File: psyntax.ss

package info (click to toggle)
guile-core 1%3A1.4-24
  • links: PTS
  • area: main
  • in suites: woody
  • size: 6,280 kB
  • ctags: 6,664
  • sloc: ansic: 49,704; lisp: 9,376; sh: 9,209; asm: 1,580; makefile: 696; awk: 198; csh: 50
file content (2179 lines) | stat: -rw-r--r-- 83,373 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
;;; Portable implementation of syntax-case
;;; Extracted from Chez Scheme Version 5.9f
;;; Authors: R. Kent Dybvig, Oscar Waddell, Bob Hieb, Carl Bruggeman

;;; Copyright (c) 1992-1997 Cadence Research Systems
;;; Permission to copy this software, in whole or in part, to use this
;;; software for any lawful purpose, and to redistribute this software
;;; is granted subject to the restriction that all copies made of this
;;; software must include this copyright notice in full.  This software
;;; is provided AS IS, with NO WARRANTY, EITHER EXPRESS OR IMPLIED,
;;; INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
;;; OR FITNESS FOR ANY PARTICULAR PURPOSE.  IN NO EVENT SHALL THE
;;; AUTHORS BE LIABLE FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY
;;; NATURE WHATSOEVER.


;;; Before attempting to port this code to a new implementation of
;;; Scheme, please read the notes below carefully.


;;; This file defines the syntax-case expander, sc-expand, and a set
;;; of associated syntactic forms and procedures.  Of these, the
;;; following are documented in The Scheme Programming Language,
;;; Second Edition (R. Kent Dybvig, Prentice Hall, 1996).  Most are
;;; also documented in the R4RS and draft R5RS.
;;;
;;;   bound-identifier=?
;;;   datum->syntax-object
;;;   define-syntax
;;;   fluid-let-syntax
;;;   free-identifier=?
;;;   generate-temporaries
;;;   identifier?
;;;   identifier-syntax
;;;   let-syntax
;;;   letrec-syntax
;;;   syntax
;;;   syntax-case
;;;   syntax-object->datum
;;;   syntax-rules
;;;   with-syntax
;;;
;;; All standard Scheme syntactic forms are supported by the expander
;;; or syntactic abstractions defined in this file.  Only the R4RS
;;; delay is omitted, since its expansion is implementation-dependent.

;;; The remaining exports are listed below:
;;;
;;;   (sc-expand datum)
;;;      if datum represents a valid expression, sc-expand returns an
;;;      expanded version of datum in a core language that includes no
;;;      syntactic abstractions.  The core language includes begin,
;;;      define, if, lambda, letrec, quote, and set!.
;;;   (eval-when situations expr ...)
;;;      conditionally evaluates expr ... at compile-time or run-time
;;;      depending upon situations (see the Chez Scheme System Manual,
;;;      Revision 3, for a complete description)
;;;   (syntax-error object message)
;;;      used to report errors found during expansion
;;;   (install-global-transformer symbol value)
;;;      used by expanded code to install top-level syntactic abstractions
;;;   (syntax-dispatch e p)
;;;      used by expanded code to handle syntax-case matching

;;; The following nonstandard procedures must be provided by the
;;; implementation for this code to run.
;;;
;;; (void)
;;; returns the implementation's cannonical "unspecified value".  This
;;; usually works: (define void (lambda () (if #f #f))).
;;;
;;; (andmap proc list1 list2 ...)
;;; returns true if proc returns true when applied to each element of list1
;;; along with the corresponding elements of list2 ....
;;; The following definition works but does no error checking:
;;;
;;; (define andmap
;;;   (lambda (f first . rest)
;;;     (or (null? first)
;;;         (if (null? rest)
;;;             (let andmap ((first first))
;;;               (let ((x (car first)) (first (cdr first)))
;;;                 (if (null? first)
;;;                     (f x)
;;;                     (and (f x) (andmap first)))))
;;;             (let andmap ((first first) (rest rest))
;;;               (let ((x (car first))
;;;                     (xr (map car rest))
;;;                     (first (cdr first))
;;;                     (rest (map cdr rest)))
;;;                 (if (null? first)
;;;                     (apply f (cons x xr))
;;;                     (and (apply f (cons x xr)) (andmap first rest)))))))))
;;;
;;; The following nonstandard procedures must also be provided by the
;;; implementation for this code to run using the standard portable
;;; hooks and output constructors.  They are not used by expanded code,
;;; and so need be present only at expansion time.
;;;
;;; (eval x)
;;; where x is always in the form ("noexpand" expr).
;;; returns the value of expr.  the "noexpand" flag is used to tell the
;;; evaluator/expander that no expansion is necessary, since expr has
;;; already been fully expanded to core forms.
;;;
;;; eval will not be invoked during the loading of psyntax.pp.  After
;;; psyntax.pp has been loaded, the expansion of any macro definition,
;;; whether local or global, will result in a call to eval.  If, however,
;;; sc-expand has already been registered as the expander to be used
;;; by eval, and eval accepts one argument, nothing special must be done
;;; to support the "noexpand" flag, since it is handled by sc-expand.
;;;
;;; (error who format-string why what)
;;; where who is either a symbol or #f, format-string is always "~a ~s",
;;; why is always a string, and what may be any object.  error should
;;; signal an error with a message something like
;;;
;;;    "error in <who>: <why> <what>"
;;;
;;; (gensym)
;;; returns a unique symbol each time it's called
;;;
;;; (putprop symbol key value)
;;; (getprop symbol key)
;;; key is always the symbol *sc-expander*; value may be any object.
;;; putprop should associate the given value with the given symbol in
;;; some way that it can be retrieved later with getprop.

;;; When porting to a new Scheme implementation, you should define the
;;; procedures listed above, load the expanded version of psyntax.ss
;;; (psyntax.pp, which should be available whereever you found
;;; psyntax.ss), and register sc-expand as the current expander (how
;;; you do this depends upon your implementation of Scheme).  You may
;;; change the hooks and constructors defined toward the beginning of
;;; the code below, but to avoid bootstrapping problems, do so only
;;; after you have a working version of the expander.

;;; Chez Scheme allows the syntactic form (syntax <template>) to be
;;; abbreviated to #'<template>, just as (quote <datum>) may be
;;; abbreviated to '<datum>.  The #' syntax makes programs written
;;; using syntax-case shorter and more readable and draws out the
;;; intuitive connection between syntax and quote.

;;; If you find that this code loads or runs slowly, consider
;;; switching to faster hardware or a faster implementation of
;;; Scheme.  In Chez Scheme on a 200Mhz Pentium Pro, expanding,
;;; compiling (with full optimization), and loading this file takes
;;; between one and two seconds.

;;; In the expander implementation, we sometimes use syntactic abstractions
;;; when procedural abstractions would suffice.  For example, we define
;;; top-wrap and top-marked? as
;;;   (define-syntax top-wrap (identifier-syntax '((top))))
;;;   (define-syntax top-marked?
;;;     (syntax-rules ()
;;;       ((_ w) (memq 'top (wrap-marks w)))))
;;; rather than
;;;   (define top-wrap '((top)))
;;;   (define top-marked?
;;;     (lambda (w) (memq 'top (wrap-marks w))))
;;; On ther other hand, we don't do this consistently; we define make-wrap,
;;; wrap-marks, and wrap-subst simply as
;;;   (define make-wrap cons)
;;;   (define wrap-marks car)
;;;   (define wrap-subst cdr)
;;; In Chez Scheme, the syntactic and procedural forms of these
;;; abstractions are equivalent, since the optimizer consistently
;;; integrates constants and small procedures.  Some Scheme
;;; implementations, however, may benefit from more consistent use 
;;; of one form or the other.


;;; implementation information:

;;; "begin" is treated as a splicing construct at top level and at
;;; the beginning of bodies.  Any sequence of expressions that would
;;; be allowed where the "begin" occurs is allowed.

;;; "let-syntax" and "letrec-syntax" are also treated as splicing
;;; constructs, in violation of the R4RS appendix and probably the R5RS
;;; when it comes out.  A consequence, let-syntax and letrec-syntax do
;;; not create local contours, as do let and letrec.  Although the
;;; functionality is greater as it is presently implemented, we will
;;; probably change it to conform to the R4RS/expected R5RS.

;;; Objects with no standard print syntax, including objects containing
;;; cycles and syntax object, are allowed in quoted data as long as they
;;; are contained within a syntax form or produced by datum->syntax-object.
;;; Such objects are never copied.

;;; All identifiers that don't have macro definitions and are not bound
;;; lexically are assumed to be global variables

;;; Top-level definitions of macro-introduced identifiers are allowed.
;;; This may not be appropriate for implementations in which the
;;; model is that bindings are created by definitions, as opposed to
;;; one in which initial values are assigned by definitions.

;;; Top-level variable definitions of syntax keywords is not permitted.
;;; Any solution allowing this would be kludgey and would yield
;;; surprising results in some cases.  We can provide an undefine-syntax
;;; form.  The questions is, should define be an implicit undefine-syntax?
;;; We've decided no for now.

;;; Identifiers and syntax objects are implemented as vectors for
;;; portability.  As a result, it is possible to "forge" syntax
;;; objects.

;;; The implementation of generate-temporaries assumes that it is possible
;;; to generate globally unique symbols (gensyms).

;;; The input to sc-expand may contain "annotations" describing, e.g., the
;;; source file and character position from where each object was read if
;;; it was read from a file.  These annotations are handled properly by
;;; sc-expand only if the annotation? hook (see hooks below) is implemented
;;; properly and the operators make-annotation, annotation-expression,
;;; annotation-source, annotation-stripped, and set-annotation-stripped!
;;; are supplied.  If annotations are supplied, the proper annotation
;;; source is passed to the various output constructors, allowing
;;; implementations to accurately correlate source and expanded code.
;;; Contact one of the authors for details if you wish to make use of
;;; this feature.



;;; Bootstrapping:

;;; When changing syntax-object representations, it is necessary to support
;;; both old and new syntax-object representations in id-var-name.  It
;;; should be sufficient to recognize old representations and treat
;;; them as not lexically bound.



(let ()
(define-syntax define-structure
  (lambda (x)
    (define construct-name
      (lambda (template-identifier . args)
        (datum->syntax-object
          template-identifier
          (string->symbol
            (apply string-append
                   (map (lambda (x)
                          (if (string? x)
                              x
                              (symbol->string (syntax-object->datum x))))
                        args))))))
    (syntax-case x ()
      ((_ (name id1 ...))
       (andmap identifier? (syntax (name id1 ...)))
       (with-syntax
         ((constructor (construct-name (syntax name) "make-" (syntax name)))
          (predicate (construct-name (syntax name) (syntax name) "?"))
          ((access ...)
           (map (lambda (x) (construct-name x (syntax name) "-" x))
                (syntax (id1 ...))))
          ((assign ...)
           (map (lambda (x)
                  (construct-name x "set-" (syntax name) "-" x "!"))
                (syntax (id1 ...))))
          (structure-length
           (+ (length (syntax (id1 ...))) 1))
          ((index ...)
           (let f ((i 1) (ids (syntax (id1 ...))))
              (if (null? ids)
                  '()
                  (cons i (f (+ i 1) (cdr ids)))))))
         (syntax (begin
                   (define constructor
                     (lambda (id1 ...)
                       (vector 'name id1 ... )))
                   (define predicate
                     (lambda (x)
                       (and (vector? x)
                            (= (vector-length x) structure-length)
                            (eq? (vector-ref x 0) 'name))))
                   (define access
                     (lambda (x)
                       (vector-ref x index)))
                   ...
                   (define assign
                     (lambda (x update)
                       (vector-set! x index update)))
                   ...)))))))

(let ()
(define noexpand "noexpand")

;;; hooks to nonportable run-time helpers
(begin
(define fx+ +)
(define fx- -)
(define fx= =)
(define fx< <)

(define annotation? (lambda (x) #f))

(define top-level-eval-hook
  (lambda (x)
    (eval `(,noexpand ,x))))

(define local-eval-hook
  (lambda (x)
    (eval `(,noexpand ,x))))

(define error-hook
  (lambda (who why what)
    (error who "~a ~s" why what)))

(define-syntax gensym-hook
  (syntax-rules ()
    ((_) (gensym))))

(define put-global-definition-hook
  (lambda (symbol binding)
     (putprop symbol '*sc-expander* binding)))

(define get-global-definition-hook
  (lambda (symbol)
     (getprop symbol '*sc-expander*)))
)


;;; output constructors
(begin
(define-syntax build-application
  (syntax-rules ()
    ((_ source fun-exp arg-exps)
     `(,fun-exp . ,arg-exps))))

(define-syntax build-conditional
  (syntax-rules ()
    ((_ source test-exp then-exp else-exp)
     `(if ,test-exp ,then-exp ,else-exp))))

(define-syntax build-lexical-reference
  (syntax-rules ()
    ((_ type source var)
     var)))

(define-syntax build-lexical-assignment
  (syntax-rules ()
    ((_ source var exp)
     `(set! ,var ,exp))))

(define-syntax build-global-reference
  (syntax-rules ()
    ((_ source var)
     var)))

(define-syntax build-global-assignment
  (syntax-rules ()
    ((_ source var exp)
     `(set! ,var ,exp))))

(define-syntax build-global-definition
  (syntax-rules ()
    ((_ source var exp)
     `(define ,var ,exp))))

(define-syntax build-lambda
  (syntax-rules ()
    ((_ src vars exp)
     `(lambda ,vars ,exp))))

(define-syntax build-primref
  (syntax-rules ()
    ((_ src name) name)
    ((_ src level name) name)))

(define-syntax build-data
  (syntax-rules ()
    ((_ src exp) `',exp)))

(define build-sequence
  (lambda (src exps)
    (if (null? (cdr exps))
        (car exps)
        `(begin ,@exps))))

(define build-let
  (lambda (src vars val-exps body-exp)
    (if (null? vars)
	body-exp
	`(let ,(map list vars val-exps) ,body-exp))))

(define build-named-let
  (lambda (src vars val-exps body-exp)
    (if (null? vars)
	body-exp
	`(let ,(car vars) ,(map list (cdr vars) val-exps) ,body-exp))))

(define build-letrec
  (lambda (src vars val-exps body-exp)
    (if (null? vars)
        body-exp
        `(letrec ,(map list vars val-exps) ,body-exp))))

(define-syntax build-lexical-var
  (syntax-rules ()
    ((_ src id) (gensym id generated-symbols))))

(define-syntax self-evaluating?
  (syntax-rules ()
    ((_ e)
     (let ((x e))
       (or (boolean? x) (number? x) (string? x) (char? x) (null? x) (keyword? x))))))
)

(define-structure (syntax-object expression wrap))

(define-syntax unannotate
  (syntax-rules ()
    ((_ x)
     (let ((e x))
       (if (annotation? e)
           (annotation-expression e)
           e)))))

(define-syntax no-source (identifier-syntax #f))

(define source-annotation
  (lambda (x)
     (cond
       ((annotation? x) (annotation-source x))
       ((syntax-object? x) (source-annotation (syntax-object-expression x)))
       (else no-source))))

(define-syntax arg-check
  (syntax-rules ()
    ((_ pred? e who)
     (let ((x e))
       (if (not (pred? x)) (error-hook who "invalid argument" x))))))

;;; compile-time environments

;;; wrap and environment comprise two level mapping.
;;;   wrap : id --> label
;;;   env : label --> <element>

;;; environments are represented in two parts: a lexical part and a global
;;; part.  The lexical part is a simple list of associations from labels
;;; to bindings.  The global part is implemented by
;;; {put,get}-global-definition-hook and associates symbols with
;;; bindings.

;;; global (assumed global variable) and displaced-lexical (see below)
;;; do not show up in any environment; instead, they are fabricated by
;;; lookup when it finds no other bindings.

;;; <environment>              ::= ((<label> . <binding>)*)

;;; identifier bindings include a type and a value

;;; <binding> ::= (macro . <procedure>)           macros
;;;               (core . <procedure>)            core forms
;;;               (begin)                         begin
;;;               (define)                        define
;;;               (define-syntax)                 define-syntax
;;;               (local-syntax . rec?)           let-syntax/letrec-syntax
;;;               (eval-when)                     eval-when
;;;               (syntax . (<var> . <level>))    pattern variables
;;;               (global)                        assumed global variable
;;;               (lexical . <var>)               lexical variables
;;;               (displaced-lexical)             displaced lexicals
;;; <level>   ::= <nonnegative integer>
;;; <var>     ::= variable returned by build-lexical-var

;;; a macro is a user-defined syntactic-form.  a core is a system-defined
;;; syntactic form.  begin, define, define-syntax, and eval-when are
;;; treated specially since they are sensitive to whether the form is
;;; at top-level and (except for eval-when) can denote valid internal
;;; definitions.

;;; a pattern variable is a variable introduced by syntax-case and can
;;; be referenced only within a syntax form.

;;; any identifier for which no top-level syntax definition or local
;;; binding of any kind has been seen is assumed to be a global
;;; variable.

;;; a lexical variable is a lambda- or letrec-bound variable.

;;; a displaced-lexical identifier is a lexical identifier removed from
;;; it's scope by the return of a syntax object containing the identifier.
;;; a displaced lexical can also appear when a letrec-syntax-bound
;;; keyword is referenced on the rhs of one of the letrec-syntax clauses.
;;; a displaced lexical should never occur with properly written macros.

(define-syntax make-binding
  (syntax-rules (quote)
    ((_ type value) (cons type value))
    ((_ 'type) '(type))
    ((_ type) (cons type '()))))
(define binding-type car)
(define binding-value cdr)

(define-syntax null-env (identifier-syntax '()))

(define extend-env
  (lambda (labels bindings r) 
    (if (null? labels)
        r
        (extend-env (cdr labels) (cdr bindings)
          (cons (cons (car labels) (car bindings)) r)))))

(define extend-var-env
  ; variant of extend-env that forms "lexical" binding
  (lambda (labels vars r)
    (if (null? labels)
        r
        (extend-var-env (cdr labels) (cdr vars)
          (cons (cons (car labels) (make-binding 'lexical (car vars))) r)))))

;;; we use a "macros only" environment in expansion of local macro
;;; definitions so that their definitions can use local macros without
;;; attempting to use other lexical identifiers.
(define macros-only-env
  (lambda (r)
    (if (null? r)
        '()
        (let ((a (car r)))
          (if (eq? (cadr a) 'macro)
              (cons a (macros-only-env (cdr r)))
              (macros-only-env (cdr r)))))))

(define lookup
  ; x may be a label or a symbol
  ; although symbols are usually global, we check the environment first
  ; anyway because a temporary binding may have been established by
  ; fluid-let-syntax
  (lambda (x r)
    (cond
      ((assq x r) => cdr)
      ((symbol? x)
       (or (get-global-definition-hook x) (make-binding 'global)))
      (else (make-binding 'displaced-lexical)))))

(define global-extend
  (lambda (type sym val)
    (put-global-definition-hook sym (make-binding type val))))


;;; Conceptually, identifiers are always syntax objects.  Internally,
;;; however, the wrap is sometimes maintained separately (a source of
;;; efficiency and confusion), so that symbols are also considered
;;; identifiers by id?.  Externally, they are always wrapped.

(define nonsymbol-id?
  (lambda (x)
    (and (syntax-object? x)
         (symbol? (unannotate (syntax-object-expression x))))))

(define id?
  (lambda (x)
    (cond
      ((symbol? x) #t)
      ((syntax-object? x) (symbol? (unannotate (syntax-object-expression x))))
      ((annotation? x) (symbol? (annotation-expression x)))
      (else #f))))

(define-syntax id-sym-name
  (syntax-rules ()
    ((_ e)
     (let ((x e))
       (unannotate (if (syntax-object? x) (syntax-object-expression x) x))))))

(define id-sym-name&marks
  (lambda (x w)
    (if (syntax-object? x)
        (values
          (unannotate (syntax-object-expression x))
          (join-marks (wrap-marks w) (wrap-marks (syntax-object-wrap x))))
        (values (unannotate x) (wrap-marks w)))))

;;; syntax object wraps

;;;         <wrap> ::= ((<mark> ...) . (<subst> ...))
;;;        <subst> ::= <shift> | <subs>
;;;         <subs> ::= #(<old name> <label> (<mark> ...))
;;;        <shift> ::= positive fixnum

(define make-wrap cons)
(define wrap-marks car)
(define wrap-subst cdr)

(define-syntax subst-rename? (identifier-syntax vector?))
(define-syntax rename-old (syntax-rules () ((_ x) (vector-ref x 0))))
(define-syntax rename-new (syntax-rules () ((_ x) (vector-ref x 1))))
(define-syntax rename-marks (syntax-rules () ((_ x) (vector-ref x 2))))
(define-syntax make-rename
  (syntax-rules ()
    ((_ old new marks) (vector old new marks))))

;;; labels must be comparable with "eq?" and distinct from symbols.
(define gen-label
  (lambda () (string #\i)))

(define gen-labels
  (lambda (ls)
    (if (null? ls)
        '()
        (cons (gen-label) (gen-labels (cdr ls))))))

(define-structure (ribcage symnames marks labels))

(define-syntax empty-wrap (identifier-syntax '(())))

(define-syntax top-wrap (identifier-syntax '((top))))

(define-syntax top-marked?
  (syntax-rules ()
    ((_ w) (memq 'top (wrap-marks w)))))

;;; Marks must be comparable with "eq?" and distinct from pairs and
;;; the symbol top.  We do not use integers so that marks will remain
;;; unique even across file compiles.

(define-syntax the-anti-mark (identifier-syntax #f))

(define anti-mark
  (lambda (w)
    (make-wrap (cons the-anti-mark (wrap-marks w))
               (cons 'shift (wrap-subst w)))))

(define-syntax new-mark
  (syntax-rules ()
    ((_) (string #\m))))

;;; make-empty-ribcage and extend-ribcage maintain list-based ribcages for
;;; internal definitions, in which the ribcages are built incrementally
(define-syntax make-empty-ribcage
  (syntax-rules ()
    ((_) (make-ribcage '() '() '()))))

(define extend-ribcage!
  ; must receive ids with complete wraps
  (lambda (ribcage id label)
    (set-ribcage-symnames! ribcage
      (cons (unannotate (syntax-object-expression id))
            (ribcage-symnames ribcage)))
    (set-ribcage-marks! ribcage
      (cons (wrap-marks (syntax-object-wrap id))
            (ribcage-marks ribcage)))
    (set-ribcage-labels! ribcage
      (cons label (ribcage-labels ribcage)))))

;;; make-binding-wrap creates vector-based ribcages
(define make-binding-wrap
  (lambda (ids labels w)
    (if (null? ids)
        w
        (make-wrap
          (wrap-marks w)
          (cons
            (let ((labelvec (list->vector labels)))
              (let ((n (vector-length labelvec)))
                (let ((symnamevec (make-vector n)) (marksvec (make-vector n)))
                  (let f ((ids ids) (i 0))
                    (if (not (null? ids))
                        (call-with-values
                          (lambda () (id-sym-name&marks (car ids) w))
                          (lambda (symname marks)
                            (vector-set! symnamevec i symname)
                            (vector-set! marksvec i marks)
                            (f (cdr ids) (fx+ i 1))))))
                  (make-ribcage symnamevec marksvec labelvec))))
            (wrap-subst w))))))

(define smart-append
  (lambda (m1 m2)
    (if (null? m2)
        m1
        (append m1 m2))))

(define join-wraps
  (lambda (w1 w2)
    (let ((m1 (wrap-marks w1)) (s1 (wrap-subst w1)))
      (if (null? m1)
          (if (null? s1)
              w2
              (make-wrap
                (wrap-marks w2)
                (smart-append s1 (wrap-subst w2))))
          (make-wrap
            (smart-append m1 (wrap-marks w2))
            (smart-append s1 (wrap-subst w2)))))))

(define join-marks
  (lambda (m1 m2)
    (smart-append m1 m2)))

(define same-marks?
  (lambda (x y)
    (or (eq? x y)
        (and (not (null? x))
             (not (null? y))
             (eq? (car x) (car y))
             (same-marks? (cdr x) (cdr y))))))

(define id-var-name
  (lambda (id w)
    (define-syntax first
      (syntax-rules ()
        ((_ e) (call-with-values (lambda () e) (lambda (x . ignore) x)))))
    (define search
      (lambda (sym subst marks)
        (if (null? subst)
            (values #f marks)
            (let ((fst (car subst)))
              (if (eq? fst 'shift)
                  (search sym (cdr subst) (cdr marks))
                  (let ((symnames (ribcage-symnames fst)))
                    (if (vector? symnames)
                        (search-vector-rib sym subst marks symnames fst)
                        (search-list-rib sym subst marks symnames fst))))))))
    (define search-list-rib
      (lambda (sym subst marks symnames ribcage)
        (let f ((symnames symnames) (i 0))
          (cond
            ((null? symnames) (search sym (cdr subst) marks))
            ((and (eq? (car symnames) sym)
                  (same-marks? marks (list-ref (ribcage-marks ribcage) i)))
             (values (list-ref (ribcage-labels ribcage) i) marks))
            (else (f (cdr symnames) (fx+ i 1)))))))
    (define search-vector-rib
      (lambda (sym subst marks symnames ribcage)
        (let ((n (vector-length symnames)))
          (let f ((i 0))
            (cond
              ((fx= i n) (search sym (cdr subst) marks))
              ((and (eq? (vector-ref symnames i) sym)
                    (same-marks? marks (vector-ref (ribcage-marks ribcage) i)))
               (values (vector-ref (ribcage-labels ribcage) i) marks))
              (else (f (fx+ i 1))))))))
    (cond
      ((symbol? id)
       (or (first (search id (wrap-subst w) (wrap-marks w))) id))
      ((syntax-object? id)
        (let ((id (unannotate (syntax-object-expression id)))
              (w1 (syntax-object-wrap id)))
          (let ((marks (join-marks (wrap-marks w) (wrap-marks w1))))
            (call-with-values (lambda () (search id (wrap-subst w) marks))
              (lambda (new-id marks)
                (or new-id
                    (first (search id (wrap-subst w1) marks))
                    id))))))
      ((annotation? id)
       (let ((id (unannotate id)))
         (or (first (search id (wrap-subst w) (wrap-marks w))) id)))
      (else (error-hook 'id-var-name "invalid id" id)))))

;;; free-id=? must be passed fully wrapped ids since (free-id=? x y)
;;; may be true even if (free-id=? (wrap x w) (wrap y w)) is not.

(define free-id=?
  (lambda (i j)
    (and (eq? (id-sym-name i) (id-sym-name j)) ; accelerator
         (eq? (id-var-name i empty-wrap) (id-var-name j empty-wrap)))))

;;; bound-id=? may be passed unwrapped (or partially wrapped) ids as
;;; long as the missing portion of the wrap is common to both of the ids
;;; since (bound-id=? x y) iff (bound-id=? (wrap x w) (wrap y w))

(define bound-id=?
  (lambda (i j)
    (if (and (syntax-object? i) (syntax-object? j))
        (and (eq? (unannotate (syntax-object-expression i))
                  (unannotate (syntax-object-expression j)))
             (same-marks? (wrap-marks (syntax-object-wrap i))
                  (wrap-marks (syntax-object-wrap j))))
        (eq? (unannotate i) (unannotate j)))))

;;; "valid-bound-ids?" returns #t if it receives a list of distinct ids.
;;; valid-bound-ids? may be passed unwrapped (or partially wrapped) ids
;;; as long as the missing portion of the wrap is common to all of the
;;; ids.

(define valid-bound-ids?
  (lambda (ids)
     (and (let all-ids? ((ids ids))
            (or (null? ids)
                (and (id? (car ids))
                     (all-ids? (cdr ids)))))
          (distinct-bound-ids? ids))))

;;; distinct-bound-ids? expects a list of ids and returns #t if there are
;;; no duplicates.  It is quadratic on the length of the id list; long
;;; lists could be sorted to make it more efficient.  distinct-bound-ids?
;;; may be passed unwrapped (or partially wrapped) ids as long as the
;;; missing portion of the wrap is common to all of the ids.

(define distinct-bound-ids?
  (lambda (ids)
    (let distinct? ((ids ids))
      (or (null? ids)
          (and (not (bound-id-member? (car ids) (cdr ids)))
               (distinct? (cdr ids)))))))

(define bound-id-member?
   (lambda (x list)
      (and (not (null? list))
           (or (bound-id=? x (car list))
               (bound-id-member? x (cdr list))))))

;;; wrapping expressions and identifiers

(define wrap
  (lambda (x w)
    (cond
      ((and (null? (wrap-marks w)) (null? (wrap-subst w))) x)
      ((syntax-object? x)
       (make-syntax-object
         (syntax-object-expression x)
         (join-wraps w (syntax-object-wrap x))))
      ((null? x) x)
      (else (make-syntax-object x w)))))

(define source-wrap
  (lambda (x w s)
    (wrap (if s (make-annotation x s #f) x) w)))

;;; expanding

(define chi-sequence
  (lambda (body r w s)
    (build-sequence s
      (let dobody ((body body) (r r) (w w))
        (if (null? body)
            '()
            (let ((first (chi (car body) r w)))
              (cons first (dobody (cdr body) r w))))))))

(define chi-top-sequence
  (lambda (body r w s m esew)
    (build-sequence s
      (let dobody ((body body) (r r) (w w) (m m) (esew esew))
        (if (null? body)
            '()
            (let ((first (chi-top (car body) r w m esew)))
              (cons first (dobody (cdr body) r w m esew))))))))

(define chi-install-global
  (lambda (name e)
    (build-application no-source
      (build-primref no-source 'install-global-transformer)
      (list (build-data no-source name) e))))

(define chi-when-list
  (lambda (e when-list w)
    ; when-list is syntax'd version of list of situations
    (let f ((when-list when-list) (situations '()))
      (if (null? when-list)
          situations
          (f (cdr when-list)
             (cons (let ((x (car when-list)))
                     (cond
                       ((free-id=? x (syntax compile)) 'compile)
                       ((free-id=? x (syntax load)) 'load)
                       ((free-id=? x (syntax eval)) 'eval)
                       (else (syntax-error (wrap x w)
                               "invalid eval-when situation"))))
                   situations))))))

;;; syntax-type returns five values: type, value, e, w, and s.  The first
;;; two are described in the table below.
;;;
;;;    type                   value         explanation
;;;    -------------------------------------------------------------------
;;;    core                   procedure     core form (including singleton)
;;;    lexical                name          lexical variable reference
;;;    global                 name          global variable reference
;;;    begin                  none          begin keyword
;;;    define                 none          define keyword
;;;    define-syntax          none          define-syntax keyword
;;;    local-syntax           rec?          letrec-syntax/let-syntax keyword
;;;    eval-when              none          eval-when keyword
;;;    syntax                 level         pattern variable
;;;    displaced-lexical      none          displaced lexical identifier
;;;    lexical-call           name          call to lexical variable
;;;    global-call            name          call to global variable
;;;    call                   none          any other call
;;;    begin-form             none          begin expression
;;;    define-form            id            variable definition
;;;    define-syntax-form     id            syntax definition
;;;    local-syntax-form      rec?          syntax definition
;;;    eval-when-form         none          eval-when form
;;;    constant               none          self-evaluating datum
;;;    other                  none          anything else
;;;
;;; For define-form and define-syntax-form, e is the rhs expression.
;;; For all others, e is the entire form.  w is the wrap for e.
;;; s is the source for the entire form.
;;;
;;; syntax-type expands macros and unwraps as necessary to get to
;;; one of the forms above.  It also parses define and define-syntax
;;; forms, although perhaps this should be done by the consumer.

(define syntax-type
  (lambda (e r w s rib)
    (cond
      ((symbol? e)
       (let* ((n (id-var-name e w))
              (b (lookup n r))
              (type (binding-type b)))
         (case type
           ((lexical) (values type (binding-value b) e w s))
           ((global) (values type n e w s))
           ((macro)
            (syntax-type (chi-macro (binding-value b) e r w rib) r empty-wrap s rib))
           (else (values type (binding-value b) e w s)))))
      ((pair? e)
       (let ((first (car e)))
         (if (id? first)
             (let* ((n (id-var-name first w))
                    (b (lookup n r))
                    (type (binding-type b)))
               (case type
                 ((lexical) (values 'lexical-call (binding-value b) e w s))
                 ((global) (values 'global-call n e w s))
                 ((macro)
                  (syntax-type (chi-macro (binding-value b) e r w rib)
                    r empty-wrap s rib))
                 ((core) (values type (binding-value b) e w s))
                 ((local-syntax)
                  (values 'local-syntax-form (binding-value b) e w s))
                 ((begin) (values 'begin-form #f e w s))
                 ((eval-when) (values 'eval-when-form #f e w s))
                 ((define)
                  (syntax-case e ()
                    ((_ name val)
                     (id? (syntax name))
                     (values 'define-form (syntax name) (syntax val) w s))
                    ((_ (name . args) e1 e2 ...)
                     (and (id? (syntax name))
                          (valid-bound-ids? (lambda-var-list (syntax args))))
                     ; need lambda here...
                     (values 'define-form (wrap (syntax name) w)
                       (cons (syntax lambda) (wrap (syntax (args e1 e2 ...)) w))
                       empty-wrap s))
                    ((_ name)
                     (id? (syntax name))
                     (values 'define-form (wrap (syntax name) w)
                       (syntax (void))
                       empty-wrap s))))
                 ((define-syntax)
                  (syntax-case e ()
                    ((_ name val)
                     (id? (syntax name))
                     (values 'define-syntax-form (syntax name)
                       (syntax val) w s))))
                 (else (values 'call #f e w s))))
             (values 'call #f e w s))))
      ((syntax-object? e)
       ;; s can't be valid source if we've unwrapped
       (syntax-type (syntax-object-expression e)
                    r
                    (join-wraps w (syntax-object-wrap e))
                    no-source rib))
      ((annotation? e)
       (syntax-type (annotation-expression e) r w (annotation-source e) rib))
      ((self-evaluating? e) (values 'constant #f e w s))
      (else (values 'other #f e w s)))))

(define chi-top
  (lambda (e r w m esew)
    (define-syntax eval-if-c&e
      (syntax-rules ()
        ((_ m e)
         (let ((x e))
           (if (eq? m 'c&e) (top-level-eval-hook x))
           x))))
    (call-with-values
      (lambda () (syntax-type e r w no-source #f))
      (lambda (type value e w s)
        (case type
          ((begin-form)
           (syntax-case e ()
             ((_) (chi-void))
             ((_ e1 e2 ...)
              (chi-top-sequence (syntax (e1 e2 ...)) r w s m esew))))
          ((local-syntax-form)
           (chi-local-syntax value e r w s
             (lambda (body r w s)
               (chi-top-sequence body r w s m esew))))
          ((eval-when-form)
           (syntax-case e ()
             ((_ (x ...) e1 e2 ...)
              (let ((when-list (chi-when-list e (syntax (x ...)) w))
                    (body (syntax (e1 e2 ...))))
                (cond
                  ((eq? m 'e)
                   (if (memq 'eval when-list)
                       (chi-top-sequence body r w s 'e '(eval))
                       (chi-void)))
                  ((memq 'load when-list)
                   (if (or (memq 'compile when-list)
                           (and (eq? m 'c&e) (memq 'eval when-list)))
                       (chi-top-sequence body r w s 'c&e '(compile load))
                       (if (memq m '(c c&e))
                           (chi-top-sequence body r w s 'c '(load))
                           (chi-void))))
                  ((or (memq 'compile when-list)
                       (and (eq? m 'c&e) (memq 'eval when-list)))
                   (top-level-eval-hook
                     (chi-top-sequence body r w s 'e '(eval)))
                   (chi-void))
                  (else (chi-void)))))))
          ((define-syntax-form)
           (let ((n (id-var-name value w)) (r (macros-only-env r)))
             (case m
               ((c)
                (if (memq 'compile esew)
                    (let ((e (chi-install-global n (chi e r w))))
                      (top-level-eval-hook e)
                      (if (memq 'load esew) e (chi-void)))
                    (if (memq 'load esew)
                        (chi-install-global n (chi e r w))
                        (chi-void))))
               ((c&e)
                (let ((e (chi-install-global n (chi e r w))))
                  (top-level-eval-hook e)
                  e))
               (else
                (if (memq 'eval esew)
                    (top-level-eval-hook
                      (chi-install-global n (chi e r w))))
                (chi-void)))))
          ((define-form)
           (let ((n (id-var-name value w)))
             (case (binding-type (lookup n r))
               ((global)
                (eval-if-c&e m
                  (build-global-definition s n (chi e r w))))
               ((displaced-lexical)
                (syntax-error (wrap value w) "identifier out of context"))
               (else (syntax-error (wrap value w)
                       "cannot define keyword at top level")))))
          (else (eval-if-c&e m (chi-expr type value e r w s))))))))

(define chi
  (lambda (e r w)
    (call-with-values
      (lambda () (syntax-type e r w no-source #f))
      (lambda (type value e w s)
        (chi-expr type value e r w s)))))

(define chi-expr
  (lambda (type value e r w s)
    (case type
      ((lexical)
       (build-lexical-reference 'value s value))
      ((core) (value e r w s))
      ((lexical-call)
       (chi-application
         (build-lexical-reference 'fun (source-annotation (car e)) value)
         e r w s))
      ((global-call)
       (chi-application
         (build-global-reference (source-annotation (car e)) value)
         e r w s))
      ((constant) (build-data s (strip (source-wrap e w s) empty-wrap)))
      ((global) (build-global-reference s value))
      ((call) (chi-application (chi (car e) r w) e r w s))
      ((begin-form)
       (syntax-case e ()
         ((_ e1 e2 ...) (chi-sequence (syntax (e1 e2 ...)) r w s))))
      ((local-syntax-form)
       (chi-local-syntax value e r w s chi-sequence))
      ((eval-when-form)
       (syntax-case e ()
         ((_ (x ...) e1 e2 ...)
          (let ((when-list (chi-when-list e (syntax (x ...)) w)))
            (if (memq 'eval when-list)
                (chi-sequence (syntax (e1 e2 ...)) r w s)
                (chi-void))))))
      ((define-form define-syntax-form)
       (syntax-error (wrap value w) "invalid context for definition of"))
      ((syntax)
       (syntax-error (source-wrap e w s)
         "reference to pattern variable outside syntax form"))
      ((displaced-lexical)
       (syntax-error (source-wrap e w s)
         "reference to identifier outside its scope"))
      (else (syntax-error (source-wrap e w s))))))

(define chi-application
  (lambda (x e r w s)
    (syntax-case e ()
      ((e0 e1 ...)
       (build-application s x
         (map (lambda (e) (chi e r w)) (syntax (e1 ...))))))))

(define chi-macro
  (lambda (p e r w rib)
    (define rebuild-macro-output
      (lambda (x m)
        (cond ((pair? x)
               (cons (rebuild-macro-output (car x) m)
                     (rebuild-macro-output (cdr x) m)))
              ((syntax-object? x)
               (let ((w (syntax-object-wrap x)))
                 (let ((ms (wrap-marks w)) (s (wrap-subst w)))
                   (make-syntax-object (syntax-object-expression x)
                     (if (and (pair? ms) (eq? (car ms) the-anti-mark))
                         (make-wrap (cdr ms)
                           (if rib (cons rib (cdr s)) (cdr s)))
                         (make-wrap (cons m ms)
                           (if rib
                               (cons rib (cons 'shift s))
                               (cons 'shift s))))))))
              ((vector? x)
               (let* ((n (vector-length x)) (v (make-vector n)))
                 (do ((i 0 (fx+ i 1)))
                     ((fx= i n) v)
                     (vector-set! v i
                       (rebuild-macro-output (vector-ref x i) m)))))
              ((symbol? x)
               (syntax-error x "encountered raw symbol in macro output"))
              (else x))))
    (rebuild-macro-output (p (wrap e (anti-mark w))) (new-mark))))

(define chi-body
  ;; In processing the forms of the body, we create a new, empty wrap.
  ;; This wrap is augmented (destructively) each time we discover that
  ;; the next form is a definition.  This is done:
  ;;
  ;;   (1) to allow the first nondefinition form to be a call to
  ;;       one of the defined ids even if the id previously denoted a
  ;;       definition keyword or keyword for a macro expanding into a
  ;;       definition;
  ;;   (2) to prevent subsequent definition forms (but unfortunately
  ;;       not earlier ones) and the first nondefinition form from
  ;;       confusing one of the bound identifiers for an auxiliary
  ;;       keyword; and
  ;;   (3) so that we do not need to restart the expansion of the
  ;;       first nondefinition form, which is problematic anyway
  ;;       since it might be the first element of a begin that we
  ;;       have just spliced into the body (meaning if we restarted,
  ;;       we'd really need to restart with the begin or the macro
  ;;       call that expanded into the begin, and we'd have to give
  ;;       up allowing (begin <defn>+ <expr>+), which is itself
  ;;       problematic since we don't know if a begin contains only
  ;;       definitions until we've expanded it).
  ;;
  ;; Before processing the body, we also create a new environment
  ;; containing a placeholder for the bindings we will add later and
  ;; associate this environment with each form.  In processing a
  ;; let-syntax or letrec-syntax, the associated environment may be
  ;; augmented with local keyword bindings, so the environment may
  ;; be different for different forms in the body.  Once we have
  ;; gathered up all of the definitions, we evaluate the transformer
  ;; expressions and splice into r at the placeholder the new variable
  ;; and keyword bindings.  This allows let-syntax or letrec-syntax
  ;; forms local to a portion or all of the body to shadow the
  ;; definition bindings.
  ;;
  ;; Subforms of a begin, let-syntax, or letrec-syntax are spliced
  ;; into the body.
  ;;
  ;; outer-form is fully wrapped w/source
  (lambda (body outer-form r w)
    (let* ((r (cons '("placeholder" . (placeholder)) r))
           (ribcage (make-empty-ribcage))
           (w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
      (let parse ((body (map (lambda (x) (cons r (wrap x w))) body))
                  (ids '()) (labels '()) (vars '()) (vals '()) (bindings '()))
        (if (null? body)
            (syntax-error outer-form "no expressions in body")
            (let ((e (cdar body)) (er (caar body)))
              (call-with-values
                (lambda () (syntax-type e er empty-wrap no-source ribcage))
                (lambda (type value e w s)
                  (case type
                    ((define-form)
                     (let ((id (wrap value w)) (label (gen-label)))
                       (let ((var (gen-var id)))
                         (extend-ribcage! ribcage id label)
                         (parse (cdr body)
                           (cons id ids) (cons label labels)
                           (cons var vars) (cons (cons er (wrap e w)) vals)
                           (cons (make-binding 'lexical var) bindings)))))
                    ((define-syntax-form)
                     (let ((id (wrap value w)) (label (gen-label)))
                       (extend-ribcage! ribcage id label)
                       (parse (cdr body)
                         (cons id ids) (cons label labels)
                         vars vals
                         (cons (make-binding 'macro (cons er (wrap e w)))
                               bindings))))
                    ((begin-form)
                     (syntax-case e ()
                       ((_ e1 ...)
                        (parse (let f ((forms (syntax (e1 ...))))
                                 (if (null? forms)
                                     (cdr body)
                                     (cons (cons er (wrap (car forms) w))
                                           (f (cdr forms)))))
                          ids labels vars vals bindings))))
                    ((local-syntax-form)
                     (chi-local-syntax value e er w s
                       (lambda (forms er w s)
                         (parse (let f ((forms forms))
                                  (if (null? forms)
                                      (cdr body)
                                      (cons (cons er (wrap (car forms) w))
                                            (f (cdr forms)))))
                           ids labels vars vals bindings))))
                    (else ; found a non-definition
                     (if (null? ids)
                         (build-sequence no-source
                           (map (lambda (x)
                                  (chi (cdr x) (car x) empty-wrap))
                                (cons (cons er (source-wrap e w s))
                                      (cdr body))))
                         (begin
                           (if (not (valid-bound-ids? ids))
                               (syntax-error outer-form
                                 "invalid or duplicate identifier in definition"))
                           (let loop ((bs bindings) (er-cache #f) (r-cache #f))
                             (if (not (null? bs))
                                 (let* ((b (car bs)))
                                   (if (eq? (car b) 'macro)
                                       (let* ((er (cadr b))
                                              (r-cache
                                                (if (eq? er er-cache)
                                                    r-cache
                                                    (macros-only-env er))))
                                         (set-cdr! b
                                           (eval-local-transformer
                                             (chi (cddr b) r-cache empty-wrap)))
                                         (loop (cdr bs) er r-cache))
                                       (loop (cdr bs) er-cache r-cache)))))
                           (set-cdr! r (extend-env labels bindings (cdr r)))
                           (build-letrec no-source
                             vars
                             (map (lambda (x)
                                    (chi (cdr x) (car x) empty-wrap))
                                  vals)
                             (build-sequence no-source
                               (map (lambda (x)
                                      (chi (cdr x) (car x) empty-wrap))
                                    (cons (cons er (source-wrap e w s))
                                          (cdr body)))))))))))))))))

(define chi-lambda-clause
  (lambda (e c r w k)
    (syntax-case c ()
      (((id ...) e1 e2 ...)
       (let ((ids (syntax (id ...))))
         (if (not (valid-bound-ids? ids))
             (syntax-error e "invalid parameter list in")
             (let ((labels (gen-labels ids))
                   (new-vars (map gen-var ids)))
               (k new-vars
                  (chi-body (syntax (e1 e2 ...))
                            e
                            (extend-var-env labels new-vars r)
                            (make-binding-wrap ids labels w)))))))
      ((ids e1 e2 ...)
       (let ((old-ids (lambda-var-list (syntax ids))))
         (if (not (valid-bound-ids? old-ids))
             (syntax-error e "invalid parameter list in")
             (let ((labels (gen-labels old-ids))
                   (new-vars (map gen-var old-ids)))
               (k (let f ((ls1 (cdr new-vars)) (ls2 (car new-vars)))
                    (if (null? ls1)
                        ls2
                        (f (cdr ls1) (cons (car ls1) ls2))))
                  (chi-body (syntax (e1 e2 ...))
                            e
                            (extend-var-env labels new-vars r)
                            (make-binding-wrap old-ids labels w)))))))
      (_ (syntax-error e)))))

(define chi-local-syntax
  (lambda (rec? e r w s k)
    (syntax-case e ()
      ((_ ((id val) ...) e1 e2 ...)
       (let ((ids (syntax (id ...))))
         (if (not (valid-bound-ids? ids))
             (syntax-error e "duplicate bound keyword in")
             (let ((labels (gen-labels ids)))
               (let ((new-w (make-binding-wrap ids labels w)))
                 (k (syntax (e1 e2 ...))
                    (extend-env
                      labels
                      (let ((w (if rec? new-w w))
                            (trans-r (macros-only-env r)))
                        (map (lambda (x)
                               (make-binding 'macro
                                 (eval-local-transformer (chi x trans-r w))))
                             (syntax (val ...))))
                      r)
                    new-w
                    s))))))
      (_ (syntax-error (source-wrap e w s))))))

(define eval-local-transformer
  (lambda (expanded)
    (let ((p (local-eval-hook expanded)))
      (if (procedure? p)
          p
          (syntax-error p "nonprocedure transfomer")))))

(define chi-void
  (lambda ()
    (build-application no-source (build-primref no-source 'void) '())))

(define ellipsis?
  (lambda (x)
    (and (nonsymbol-id? x)
         (free-id=? x (syntax (... ...))))))

;;; data

;;; strips all annotations from potentially circular reader output

(define strip-annotation
  (lambda (x parent)
    (cond
      ((pair? x)
       (let ((new (cons #f #f)))
         (when parent (set-annotation-stripped! parent new))
         (set-car! new (strip-annotation (car x) #f))
         (set-cdr! new (strip-annotation (cdr x) #f))
         new))
      ((annotation? x)
       (or (annotation-stripped x)
           (strip-annotation (annotation-expression x) x)))
      ((vector? x)
       (let ((new (make-vector (vector-length x))))
         (when parent (set-annotation-stripped! parent new))
         (let loop ((i (- (vector-length x) 1)))
           (unless (fx< i 0)
             (vector-set! new i (strip-annotation (vector-ref x i) #f))
             (loop (fx- i 1))))
         new))
      (else x))))

;;; strips syntax-objects down to top-wrap; if top-wrap is layered directly
;;; on an annotation, strips the annotation as well.
;;; since only the head of a list is annotated by the reader, not each pair
;;; in the spine, we also check for pairs whose cars are annotated in case
;;; we've been passed the cdr of an annotated list

(define strip
  (lambda (x w)
    (if (top-marked? w)
        (if (or (annotation? x) (and (pair? x) (annotation? (car x))))
            (strip-annotation x #f)
            x)
        (let f ((x x))
          (cond
            ((syntax-object? x)
             (strip (syntax-object-expression x) (syntax-object-wrap x)))
            ((pair? x)
             (let ((a (f (car x))) (d (f (cdr x))))
               (if (and (eq? a (car x)) (eq? d (cdr x)))
                   x
                   (cons a d))))
            ((vector? x)
             (let ((old (vector->list x)))
                (let ((new (map f old)))
                   (if (andmap eq? old new) x (list->vector new)))))
            (else x))))))

;;; lexical variables

(define gen-var
  (lambda (id)
    (let ((id (if (syntax-object? id) (syntax-object-expression id) id)))
      (if (annotation? id)
          (build-lexical-var (annotation-source id) (annotation-expression id))
          (build-lexical-var no-source id)))))

(define lambda-var-list
  (lambda (vars)
    (let lvl ((vars vars) (ls '()) (w empty-wrap))
       (cond
         ((pair? vars) (lvl (cdr vars) (cons (wrap (car vars) w) ls) w))
         ((id? vars) (cons (wrap vars w) ls))
         ((null? vars) ls)
         ((syntax-object? vars)
          (lvl (syntax-object-expression vars)
               ls
               (join-wraps w (syntax-object-wrap vars))))
         ((annotation? vars)
          (lvl (annotation-expression vars) ls w))
       ; include anything else to be caught by subsequent error
       ; checking
         (else (cons vars ls))))))

;;; core transformers

(global-extend 'local-syntax 'letrec-syntax #t)
(global-extend 'local-syntax 'let-syntax #f)

(global-extend 'core 'fluid-let-syntax
  (lambda (e r w s)
    (syntax-case e ()
      ((_ ((var val) ...) e1 e2 ...)
       (valid-bound-ids? (syntax (var ...)))
       (let ((names (map (lambda (x) (id-var-name x w)) (syntax (var ...)))))
         (for-each
           (lambda (id n)
             (case (binding-type (lookup n r))
               ((displaced-lexical)
                (syntax-error (source-wrap id w s)
                  "identifier out of context"))))
           (syntax (var ...))
           names)
         (chi-body
           (syntax (e1 e2 ...))
           (source-wrap e w s)
           (extend-env
             names
             (let ((trans-r (macros-only-env r)))
               (map (lambda (x)
                      (make-binding 'macro
                        (eval-local-transformer (chi x trans-r w))))
                    (syntax (val ...))))
             r)
           w)))
      (_ (syntax-error (source-wrap e w s))))))

(global-extend 'core 'quote
   (lambda (e r w s)
      (syntax-case e ()
         ((_ e) (build-data s (strip (syntax e) w)))
         (_ (syntax-error (source-wrap e w s))))))

(global-extend 'core 'syntax
  (let ()
    (define gen-syntax
      (lambda (src e r maps ellipsis?)
        (if (id? e)
            (let ((label (id-var-name e empty-wrap)))
              (let ((b (lookup label r)))
                (if (eq? (binding-type b) 'syntax)
                    (call-with-values
                      (lambda ()
                        (let ((var.lev (binding-value b)))
                          (gen-ref src (car var.lev) (cdr var.lev) maps)))
                      (lambda (var maps) (values `(ref ,var) maps)))
                    (if (ellipsis? e)
                        (syntax-error src "misplaced ellipsis in syntax form")
                        (values `(quote ,e) maps)))))
            (syntax-case e ()
              ((dots e)
               (ellipsis? (syntax dots))
               (gen-syntax src (syntax e) r maps (lambda (x) #f)))
              ((x dots . y)
               ; this could be about a dozen lines of code, except that we
               ; choose to handle (syntax (x ... ...)) forms
               (ellipsis? (syntax dots))
               (let f ((y (syntax y))
                       (k (lambda (maps)
                            (call-with-values
                              (lambda ()
                                (gen-syntax src (syntax x) r
                                  (cons '() maps) ellipsis?))
                              (lambda (x maps)
                                (if (null? (car maps))
                                    (syntax-error src
                                      "extra ellipsis in syntax form")
                                    (values (gen-map x (car maps))
                                            (cdr maps))))))))
                 (syntax-case y ()
                   ((dots . y)
                    (ellipsis? (syntax dots))
                    (f (syntax y)
                       (lambda (maps)
                         (call-with-values
                           (lambda () (k (cons '() maps)))
                           (lambda (x maps)
                             (if (null? (car maps))
                                 (syntax-error src
                                   "extra ellipsis in syntax form")
                                 (values (gen-mappend x (car maps))
                                         (cdr maps))))))))
                   (_ (call-with-values
                        (lambda () (gen-syntax src y r maps ellipsis?))
                        (lambda (y maps)
                          (call-with-values
                            (lambda () (k maps))
                            (lambda (x maps)
                              (values (gen-append x y) maps)))))))))
              ((x . y)
               (call-with-values
                 (lambda () (gen-syntax src (syntax x) r maps ellipsis?))
                 (lambda (x maps)
                   (call-with-values
                     (lambda () (gen-syntax src (syntax y) r maps ellipsis?))
                     (lambda (y maps) (values (gen-cons x y) maps))))))
              (#(e1 e2 ...)
               (call-with-values
                 (lambda ()
                   (gen-syntax src (syntax (e1 e2 ...)) r maps ellipsis?))
                 (lambda (e maps) (values (gen-vector e) maps))))
              (_ (values `(quote ,e) maps))))))

    (define gen-ref
      (lambda (src var level maps)
        (if (fx= level 0)
            (values var maps)
            (if (null? maps)
                (syntax-error src "missing ellipsis in syntax form")
                (call-with-values
                  (lambda () (gen-ref src var (fx- level 1) (cdr maps)))
                  (lambda (outer-var outer-maps)
                    (let ((b (assq outer-var (car maps))))
                      (if b
                          (values (cdr b) maps)
                          (let ((inner-var (gen-var 'tmp)))
                            (values inner-var
                                    (cons (cons (cons outer-var inner-var)
                                                (car maps))
                                          outer-maps)))))))))))

    (define gen-mappend
      (lambda (e map-env)
        `(apply (primitive append) ,(gen-map e map-env))))

    (define gen-map
      (lambda (e map-env)
        (let ((formals (map cdr map-env))
              (actuals (map (lambda (x) `(ref ,(car x))) map-env)))
          (cond
            ((eq? (car e) 'ref)
             ; identity map equivalence:
             ; (map (lambda (x) x) y) == y
             (car actuals))
            ((andmap
                (lambda (x) (and (eq? (car x) 'ref) (memq (cadr x) formals)))
                (cdr e))
             ; eta map equivalence:
             ; (map (lambda (x ...) (f x ...)) y ...) == (map f y ...)
             `(map (primitive ,(car e))
                   ,@(map (let ((r (map cons formals actuals)))
                            (lambda (x) (cdr (assq (cadr x) r))))
                          (cdr e))))
            (else `(map (lambda ,formals ,e) ,@actuals))))))

    (define gen-cons
      (lambda (x y)
        (case (car y)
          ((quote)
           (if (eq? (car x) 'quote)
               `(quote (,(cadr x) . ,(cadr y)))
               (if (eq? (cadr y) '())
                   `(list ,x)
                   `(cons ,x ,y))))
          ((list) `(list ,x ,@(cdr y)))
          (else `(cons ,x ,y)))))

    (define gen-append
      (lambda (x y)
        (if (equal? y '(quote ()))
            x
            `(append ,x ,y))))

    (define gen-vector
      (lambda (x)
        (cond
          ((eq? (car x) 'list) `(vector ,@(cdr x)))
          ((eq? (car x) 'quote) `(quote #(,@(cadr x))))
          (else `(list->vector ,x)))))


    (define regen
      (lambda (x)
        (case (car x)
          ((ref) (build-lexical-reference 'value no-source (cadr x)))
          ((primitive) (build-primref no-source (cadr x)))
          ((quote) (build-data no-source (cadr x)))
          ((lambda) (build-lambda no-source (cadr x) (regen (caddr x))))
          ((map) (let ((ls (map regen (cdr x))))
                   (build-application no-source
                     (if (fx= (length ls) 2)
                         (build-primref no-source 'map)
                        ; really need to do our own checking here
                         (build-primref no-source 2 'map)) ; require error check
                     ls)))
          (else (build-application no-source
                  (build-primref no-source (car x))
                  (map regen (cdr x)))))))

    (lambda (e r w s)
      (let ((e (source-wrap e w s)))
        (syntax-case e ()
          ((_ x)
           (call-with-values
             (lambda () (gen-syntax e (syntax x) r '() ellipsis?))
             (lambda (e maps) (regen e))))
          (_ (syntax-error e)))))))


(global-extend 'core 'lambda
   (lambda (e r w s)
      (syntax-case e ()
         ((_ . c)
          (chi-lambda-clause (source-wrap e w s) (syntax c) r w
            (lambda (vars body) (build-lambda s vars body)))))))


(global-extend 'core 'let
  (let ()
    (define (chi-let e r w s constructor ids vals exps)
      (if (not (valid-bound-ids? ids))
	  (syntax-error e "duplicate bound variable in")
	  (let ((labels (gen-labels ids))
		(new-vars (map gen-var ids)))
	    (let ((nw (make-binding-wrap ids labels w))
		  (nr (extend-var-env labels new-vars r)))
	      (constructor s
			   new-vars
			   (map (lambda (x) (chi x r w)) vals)
			   (chi-body exps (source-wrap e nw s) nr nw))))))
    (lambda (e r w s)
      (syntax-case e ()
	((_ ((id val) ...) e1 e2 ...)
	 (chi-let e r w s
		  build-let
		  (syntax (id ...))
		  (syntax (val ...))
		  (syntax (e1 e2 ...))))
	((_ f ((id val) ...) e1 e2 ...)
	 (id? (syntax f))
	 (chi-let e r w s
		  build-named-let
		  (syntax (f id ...))
		  (syntax (val ...))
		  (syntax (e1 e2 ...))))
	(_ (syntax-error (source-wrap e w s)))))))


(global-extend 'core 'letrec
  (lambda (e r w s)
    (syntax-case e ()
      ((_ ((id val) ...) e1 e2 ...)
       (let ((ids (syntax (id ...))))
         (if (not (valid-bound-ids? ids))
             (syntax-error e "duplicate bound variable in")
             (let ((labels (gen-labels ids))
                   (new-vars (map gen-var ids)))
               (let ((w (make-binding-wrap ids labels w))
                    (r (extend-var-env labels new-vars r)))
                 (build-letrec s
                   new-vars
                   (map (lambda (x) (chi x r w)) (syntax (val ...)))
                   (chi-body (syntax (e1 e2 ...)) (source-wrap e w s) r w)))))))
      (_ (syntax-error (source-wrap e w s))))))


(global-extend 'core 'set!
  (lambda (e r w s)
    (syntax-case e ()
      ((_ id val)
       (id? (syntax id))
       (let ((val (chi (syntax val) r w))
             (n (id-var-name (syntax id) w)))
         (let ((b (lookup n r)))
           (case (binding-type b)
             ((lexical)
              (build-lexical-assignment s (binding-value b) val))
             ((global) (build-global-assignment s n val))
             ((displaced-lexical)
              (syntax-error (wrap (syntax id) w)
                "identifier out of context"))
             (else (syntax-error (source-wrap e w s)))))))
      (_ (syntax-error (source-wrap e w s))))))

(global-extend 'begin 'begin '())

(global-extend 'define 'define '())

(global-extend 'define-syntax 'define-syntax '())

(global-extend 'eval-when 'eval-when '())

(global-extend 'core 'syntax-case
  (let ()
    (define convert-pattern
      ; accepts pattern & keys
      ; returns syntax-dispatch pattern & ids
      (lambda (pattern keys)
        (let cvt ((p pattern) (n 0) (ids '()))
          (if (id? p)
              (if (bound-id-member? p keys)
                  (values (vector 'free-id p) ids)
                  (values 'any (cons (cons p n) ids)))
              (syntax-case p ()
                ((x dots)
                 (ellipsis? (syntax dots))
                 (call-with-values
                   (lambda () (cvt (syntax x) (fx+ n 1) ids))
                   (lambda (p ids)
                     (values (if (eq? p 'any) 'each-any (vector 'each p))
                             ids))))
                ((x . y)
                 (call-with-values
                   (lambda () (cvt (syntax y) n ids))
                   (lambda (y ids)
                     (call-with-values
                       (lambda () (cvt (syntax x) n ids))
                       (lambda (x ids)
                         (values (cons x y) ids))))))
                (() (values '() ids))
                (#(x ...)
                 (call-with-values
                   (lambda () (cvt (syntax (x ...)) n ids))
                   (lambda (p ids) (values (vector 'vector p) ids))))
                (x (values (vector 'atom (strip p empty-wrap)) ids)))))))

    (define build-dispatch-call
      (lambda (pvars exp y r)
        (let ((ids (map car pvars)) (levels (map cdr pvars)))
          (let ((labels (gen-labels ids)) (new-vars (map gen-var ids)))
            (build-application no-source
              (build-primref no-source 'apply)
              (list (build-lambda no-source new-vars
                      (chi exp
                         (extend-env
                             labels
                             (map (lambda (var level)
                                    (make-binding 'syntax `(,var . ,level)))
                                  new-vars
                                  (map cdr pvars))
                             r)
                           (make-binding-wrap ids labels empty-wrap)))
                    y))))))

    (define gen-clause
      (lambda (x keys clauses r pat fender exp)
        (call-with-values
          (lambda () (convert-pattern pat keys))
          (lambda (p pvars)
            (cond
              ((not (distinct-bound-ids? (map car pvars)))
               (syntax-error pat
                 "duplicate pattern variable in syntax-case pattern"))
              ((not (andmap (lambda (x) (not (ellipsis? (car x)))) pvars))
               (syntax-error pat
                 "misplaced ellipsis in syntax-case pattern"))
              (else
               (let ((y (gen-var 'tmp)))
                 ; fat finger binding and references to temp variable y
                 (build-application no-source
                   (build-lambda no-source (list y)
                     (let ((y (build-lexical-reference 'value no-source y)))
                       (build-conditional no-source
                         (syntax-case fender ()
                           (#t y)
                           (_ (build-conditional no-source
                                y
                                (build-dispatch-call pvars fender y r)
                                (build-data no-source #f))))
                         (build-dispatch-call pvars exp y r)
                         (gen-syntax-case x keys clauses r))))
                   (list (if (eq? p 'any)
                             (build-application no-source
                               (build-primref no-source 'list)
                               (list x))
                             (build-application no-source
                               (build-primref no-source 'syntax-dispatch)
                               (list x (build-data no-source p)))))))))))))

    (define gen-syntax-case
      (lambda (x keys clauses r)
        (if (null? clauses)
            (build-application no-source
              (build-primref no-source 'syntax-error)
              (list x))
            (syntax-case (car clauses) ()
              ((pat exp)
               (if (and (id? (syntax pat))
                        (andmap (lambda (x) (not (free-id=? (syntax pat) x)))
                          (cons (syntax (... ...)) keys)))
                   (let ((labels (list (gen-label)))
                         (var (gen-var (syntax pat))))
                     (build-application no-source
                       (build-lambda no-source (list var)
                         (chi (syntax exp)
                              (extend-env labels
                                (list (make-binding 'syntax `(,var . 0)))
                                r)
                              (make-binding-wrap (syntax (pat))
                                labels empty-wrap)))
                       (list x)))
                   (gen-clause x keys (cdr clauses) r
                     (syntax pat) #t (syntax exp))))
              ((pat fender exp)
               (gen-clause x keys (cdr clauses) r
                 (syntax pat) (syntax fender) (syntax exp)))
              (_ (syntax-error (car clauses) "invalid syntax-case clause"))))))

    (lambda (e r w s)
      (let ((e (source-wrap e w s)))
        (syntax-case e ()
          ((_ val (key ...) m ...)
           (if (andmap (lambda (x) (and (id? x) (not (ellipsis? x))))
                       (syntax (key ...)))
               (let ((x (gen-var 'tmp)))
                 ; fat finger binding and references to temp variable x
                 (build-application s
                   (build-lambda no-source (list x)
                     (gen-syntax-case (build-lexical-reference 'value no-source x)
                       (syntax (key ...)) (syntax (m ...))
                       r))
                   (list (chi (syntax val) r empty-wrap))))
               (syntax-error e "invalid literals list in"))))))))

;;; The portable sc-expand seeds chi-top's mode m with 'e (for
;;; evaluating) and esew (which stands for "eval syntax expanders
;;; when") with '(eval).  In Chez Scheme, m is set to 'c instead of e
;;; if we are compiling a file, and esew is set to
;;; (eval-syntactic-expanders-when), which defaults to the list
;;; '(compile load eval).  This means that, by default, top-level
;;; syntactic definitions are evaluated immediately after they are
;;; expanded, and the expanded definitions are also residualized into
;;; the object file if we are compiling a file.
(set! sc-expand
  (let ((m 'e) (esew '(eval)))
    (lambda (x)
      (if (and (pair? x) (equal? (car x) noexpand))
          (cadr x)
          (chi-top x null-env top-wrap m esew)))))

(set! sc-expand3
  (let ((m 'e) (esew '(eval)))
    (lambda (x . rest)
      (if (and (pair? x) (equal? (car x) noexpand))
          (cadr x)
          (chi-top x
		   null-env
		   top-wrap
		   (if (null? rest) m (car rest))
		   (if (or (null? rest) (null? (cdr rest)))
		       esew
		       (cadr rest)))))))

(set! identifier?
  (lambda (x)
    (nonsymbol-id? x)))

(set! datum->syntax-object
  (lambda (id datum)
    (arg-check nonsymbol-id? id 'datum->syntax-object)
    (make-syntax-object datum (syntax-object-wrap id))))

(set! syntax-object->datum
  ; accepts any object, since syntax objects may consist partially
  ; or entirely of unwrapped, nonsymbolic data
  (lambda (x)
    (strip x empty-wrap)))

(set! generate-temporaries
  (lambda (ls)
    (arg-check list? ls 'generate-temporaries)
    (map (lambda (x) (wrap (gensym-hook) top-wrap)) ls)))

(set! free-identifier=?
   (lambda (x y)
      (arg-check nonsymbol-id? x 'free-identifier=?)
      (arg-check nonsymbol-id? y 'free-identifier=?)
      (free-id=? x y)))

(set! bound-identifier=?
   (lambda (x y)
      (arg-check nonsymbol-id? x 'bound-identifier=?)
      (arg-check nonsymbol-id? y 'bound-identifier=?)
      (bound-id=? x y)))

(set! syntax-error
  (lambda (object . messages)
    (for-each (lambda (x) (arg-check string? x 'syntax-error)) messages)
    (let ((message (if (null? messages)
                       "invalid syntax"
                       (apply string-append messages))))
      (error-hook #f message (strip object empty-wrap)))))

(set! install-global-transformer
  (lambda (sym v)
    (arg-check symbol? sym 'define-syntax)
    (arg-check procedure? v 'define-syntax)
    (global-extend 'macro sym v)))

;;; syntax-dispatch expects an expression and a pattern.  If the expression
;;; matches the pattern a list of the matching expressions for each
;;; "any" is returned.  Otherwise, #f is returned.  (This use of #f will
;;; not work on r4rs implementations that violate the ieee requirement
;;; that #f and () be distinct.)

;;; The expression is matched with the pattern as follows:

;;; pattern:                           matches:
;;;   ()                                 empty list
;;;   any                                anything
;;;   (<pattern>1 . <pattern>2)          (<pattern>1 . <pattern>2)
;;;   each-any                           (any*)
;;;   #(free-id <key>)                   <key> with free-identifier=?
;;;   #(each <pattern>)                  (<pattern>*)
;;;   #(vector <pattern>)                (list->vector <pattern>)
;;;   #(atom <object>)                   <object> with "equal?"

;;; Vector cops out to pair under assumption that vectors are rare.  If
;;; not, should convert to:
;;;   #(vector <pattern>*)               #(<pattern>*)

(let ()

(define match-each
  (lambda (e p w)
    (cond
      ((annotation? e)
       (match-each (annotation-expression e) p w))
      ((pair? e)
       (let ((first (match (car e) p w '())))
         (and first
              (let ((rest (match-each (cdr e) p w)))
                 (and rest (cons first rest))))))
      ((null? e) '())
      ((syntax-object? e)
       (match-each (syntax-object-expression e)
                   p
                   (join-wraps w (syntax-object-wrap e))))
      (else #f))))

(define match-each-any
  (lambda (e w)
    (cond
      ((annotation? e)
       (match-each-any (annotation-expression e) w))
      ((pair? e)
       (let ((l (match-each-any (cdr e) w)))
         (and l (cons (wrap (car e) w) l))))
      ((null? e) '())
      ((syntax-object? e)
       (match-each-any (syntax-object-expression e)
                       (join-wraps w (syntax-object-wrap e))))
      (else #f))))

(define match-empty
  (lambda (p r)
    (cond
      ((null? p) r)
      ((eq? p 'any) (cons '() r))
      ((pair? p) (match-empty (car p) (match-empty (cdr p) r)))
      ((eq? p 'each-any) (cons '() r))
      (else
       (case (vector-ref p 0)
         ((each) (match-empty (vector-ref p 1) r))
         ((free-id atom) r)
         ((vector) (match-empty (vector-ref p 1) r)))))))

(define match*
  (lambda (e p w r)
    (cond
      ((null? p) (and (null? e) r))
      ((pair? p)
       (and (pair? e) (match (car e) (car p) w
                        (match (cdr e) (cdr p) w r))))
      ((eq? p 'each-any)
       (let ((l (match-each-any e w))) (and l (cons l r))))
      (else
       (case (vector-ref p 0)
         ((each)
          (if (null? e)
              (match-empty (vector-ref p 1) r)
              (let ((l (match-each e (vector-ref p 1) w)))
                (and l
                     (let collect ((l l))
                       (if (null? (car l))
                           r
                           (cons (map car l) (collect (map cdr l)))))))))
         ((free-id) (and (id? e) (free-id=? (wrap e w) (vector-ref p 1)) r))
         ((atom) (and (equal? (vector-ref p 1) (strip e w)) r))
         ((vector)
          (and (vector? e)
               (match (vector->list e) (vector-ref p 1) w r))))))))

(define match
  (lambda (e p w r)
    (cond
      ((not r) #f)
      ((eq? p 'any) (cons (wrap e w) r))
      ((syntax-object? e)
       (match*
         (unannotate (syntax-object-expression e))
         p
         (join-wraps w (syntax-object-wrap e))
         r))
      (else (match* (unannotate e) p w r)))))

(set! syntax-dispatch
  (lambda (e p)
    (cond
      ((eq? p 'any) (list e))
      ((syntax-object? e)
       (match* (unannotate (syntax-object-expression e))
         p (syntax-object-wrap e) '()))
      (else (match* (unannotate e) p empty-wrap '())))))
))
)

(define-syntax with-syntax
   (lambda (x)
      (syntax-case x ()
         ((_ () e1 e2 ...)
          (syntax (begin e1 e2 ...)))
         ((_ ((out in)) e1 e2 ...)
          (syntax (syntax-case in () (out (begin e1 e2 ...)))))
         ((_ ((out in) ...) e1 e2 ...)
          (syntax (syntax-case (list in ...) ()
                     ((out ...) (begin e1 e2 ...))))))))

(define-syntax syntax-rules
  (lambda (x)
    (syntax-case x ()
      ((_ (k ...) ((keyword . pattern) template) ...)
       (syntax (lambda (x)
                (syntax-case x (k ...)
                  ((dummy . pattern) (syntax template))
                  ...)))))))

(define-syntax let*
  (lambda (x)
    (syntax-case x ()
      ((let* ((x v) ...) e1 e2 ...)
       (andmap identifier? (syntax (x ...)))
       (let f ((bindings (syntax ((x v)  ...))))
         (if (null? bindings)
             (syntax (let () e1 e2 ...))
             (with-syntax ((body (f (cdr bindings)))
                           (binding (car bindings)))
               (syntax (let (binding) body)))))))))

(define-syntax do
   (lambda (orig-x)
      (syntax-case orig-x ()
         ((_ ((var init . step) ...) (e0 e1 ...) c ...)
          (with-syntax (((step ...)
                         (map (lambda (v s)
                                 (syntax-case s ()
                                    (() v)
                                    ((e) (syntax e))
                                    (_ (syntax-error orig-x))))
                              (syntax (var ...))
                              (syntax (step ...)))))
             (syntax-case (syntax (e1 ...)) ()
                (() (syntax (let doloop ((var init) ...)
                               (if (not e0)
                                   (begin c ... (doloop step ...))))))
                ((e1 e2 ...)
                 (syntax (let doloop ((var init) ...)
                            (if e0
                                (begin e1 e2 ...)
                                (begin c ... (doloop step ...))))))))))))

(define-syntax quasiquote
   (letrec
      ((quasicons
        (lambda (x y)
          (with-syntax ((x x) (y y))
            (syntax-case (syntax y) (quote list)
              ((quote dy)
               (syntax-case (syntax x) (quote)
                 ((quote dx) (syntax (quote (dx . dy))))
                 (_ (if (null? (syntax dy))
                        (syntax (list x))
                        (syntax (cons x y))))))
              ((list . stuff) (syntax (list x . stuff)))
              (else (syntax (cons x y)))))))
       (quasiappend
        (lambda (x y)
          (with-syntax ((x x) (y y))
            (syntax-case (syntax y) (quote)
              ((quote ()) (syntax x))
              (_ (syntax (append x y)))))))
       (quasivector
        (lambda (x)
          (with-syntax ((x x))
            (syntax-case (syntax x) (quote list)
              ((quote (x ...)) (syntax (quote #(x ...))))
              ((list x ...) (syntax (vector x ...)))
              (_ (syntax (list->vector x)))))))
       (quasi
        (lambda (p lev)
           (syntax-case p (unquote unquote-splicing quasiquote)
              ((unquote p)
               (if (= lev 0)
                   (syntax p)
                   (quasicons (syntax (quote unquote))
                              (quasi (syntax (p)) (- lev 1)))))
              (((unquote-splicing p) . q)
               (if (= lev 0)
                   (quasiappend (syntax p) (quasi (syntax q) lev))
                   (quasicons (quasicons (syntax (quote unquote-splicing))
                                         (quasi (syntax (p)) (- lev 1)))
                              (quasi (syntax q) lev))))
              ((quasiquote p)
               (quasicons (syntax (quote quasiquote))
                          (quasi (syntax (p)) (+ lev 1))))
              ((p . q)
               (quasicons (quasi (syntax p) lev) (quasi (syntax q) lev)))
              (#(x ...) (quasivector (quasi (syntax (x ...)) lev)))
              (p (syntax (quote p)))))))
    (lambda (x)
       (syntax-case x ()
          ((_ e) (quasi (syntax e) 0))))))

(define-syntax include
  (lambda (x)
    (define read-file
      (lambda (fn k)
        (let ((p (open-input-file fn)))
          (let f ((x (read p)))
            (if (eof-object? x)
                (begin (close-input-port p) '())
                (cons (datum->syntax-object k x)
                      (f (read p))))))))
    (syntax-case x ()
      ((k filename)
       (let ((fn (syntax-object->datum (syntax filename))))
         (with-syntax (((exp ...) (read-file fn (syntax k))))
           (syntax (begin exp ...))))))))

(define-syntax unquote
   (lambda (x)
      (syntax-case x ()
         ((_ e)
          (error 'unquote
		 "expression ,~s not valid outside of quasiquote"
		 (syntax-object->datum (syntax e)))))))

(define-syntax unquote-splicing
   (lambda (x)
      (syntax-case x ()
         ((_ e)
          (error 'unquote-splicing
		 "expression ,@~s not valid outside of quasiquote"
		 (syntax-object->datum (syntax e)))))))

(define-syntax case
  (lambda (x)
    (syntax-case x ()
      ((_ e m1 m2 ...)
       (with-syntax
         ((body (let f ((clause (syntax m1)) (clauses (syntax (m2 ...))))
                  (if (null? clauses)
                      (syntax-case clause (else)
                        ((else e1 e2 ...) (syntax (begin e1 e2 ...)))
                        (((k ...) e1 e2 ...)
                         (syntax (if (memv t '(k ...)) (begin e1 e2 ...))))
                        (_ (syntax-error x)))
                      (with-syntax ((rest (f (car clauses) (cdr clauses))))
                        (syntax-case clause (else)
                          (((k ...) e1 e2 ...)
                           (syntax (if (memv t '(k ...))
                                       (begin e1 e2 ...)
                                       rest)))
                          (_ (syntax-error x))))))))
         (syntax (let ((t e)) body)))))))

(define-syntax identifier-syntax
  (lambda (x)
    (syntax-case x ()
      ((_ e)
       (syntax
         (lambda (x)
           (syntax-case x ()
             (id
              (identifier? (syntax id))
              (syntax e))
             ((_ x (... ...))
              (syntax (e x (... ...)))))))))))