can't define f64 comparison inferrers because of
;; not-a-number values.
;; Arithmetic.
(define-syntax-rule (define-binary-result! a-type$ b-type$ result closed?
min$ max$)
(let* ((min min$) (max max$) (a-type a-type$) (b-type b-type$)
(type (logior a-type b-type)))
(cond
((not (type<=? type &number))
;; One input not a number. Perhaps we end up dispatching to
;; GOOPS.
(define! result &all-types -inf.0 +inf.0))
;; Complex numbers are contagious.
((or (eqv? a-type &complex) (eqv? b-type &complex))
(define! result &complex -inf.0 +inf.0))
((or (eqv? a-type &flonum) (eqv? b-type &flonum))
;; If one argument is a flonum, the result will be flonum or
;; possibly complex.
(let ((result-type (logand type (logior &complex &flonum))))
(define! result result-type min max)))
;; Exact integers are closed under some operations.
((and closed? (type<=? type &exact-integer))
(define-exact-integer! result min max))
(else
(let* (;; Fractions may become integers.
(type (if (zero? (logand type &fraction))
type
(logior type &exact-integer)))
;; Integers may become fractions under division.
(type (if (or closed? (zero? (logand type &exact-integer)))
type
(logior type &fraction)))
;; Fixnums and bignums may become each other, depending on
;; the range.
(type (cond
((zero? (logand type &exact-integer))
type)
((<= (target-most-negative-fixnum)
min max
(target-most-positive-fixnum))
(logand type (lognot &bignum)))
((or (< max (target-most-negative-fixnum))
(> min (target-most-positive-fixnum)))
(logand type (lognot &fixnum)))
(else
(logior type &fixnum &bignum)))))
(define! result type min max))))))
(define-simple-type-checker (add &number &number))
(define-simple-type-checker (add/immediate &number))
(define-type-inferrer (add a b result)
(define-binary-result! (&type a) (&type b) result #t
(+ (&min a) (&min b))
(+ (&max a) (&max b))))
(define-type-inferrer/param (add/immediate param a result)
(let ((b-type (type-entry-type (constant-type-entry param))))
(define-binary-result! (&type a) b-type result #t
(+ (&min a) param)
(+ (&max a) param))))
(define-type-inferrer (fadd a b result)
(define! result &f64
(+ (&min a) (&min b))
(+ (&max a) (&max b))))
(define-type-inferrer (uadd a b result)
;; Handle wraparound.
(let ((max (+ (&max/u64 a) (&max/u64 b))))
(if (<= max &u64-max)
(define! result &u64 (+ (&min/0 a) (&min/0 b)) max)
(define! result &u64 0 &u64-max))))
(define-type-inferrer (sadd a b result)
;; Handle wraparound.
(let ((min (+ (&min/s64 a) (&min/s64 b)))
(max (+ (&max/s64 a) (&max/s64 b))))
(if (<= &s64-min min max &s64-max)
(define! result &s64 min max)
(define! result &s64 &s64-min &s64-max))))
(define-type-inferrer/param (uadd/immediate param a result)
;; Handle wraparound.
(let ((max (+ (&max/u64 a) param)))
(if (<= max &u64-max)
(define! result &u64 (+ (&min/0 a) param) max)
(define! result &u64 0 &u64-max))))
(define-type-inferrer/param (sadd/immediate param a result)
;; Handle wraparound.
(let ((min (+ (&min/s64 a) param))
(max (+ (&max/s64 a) param)))
(if (<= &s64-min min max &s64-max)
(define! result &s64 min max)
(define! result &s64 &s64-min &s64-max))))
(define-simple-type-checker (sub &number &number))
(define-simple-type-checker (sub/immediate &number))
(define-type-checker (fsub a b) #t)
(define-type-checker (usub a b) #t)
(define-type-inferrer (sub a b result)
(define-binary-result! (&type a) (&type b) result #t
(- (&min a) (&max b))
(- (&max a) (&min b))))
(define-type-inferrer/param (sub/immediate param a result)
(let ((b-type (type-entry-type (constant-type-entry param))))
(define-binary-result! (&type a) b-type result #t
(- (&min a) param)
(- (&max a) param))))
(define-type-inferrer (fsub a b result)
(define! result &f64
(- (&min a) (&max b))
(- (&max a) (&min b))))
(define-type-inferrer (usub a b result)
;; Handle wraparound.
(let ((min (- (&min/0 a) (&max/u64 b))))
(if (< min 0)
(define! result &u64 0 &u64-max)
(define! result &u64 min (- (&max/u64 a) (&min/0 b))))))
(define-type-inferrer/param (usub/immediate param a result)
;; Handle wraparound.
(let ((min (- (&min/0 a) param)))
(if (< min 0)
(define! result &u64 0 &u64-max)
(define! result &u64 min (- (&max/u64 a) param)))))
(define-simple-type-checker (mul &number &number))
(define (mul-result-range same? nan-impossible? min-a max-a min-b max-b)
(define (nan* a b)
(if (and (or (and (inf? a) (zero? b))
(and (zero? a) (inf? b)))
nan-impossible?)
0
(* a b)))
(let ((-- (nan* min-a min-b))
(-+ (nan* min-a max-b))
(++ (nan* max-a max-b))
(+- (nan* max-a min-b)))
(let ((has-nan? (or (nan? --) (nan? -+) (nan? ++) (nan? +-))))
(values (cond
(same? 0)
(has-nan? -inf.0)
(else (min -- -+ ++ +-)))
(if has-nan?
+inf.0
(max -- -+ ++ +-))))))
(define-type-inferrer (mul a b result)
(let ((min-a (&min a)) (max-a (&max a))
(min-b (&min b)) (max-b (&max b))
;; We only really get +inf.0 at runtime for flonums and
;; compnums. If we have inferred that the arguments are not
;; flonums and not compnums, then the result of (* +inf.0 0) at
;; range inference time is 0 and not +nan.0.
(nan-impossible? (not (logtest (logior (&type a) (&type b))
(logior &flonum &complex)))))
(call-with-values (lambda ()
(mul-result-range (eqv? a b) nan-impossible?
min-a max-a min-b max-b))
(lambda (min max)
(define-binary-result! (&type a) (&type b) result #t min max)))))
(define-type-inferrer (fmul a b result)
(let ((min-a (&min a)) (max-a (&max a))
(min-b (&min b)) (max-b (&max b))
(nan-impossible? #f))
(call-with-values (lambda ()
(mul-result-range (eqv? a b) nan-impossible?
min-a max-a min-b max-b))
(lambda (min max)
(define! result &f64 min max)))))
(define-type-inferrer (umul a b result)
;; Handle wraparound.
(let ((max (* (&max/u64 a) (&max/u64 b))))
(if (<= max &u64-max)
(define! result &u64 (* (&min/0 a) (&min/0 b)) max)
(define! result &u64 0 &u64-max))))
(define-type-inferrer (smul a b result)
(call-with-values (lambda ()
(mul-result-range (eqv? a b) #t
(&min/s64 a) (&max/s64 a)
(&min/s64 b) (&max/s64 b)))
(lambda (min max)
;; Handle wraparound.
(if (<= &s64-min min max &s64-max)
(define! result &s64 min max)
(define! result &s64 &s64-min &s64-max)))))
(define-type-inferrer/param (umul/immediate param a result)
;; Handle wraparound.
(let ((max (* (&max/u64 a) param)))
(if (<= max &u64-max)
(define! result &u64 (* (&min/0 a) param) max)
(define! result &u64 0 &u64-max))))
(define-type-inferrer/param (smul/immediate param a result)
(call-with-values (lambda ()
(mul-result-range #f #t
(&min/s64 a) (&max/s64 a)
param param))
(lambda (min max)
;; Handle wraparound.
(if (<= &s64-min min max &s64-max)
(define! result &s64 min max)
(define! result &s64 &s64-min &s64-max)))))
(define-type-checker (div a b)
(and (check-type a &number -inf.0 +inf.0)
(check-type b &number -inf.0 +inf.0)
;; We only know that there will not be an exception if b is not
;; zero.
(not (<= (&min b) 0 (&max b)))))
(define-type-checker (fdiv a b) #t)
(define (div-result-range min-a max-a min-b max-b)
(if (or (<= min-b 0 max-b)
(< max-b min-b))
;; If the range of the divisor crosses 0, or if we are in
;; unreachable code, the result spans the whole range.
(values -inf.0 +inf.0)
;; Otherwise min-b and max-b have the same sign, and cannot both
;; be infinity.
(let ((--- (if (inf? min-b) 0 (floor/ min-a min-b)))
(-+- (if (inf? max-b) 0 (floor/ min-a max-b)))
(++- (if (inf? max-b) 0 (floor/ max-a max-b)))
(+-- (if (inf? min-b) 0 (floor/ max-a min-b)))
(--+ (if (inf? min-b) 0 (ceiling/ min-a min-b)))
(-++ (if (inf? max-b) 0 (ceiling/ min-a max-b)))
(+++ (if (inf? max-b) 0 (ceiling/ max-a max-b)))
(+-+ (if (inf? min-b) 0 (ceiling/ max-a min-b))))
(values (min (min --- -+- ++- +--)
(min --+ -++ +++ +-+))
(max (max --- -+- ++- +--)
(max --+ -++ +++ +-+))))))
(define-type-inferrer (div a b result)
(let ((min-a (&min a)) (max-a (&max a))
(min-b (&min b)) (max-b (&max b)))
(call-with-values (lambda ()
(div-result-range min-a max-a min-b max-b))
(lambda (min max)
(define-binary-result! (&type a) (&type b) result #f min max)))))
(define-type-inferrer (fdiv a b result)
(let ((min-a (&min a)) (max-a (&max a))
(min-b (&min b)) (max-b (&max b)))
(call-with-values (lambda ()
(div-result-range min-a max-a min-b max-b))
(lambda (min max)
(define! result &f64 min max)))))
(define &integer (logior &exact-integer &flonum))
(define-type-checker (quo a b)
(and (check-type a &integer -inf.0 +inf.0)
(check-type b &integer -inf.0 +inf.0)
;; We only know that there will not be an exception if b is not
;; zero.
(not (<= (&min b) 0 (&max b)))))
(define-type-inferrer (quo a b result)
(restrict! a &integer -inf.0 +inf.0)
(restrict! b &integer -inf.0 +inf.0)
(define! result (logand (logior (&type a) (&type b)) &integer)
-inf.0 +inf.0))
(define-type-checker-aliases quo rem)
(define-type-inferrer (rem a b result)
(restrict! a &integer -inf.0 +inf.0)
(restrict! b &integer -inf.0 +inf.0)
;; Same sign as A.
(let* ((max-abs-rem (1- (max (abs (&min b)) (abs (&max b)))))
(t (logand (logior (&type a) (&type b)) &integer))
(min-rem (if (< (&min a) 0) (- max-abs-rem) 0))
(max-rem (if (< 0 (&max a)) max-abs-rem 0)))
(if (type<=? t &exact-integer)
(define-exact-integer! result min-rem max-rem)
(define! result t min-rem max-rem))))
(define-type-checker-aliases quo mod)
(define-type-inferrer (mod a b result)
(restrict! a &integer -inf.0 +inf.0)
(restrict! b &integer -inf.0 +inf.0)
;; Same sign as B.
(let* ((max-abs-mod (1- (max (abs (&min b)) (abs (&max b)))))
(t (logand (logior (&type a) (&type b)) &integer))
(min-mod (if (< (&min b) 0) (- max-abs-mod) 0))
(max-mod (if (< 0 (&max b)) max-abs-mod 0)))
(if (type<=? t &exact-integer)
(define-exact-integer! result min-mod max-mod)
(define! result t min-mod max-mod))))
;; Predicates.
(define-syntax-rule (define-type-predicate-result val result type)
(cond
((zero? (logand (&type val) type))
(define! result &special-immediate &false &false))
((zero? (logand (&type val) (lognot type)))
(define! result &special-immediate &true &true))
(else
(define! result &special-immediate &false &true))))
(define-simple-type-checker (inf? &real))
(define-type-inferrer (inf? val result)
(restrict! val &real -inf.0 +inf.0)
(cond
((or (zero? (logand (&type val) (logior &flonum &complex)))
(and (not (inf? (&min val))) (not (inf? (&max val)))))
(define! result &special-immediate &false &false))
(else
(define! result &special-immediate &false &true))))
(define-type-aliases inf? nan?)
(define-simple-type (even? &integer)
(&special-immediate &false &true))
(define-type-aliases even? odd?)
;; Bit operations.
(define-simple-type-checker (lsh &exact-integer &u64))
(define-simple-type-checker (rsh &exact-integer &u64))
(define (compute-ash-range min-val max-val min-shift max-shift)
(define (ash* val count)
;; As we only precisely represent a 64-bit range, don't bother inferring
;; shifts that might exceed that range.
(cond
((inf? val) val) ; Preserves sign.
((< count 64) (ash val count))
((zero? val) 0)
((positive? val) +inf.0)
(else -inf.0)))
(let ((-- (ash* min-val min-shift))
(-+ (ash* min-val max-shift))
(++ (ash* max-val max-shift))
(+- (ash* max-val min-shift)))
(values (min -- -+ ++ +-) (max -- -+ ++ +-))))
(define-type-inferrer (lsh val count result)
(restrict! val &exact-integer -inf.0 +inf.0)
(let-values (((min max) (compute-ash-range (&min val)
(&max val)
(&min/0 count)
(&max/u64 count))))
(define-exact-integer! result min max)))
(define-simple-type-checker (lsh/immediate &exact-integer))
(define-type-inferrer/param (lsh/immediate count val result)
(restrict! val &exact-integer -inf.0 +inf.0)
(let-values (((min max) (compute-ash-range (&min val)
(&max val)
count count)))
(define-exact-integer! result min max)))
(define-type-inferrer (rsh val count result)
(restrict! val &exact-integer -inf.0 +inf.0)
(let-values (((min max) (compute-ash-range (&min val)
(&max val)
(- (&min/0 count))
(- (&max/u64 count)))))
(define-exact-integer! result min max)))
(define-simple-type-checker (rsh/immediate &exact-integer))
(define-type-inferrer/param (rsh/immediate count val result)
(restrict! val &exact-integer -inf.0 +inf.0)
(let-values (((min max) (compute-ash-range (&min val)
(&max val)
(- count) (- count))))
(define-exact-integer! result min max)))
(define-type-inferrer (ursh a b result)
(define! result &u64
(ash (&min/0 a) (- (min 63 (&max/u64 b))))
(ash (&max/u64 a) (- (min 63 (&min/0 b))))))
(define-type-inferrer/param (ursh/immediate param a result)
(define! result &u64
(ash (&min/0 a) (- param))
(ash (&max/u64 a) (- param))))
(define-type-inferrer (srsh a b result)
(let-values (((min max) (compute-ash-range (&min/s64 a)
(&max/s64 a)
(- (min 63 (&min/0 b)))
(- (min 63 (&max/u64 b))))))
(if (<= &s64-min min max &s64-max)
(define! result &s64 min max)
(define! result &s64 &s64-min &s64-max))))
(define-type-inferrer/param (srsh/immediate count val result)
(let-values (((min max) (compute-ash-range (&min/s64 val)
(&max/s64 val)
(- count) (- count))))
(if (<= &s64-min min max &s64-max)
(define! result &s64 min max)
(define! result &s64 &s64-min &s64-max))))
(define-type-inferrer (ulsh a b result)
(if (and
(or (zero? (&max/u64 a)) (< (&max/u64 b) 64)) ; don't even try
(<= (ash (&max/u64 a) (&max/u64 b)) &u64-max))
;; No overflow; we can be precise.
(define! result &u64
(ash (&min/0 a) (&min/0 b))
(ash (&max/u64 a) (&max/u64 b)))
;; Otherwise assume the whole range.
(define! result &u64 0 &u64-max)))
(define-type-inferrer/param (ulsh/immediate param a result)
(if (<= (ash (&max/u64 a) param) &u64-max)
;; No overflow; we can be precise.
(define! result &u64
(ash (&min/0 a) param)
(ash (&max/u64 a) param))
;; Otherwise assume the whole range.
(define! result &u64 0 &u64-max)))
(define-type-inferrer (slsh a b result)
(let-values (((min max) (compute-ash-range (&min a) (&max a)
(min 63 (&min/0 b))
(min 63 (&max/u64 b)))))
(if (<= &s64-min min max &s64-max)
(define! result &s64 min max)
(define! result &s64 &s64-min &s64-max))))
(define-type-inferrer/param (slsh/immediate param a result)
(let-values (((min max) (compute-ash-range (&min a) (&max a)
param param)))
(if (<= &s64-min min max &s64-max)
(define! result &s64 min max)
(define! result &s64 &s64-min &s64-max))))
(define-inlinable (non-negative? n)
"Return true if N is non-negative, otherwise return false."
(not (negative? n)))
;; Like 'lognot', but handles infinities.
(define-inlinable (lognot* n)
"Return the bitwise complement of N. If N is infinite, return -N."
(- -1 n))
(define saturate+
(case-lambda
"Let N be the least upper bound of the integer lengths of the
arguments. Return the greatest integer whose integer length is N.
If any of the arguments are infinite, return positive infinity."
((a b)
(if (or (inf? a) (inf? b))
+inf.0
(1- (ash 1 (max (integer-length a)
(integer-length b))))))
((a b c)
(saturate+ (saturate+ a b) c))
((a b c d)
(saturate+ (saturate+ a b) c d))))
(define saturate-
(case-lambda
"Let N be the least upper bound of the integer lengths of the
arguments. Return the least integer whose integer length is N.
If any of the arguments are infinite, return negative infinity."
((a b) (lognot* (saturate+ a b)))
((a b c) (lognot* (saturate+ a b c)))
((a b c d) (lognot* (saturate+ a b c d)))))
(define (logand-bounds a0 a1 b0 b1)
"Return two values: lower and upper bounds for (logand A B)
where (A0 <= A <= A1) and (B0 <= B <= B1)."
;; For each argument, we consider three cases: (1) the argument is
;; non-negative, (2) its sign is unknown, or (3) it is negative.
;; To handle both arguments, we must consider a total of 9 cases:
;;
;; -----------------------------------------------------------------------
;; LOGAND | non-negative B | unknown-sign B | negative B
;; -----------------------------------------------------------------------
;; non-negative A | 0 .. (min A1 B1) | 0 .. A1 | 0 .. A1
;; -----------------------------------------------------------------------
;; unknown-sign A | 0 .. B1 | (sat- A0 B0) | (sat- A0 B0)
;; | | .. | .. A1
;; | | (sat+ A1 B1) |
;; -----------------------------------------------------------------------
;; negative A | 0 .. B1 | (sat- A0 B0) | (sat- A0 B0)
;; | | .. B1 | .. (min A1 B1)
;; -----------------------------------------------------------------------
(values (if (or (non-negative? a0) (non-negative? b0))
0
(saturate- a0 b0))
(cond ((or (and (non-negative? a0) (non-negative? b0))
(and (negative? a1) (negative? b1)))
(min a1 b1))
((or (non-negative? a0) (negative? b1))
a1)
((or (non-negative? b0) (negative? a1))
b1)
(else
(saturate+ a1 b1)))))
(define-simple-type-checker (logand &exact-integer &exact-integer))
(define-type-inferrer (logand a b result)
(restrict! a &exact-integer -inf.0 +inf.0)
(restrict! b &exact-integer -inf.0 +inf.0)
(call-with-values (lambda ()
(logand-bounds (&min a) (&max a) (&min b) (&max b)))
(lambda (min max)
(define-exact-integer! result min max))))
(define-simple-type-checker (logand/immediate &exact-integer))
(define-type-inferrer/param (logand/immediate param a result)
(restrict! a &exact-integer -inf.0 +inf.0)
(call-with-values (lambda ()
(logand-bounds (&min a) (&max a) param param))
(lambda (min max)
(define-exact-integer! result min max))))
(define-type-inferrer (ulogand a b result)
(define! result &u64 0 (min (&max/u64 a) (&max/u64 b))))
(define-type-inferrer/param (ulogand/immediate param a result)
(call-with-values (lambda ()
(logand-bounds (&min a) (&max a) param param))
(lambda (min max)
(define! result &u64 min max))))
(define (logsub-bounds a0 a1 b0 b1)
"Return two values: lower and upper bounds for (logsub A B),
i.e. (logand A (lognot B)), where (A0 <= A <= A1) and (B0 <= B <= B1)."
;; Here we use 'logand-bounds' to compute the bounds, after
;; computing the bounds of (lognot B) from the bounds of B.
;; From (B0 <= B <= B1) it follows that (~B1 <= ~B <= ~B0),
;; where ~X means (lognot X).
(logand-bounds a0 a1 (lognot* b1) (lognot* b0)))
(define-simple-type-checker (logsub &exact-integer &exact-integer))
(define-type-inferrer (logsub a b result)
(restrict! a &exact-integer -inf.0 +inf.0)
(restrict! b &exact-integer -inf.0 +inf.0)
(call-with-values (lambda ()
(logsub-bounds (&min a) (&max a) (&min b) (&max b)))
(lambda (min max)
(define-exact-integer! result min max))))
(define-type-inferrer (ulogsub a b result)
(define! result &u64 0 (&max/u64 a)))
(define (logior-bounds a0 a1 b0 b1)
"Return two values: lower and upper bounds for (logior A B)
where (A0 <= A <= A1) and (B0 <= B <= B1)."
;; For each argument, we consider three cases: (1) the argument is
;; non-negative, (2) its sign is unknown, or (3) it is negative.
;; To handle both arguments, we must consider a total of 9 cases.
;;
;; ---------------------------------------------------------------------
;; LOGIOR | non-negative B | unknown-sign B | negative B
;; ---------------------------------------------------------------------
;; non-negative A | (max A0 B0) | B0 | B0 .. -1
;; | .. | .. |
;; | (sat+ A1 B1) | (sat+ A1 B1) |
;; ---------------------------------------------------------------------
;; unknown-sign A | A0 | (sat- A0 B0) | B0 .. -1
;; | .. | .. |
;; | (sat+ A1 B1) | (sat+ A1 B1) |
;; ---------------------------------------------------------------------
;; negative A | A0 .. -1 | A0 .. -1 | (max A0 B0) .. -1
;; ---------------------------------------------------------------------
(values (cond ((or (and (non-negative? a0) (non-negative? b0))
(and (negative? a1) (negative? b1)))
(max a0 b0))
((or (non-negative? a0) (negative? b1))
b0)
((or (non-negative? b0) (negative? a1))
a0)
(else
(saturate- a0 b0)))
(if (or (negative? a1) (negative? b1))
-1
(saturate+ a1 b1))))
(define-simple-type-checker (logior &exact-integer &exact-integer))
(define-type-inferrer (logior a b result)
(restrict! a &exact-integer -inf.0 +inf.0)
(restrict! b &exact-integer -inf.0 +inf.0)
(call-with-values (lambda ()
(logior-bounds (&min a) (&max a) (&min b) (&max b)))
(lambda (min max)
(define-exact-integer! result min max))))
(define-type-inferrer (ulogior a b result)
(define! result &u64
(max (&min/0 a) (&min/0 b))
(saturate+ (&max/u64 a) (&max/u64 b))))
(define (logxor-bounds a0 a1 b0 b1)
"Return two values: lower and upper bounds for (logxor A B)
where (A0 <= A <= A1) and (B0 <= B <= B1)."
;; For each argument, we consider three cases: (1) the argument is
;; non-negative, (2) its sign is unknown, or (3) it is negative.
;; To handle both arguments, we must consider a total of 9 cases.
;;
;; --------------------------------------------------------------------
;; LOGXOR | non-negative B | unknown-sign B | negative B
;; --------------------------------------------------------------------
;; non-negative A | 0 | (sat- A1 B0) | (sat- A1 B0)
;; | .. | .. | ..
;; | (sat+ A1 B1) | (sat+ A1 B1) | -1
;; --------------------------------------------------------------------
;; unknown-sign A | (sat- A0 B1) | (sat- A0 B1 A1 B0) | (sat- A1 B0)
;; | .. | .. | ..
;; | (sat+ A1 B1) | (sat+ A1 B1 A0 B0) | (sat+ A0 B0)
;; --------------------------------------------------------------------
;; negative A | (sat- A0 B1) | (sat- A0 B1) | 0
;; | .. | .. | ..
;; | -1 | (sat+ A0 B0) | (sat+ A0 B0)
;; --------------------------------------------------------------------
(values (cond ((or (and (non-negative? a0) (non-negative? b0))
(and (negative? a1) (negative? b1)))
0)
((or (non-negative? a0) (negative? b1))
(saturate- a1 b0))
((or (non-negative? b0) (negative? a1))
(saturate- a0 b1))
(else
(saturate- a0 b1 a1 b0)))
(cond ((or (and (non-negative? a0) (negative? b1))
(and (non-negative? b0) (negative? a1)))
-1)
((or (non-negative? a0) (non-negative? b0))
(saturate+ a1 b1))
((or (negative? a1) (negative? b1))
(saturate+ a0 b0))
(else
(saturate+ a1 b1 a0 b0)))))
(define-simple-type-checker (logxor &exact-integer &exact-integer))
(define-type-inferrer (logxor a b result)
(restrict! a &exact-integer -inf.0 +inf.0)
(restrict! b &exact-integer -inf.0 +inf.0)
(call-with-values (lambda ()
(logxor-bounds (&min a) (&max a) (&min b) (&max b)))
(lambda (min max)
(define! result &exact-integer min max))))
(define-type-inferrer (ulogxor a b result)
(define! result &u64 0 (saturate+ (&max/u64 a) (&max/u64 b))))
(define-simple-type-checker (lognot &exact-integer))
(define-type-inferrer (lognot a result)
(restrict! a &exact-integer -inf.0 +inf.0)
(define-exact-integer! result
(lognot* (&max a))
(lognot* (&min a))))
(define-simple-type-checker (logtest &exact-integer &exact-integer))
(define-type-inferrer (logtest a b result)
(restrict! a &exact-integer -inf.0 +inf.0)
(restrict! b &exact-integer -inf.0 +inf.0)
(define! result &special-immediate &false &true))
(define-simple-type-checker (logbit? (&exact-integer 0 +inf.0) &exact-integer))
(define-type-inferrer (logbit? a b result)
(let ((a-min (&min a))
(a-max (&max a))
(b-min (&min b))
(b-max (&max b)))
(if (and (eqv? a-min a-max) (>= a-min 0) (not (inf? a-min))
(eqv? b-min b-max) (>= b-min 0) (not (inf? b-min)))
(let ((bool (if (logbit? a-min b-min) &true &false)))
(define! result &special-immediate bool bool))
(define! result &special-immediate &false &true))))
;; Flonums.
(define-simple-type-checker (sqrt &number))
(define-type-inferrer (sqrt x result)
(let ((type (&type x)))
(cond
((and (zero? (logand type &complex))
(non-negative? (&min x)))
(define! result
(logior type &flonum)
(exact-integer-sqrt (&min x))
(if (inf? (&max x))
+inf.0
(call-with-values (lambda () (exact-integer-sqrt (&max x)))
(lambda (s r)
(if (zero? r) s (+ s 1)))))))
(else
(define! result (logior type &flonum &complex) -inf.0 +inf.0)))))
(define-type-checker (fsqrt x) #t)
(define-type-inferrer (fsqrt x result)
(define! result
&f64
(exact-integer-sqrt (max (&min x) 0))
(if (inf? (&max x))
+inf.0
(call-with-values (lambda () (exact-integer-sqrt (&max x)))
(lambda (s r)
(if (zero? r) s (+ s 1)))))))
(define-simple-type-checker (abs &real))
(define-type-inferrer (abs x result)
(let ((type (&type x)))
(cond
((type<=? type &exact-integer)
(if (< (&min x) 0)
(define-exact-integer! result 0 (max (abs (&min x)) (abs (&max x))))
(define! result type (&min x) (&max x))))
(else
(when (type<=? type &number)
(restrict! x &real -inf.0 +inf.0))
(let* ((min (if (< (&min x) 0) 0 (&min x)))
(max (max (abs (&min x)) (abs (&max x))))
(type (cond
((not (logtest type &exact-integer)) type)
((< (target-most-positive-fixnum) min)
(logior &bignum (logand type (lognot &fixnum))))
((<= max (target-most-positive-fixnum))
(logior &fixnum (logand type (lognot &bignum))))
(else (logior type &fixnum &bignum)))))
(define! result (logior (logand type (lognot &number))
(logand type &real))
min max))))))
(define-type-checker (fabs x) #t)
(define-type-inferrer (fabs x result)
(let ((min (if (< (&min x) 0) 0 (&min x)))
(max (max (abs (&min x)) (abs (&max x)))))
(define! result &f64 min max)))
(define-simple-type-checker (floor &real))
(define-type-inferrer (floor x result)
(restrict! x &real -inf.0 +inf.0)
(let* ((in (logand (&type x) &real))
(out (cond
((type<=? in &flonum) &flonum)
((type<=? in &exact-integer) in)
((logtest in &fraction)
(logior (logand in (lognot &fraction)) &exact-integer)))))
(define! result out (&min x) (&max x))))
(define-type-checker (ffloor x) #t)
(define-type-inferrer (ffloor x result)
(define! result &f64 (&min x) (&max x)))
(define-type-aliases floor ceiling)
(define-type-aliases ffloor fceiling)
(define-simple-type-checker (sin &number))
(define-type-inferrer (sin x result)
(let* ((in (&type x))
(out (cond
((type<=? in &real) &flonum)
((type<=? in &complex) &complex)
(else (logior &flonum &complex (logand in (lognot &number)))))))
(define! result out -1 1)))
(define-type-checker (fsin x) #t)
(define-type-inferrer (fsin x result)
(define! result &f64 -1 1))
(define-type-aliases sin cos)
(define-type-aliases fsin fcos)
(define-simple-type-checker (tan &number))
(define-type-inferrer (tan x result)
(let* ((in (&type x))
(out (cond
((type<=? in &real) &flonum)
((type<=? in &complex) &complex)
(else (logior &flonum &complex (logand in (lognot &number)))))))
(define! result out -inf.0 +inf.0)))
(define-type-checker (ftan x) #t)
(define-type-inferrer (ftan x result)
(define! result &f64 -inf.0 +inf.0))
(define-simple-type-checker (asin &number))
(define-type-inferrer (asin x result)
(define! result
(logior &flonum &complex (logand (&type x) (lognot &number)))
-inf.0 +inf.0))
(define-type-checker (fasin x) #t)
(define-type-inferrer (fasin x result)
(define! result &f64 -2 2)) ; [-pi/2, pi/2]
(define-type-aliases asin acos)
(define-type-checker (facos x) #t)
(define-type-inferrer (facos x result)
(define! result &f64 0 4)) ; [0, pi]
(define-simple-type-checker (atan &number))
(define-type-inferrer (atan x result)
(let ((in (&type x)))
(cond
((type<=? in &real)
(define! result &flonum -2 2)) ; [-pi/2, pi/2]
(else
(define! result
(logior &flonum &complex (logand in (lognot &number)))
-inf.0 +inf.0)))))
(define-type-checker (fatan x) #t)
(define-type-inferrer (fatan x result)
(define! result &f64 -2 2))
(define-simple-type-checker (atan2 &number &number))
(define-type-inferrer (atan2 x y result)
(let* ((in (logior (&type x) (&type y))))
(cond
((type<=? in &real)
(define! result &flonum -4 4)) ; [-pi, pi]
(else
(define! result (logior &flonum &complex (logand in (lognot &number)))
-inf.0 +inf.0)))))
(define-type-checker (fatan2 x y) #t)
(define-type-inferrer (fatan2 x y result)
(define! result &f64 -4 4))
;;;
;;; Characters.
;;;
(define-type-inferrer (untag-char c result)
(define! result &s64 0 (min (&max c) *max-codepoint*)))
(define-type-inferrer (tag-char u64 result)
(define! result &char 0 (min (&max u64) *max-codepoint*)))
;;;
;;; Type flow analysis: the meet (ahem) of the algorithm.
;;;
(define (successor-count cont)
(match cont
(($ $kargs _ _ ($ $throw)) 0)
(($ $kargs _ _ ($ $continue)) 1)
(($ $kargs _ _ (or ($ $branch) ($ $prompt))) 2)
(($ $kargs _ _ ($ $switch kf kt*)) (1+ (length kt*)))
(($ $kfun src meta self tail clause) (if clause 1 0))
(($ $kclause arity body alt) (if alt 2 1))
(($ $kreceive) 1)
(($ $ktail) 0)))
(define (intset-pop set)
(match (intset-next set)
(#f (values set #f))
(i (values (intset-remove set i) i))))
(define-syntax-rule (make-worklist-folder* seed ...)
(lambda (f worklist seed ...)
(let lp ((worklist worklist) (seed seed) ...)
(call-with-values (lambda () (intset-pop worklist))
(lambda (worklist i)
(if i
(call-with-values (lambda () (f i seed ...))
(lambda (i* seed ...)
(let add ((i* i*) (worklist worklist))
(match i*
(() (lp worklist seed ...))
((i . i*) (add i* (intset-add worklist i)))))))
(values seed ...)))))))
(define worklist-fold*
(case-lambda
((f worklist seed)
((make-worklist-folder* seed) f worklist seed))))
(define intmap-ensure
(let* ((*absent* (list 'absent))
(not-found (lambda (i) *absent*)))
(lambda (map i ensure)
(let ((val (intmap-ref map i not-found)))
(if (eq? val *absent*)
(let ((val (ensure i)))
(values (intmap-add map i val) val))
(values map val))))))
;; For best results, the labels in the function starting should be
;; topologically sorted (renumbered). Otherwise the backward branch
;; detection mentioned in the module commentary will trigger for
;; ordinary forward branches.
(define (infer-types conts kfun)
"Compute types for all variables bound in the function labelled
@var{kfun}, from @var{conts}. Returns an intmap mapping labels to type
entries.
A type entry is a vector that describes the types of the values that
flow into and out of a labelled expression. The first slot in the type
entry vector corresponds to the types that flow in, and the rest of the
slots correspond to the types that flow out. Each element of the type
entry vector is an intmap mapping variable name to the variable's
inferred type. An inferred type is a 3-vector of type, minimum, and
maximum, where type is a bitset as a fixnum."
(define (get-entry typev label) (intmap-ref typev label))
(define (entry-not-found label)
(make-vector (1+ (successor-count (intmap-ref conts label))) #f))
(define (ensure-entry typev label)
(intmap-ensure typev label entry-not-found))
(define (compute-initial-state)
(let ((entry (entry-not-found kfun)))
;; Nothing flows in to the first label.
(vector-set! entry 0 empty-intmap)
(intmap-add empty-intmap kfun entry)))
(define (adjoin-vars types vars entry)
(match vars
(() types)
((var . vars)
(adjoin-vars (adjoin-var types var entry) vars entry))))
(define (infer-primcall types succ name param args result)
(cond
((hashq-ref *type-inferrers* name)
=> (lambda (inferrer)
;; FIXME: remove the apply?
;; (pk 'primcall name args result)
(apply inferrer types succ param
(if result
(append args (list result))
args))))
(result
(adjoin-var types result all-types-entry))
(else
types)))
(define (vector-replace vec idx val)
(let ((vec (vector-copy vec)))
(vector-set! vec idx val)
vec))
(define (update-out-types label typev types succ-idx)
(let* ((entry (get-entry typev label))
(old-types (vector-ref entry (1+ succ-idx))))
(if (eq? types old-types)
(values typev #f)
(let ((entry (vector-replace entry (1+ succ-idx) types))
(first? (not old-types)))
(values (intmap-replace typev label entry) first?)))))
(define (update-in-types label typev types saturate?)
(let*-values (((typev entry) (ensure-entry typev label))
((old-types) (vector-ref entry 0))
;; TODO: If the label has only one predecessor, we can
;; avoid the meet.
((types) (if (not old-types)
types
(let ((meet (if saturate?
type-entry-saturating-union
type-entry-union)))
(intmap-intersect old-types types meet)))))
(if (eq? old-types types)
(values typev #f)
(let ((entry (vector-replace entry 0 types)))
(values (intmap-replace typev label entry) #t)))))
(define (propagate-types label typev succ-idx succ-label types)
(let*-values
(((typev first?) (update-out-types label typev types succ-idx))
((saturate?) (and (not first?) (<= succ-label label)))
((typev changed?) (update-in-types succ-label typev types saturate?)))
(values (if changed? (list succ-label) '()) typev)))
(define (visit-exp label typev k types exp)
(define (propagate1 succ-label types)
(propagate-types label typev 0 succ-label types))
(define (propagate2 succ0-label types0 succ1-label types1)
(let*-values (((changed0 typev)
(propagate-types label typev 0 succ0-label types0))
((changed1 typev)
(propagate-types label typev 1 succ1-label types1)))
(values (append changed0 changed1) typev)))
;; Each of these branches must propagate to its successors.
(match exp
(($ $primcall name param args)
(propagate1 k
(match (intmap-ref conts k)
(($ $kargs _ defs)
(infer-primcall types 0 name param args
(match defs ((var) var) (_ #f))))
(_
;; (pk 'warning-no-restrictions name)
types))))
(($ $values args)
(match (intmap-ref conts k)
(($ $kargs _ defs)
(let ((in types))
(let lp ((defs defs) (args args) (out types))
(match (cons defs args)
((() . ())
(propagate1 k out))
(((def . defs) . (arg . args))
(lp defs args
(adjoin-var out def (var-type-entry in arg))))))))
(_
(propagate1 k types))))
((or ($ $call) ($ $callk) ($ $calli))
(propagate1 k types))
(($ $rec names vars funs)
(let ((proc-type (make-type-entry &procedure -inf.0 +inf.0)))
(propagate1 k (adjoin-vars types vars proc-type))))
(_
(match (intmap-ref conts k)
(($ $kargs (_) (var))
(let ((entry (match exp
(($ $const val)
(constant-type-entry val))
((or ($ $prim) ($ $fun) ($ $const-fun) ($ $code))
;; Could be more precise here.
(make-type-entry &procedure -inf.0 +inf.0)))))
(propagate1 k (adjoin-var types var entry))))))))
(define (visit-cont label typev)
(let ((types (vector-ref (intmap-ref typev label) 0)))
(define (propagate0)
(values '() typev))
(define (propagate1 succ-label types)
(propagate-types label typev 0 succ-label types))
(define (propagate2 succ0-label types0 succ1-label types1)
(let*-values (((changed0 typev)
(propagate-types label typev 0 succ0-label types0))
((changed1 typev)
(propagate-types label typev 1 succ1-label types1)))
(values (append changed0 changed1) typev)))
;; Add types for new definitions, and restrict types of
;; existing variables due to side effects.
(match (intmap-ref conts label)
(($ $kargs names vars ($ $continue k src exp))
(visit-exp label typev k types exp))
(($ $kargs names vars ($ $branch kf kt src op param args))
;; The "normal" continuation is the #f branch.
(propagate2 kf (infer-primcall types 0 op param args #f)
kt (infer-primcall types 1 op param args #f)))
(($ $kargs names vars ($ $switch kf kt* src arg))
(define (restrict-index min max)
(restrict-var types arg (make-type-entry &u64 min max)))
(define (visit-default typev)
(let ((types (restrict-index (length kt*) &u64-max)))
(propagate-types label typev 0 kf types)))
(define (visit-target typev k i)
(let ((types (restrict-index i i)))
(propagate-types label typev (1+ i) k types)))
(call-with-values (lambda () (visit-default typev))
(lambda (changed typev)
(let lp ((kt* kt*) (i 0) (changed changed) (typev typev))
(match kt*
(() (values changed typev))
((kt . kt*)
(call-with-values (lambda () (visit-target typev kt i))
(lambda (changed* typev)
(lp kt* (1+ i) (append changed* changed) typev)))))))))
(($ $kargs names vars ($ $prompt k kh src escape? tag))
;; The "normal" continuation enters the prompt.
(propagate2 k types kh types))
(($ $kargs names vars ($ $throw))
(propagate0))
(($ $kreceive arity k)
(match (intmap-ref conts k)
(($ $kargs names vars)
(propagate1 k (adjoin-vars types vars all-types-entry)))))
(($ $kfun src meta self tail clause)
(if clause
(let ((types (if self
(adjoin-var types self all-types-entry)
types)))
(propagate1 clause
(match (intmap-ref conts clause)
(($ $kargs _ defs)
(adjoin-vars types defs all-types-entry))
(_ types))))
(propagate0)))
(($ $kclause arity kbody kalt)
(match (intmap-ref conts kbody)
(($ $kargs _ defs)
(let ((body-types (adjoin-vars types defs all-types-entry)))
(if kalt
(propagate2 kbody body-types kalt types)
(propagate1 kbody body-types))))))
(($ $ktail) (propagate0)))))
(worklist-fold* visit-cont
(intset-add empty-intset kfun)
(compute-initial-state)))
(define (lookup-pre-type types label def)
(let* ((entry (intmap-ref types label))
(tentry (var-type-entry (vector-ref entry 0) def)))
(values (type-entry-type tentry)
(type-entry-min tentry)
(type-entry-max tentry))))
(define (lookup-post-type types label def succ-idx)
(let* ((entry (intmap-ref types label))
(tentry (var-type-entry (vector-ref entry (1+ succ-idx)) def)))
(values (type-entry-type tentry)
(type-entry-min tentry)
(type-entry-max tentry))))
(define (primcall-types-check? types label name param args)
(match (hashq-ref *type-checkers* name)
(#f #f)
(checker
(let ((entry (intmap-ref types label)))
(apply checker (vector-ref entry 0) param args)))))
|