File: sha1.cpp

package info (click to toggle)
guymager 0.8.8-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,832 kB
  • sloc: cpp: 17,293; makefile: 30; sh: 18
file content (300 lines) | stat: -rw-r--r-- 10,635 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// ****************************************************************************
//  Project:        GUYMAGER
// ****************************************************************************
//  Programmer:     Guy Voncken
//                  Police Grand-Ducale
//                  Service de Police Judiciaire
//                  Section Nouvelles Technologies
// ****************************************************************************
//  Module:         SHA1 calculation
// ****************************************************************************

// Copyright 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018
// Guy Voncken
//
// This file is part of Guymager.
//
// Guymager is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// Guymager is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Guymager. If not, see <http://www.gnu.org/licenses/>.

// This module is based on sha1sum (see Debian package coreutils, for example).
// The core functions have been mainly copy/pasted; they have been written
// by Scott G. Miller and are copyrighted by the Free Software Foundation, Inc.


#include <stddef.h>
#include <string.h>
#include <stdint.h>

#include "sha1.h"


#ifdef WORDS_BIGENDIAN
# define SWAP(n) (n)
#else
# define SWAP(n) \
    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#endif

static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };  // This array contains the bytes used to pad the buffer to
                                                                          // the next 64-byte boundary.  (RFC 1321, 3.1: Step 1)

// SHA1 round constants
#define K1 0x5a827999
#define K2 0x6ed9eba1
#define K3 0x8f1bbcdc
#define K4 0xca62c1d6

// Round functions.
#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
#define F2(B,C,D) (B ^ C ^ D)
#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
#define F4(B,C,D) (B ^ C ^ D)


void sha1_process_block (const void *buffer, size_t len, t_pSHA1Context pContext)
{
   const uint32_t *words  = (uint32_t *) buffer;
   size_t          nwords = len / sizeof (uint32_t);
   const uint32_t *endp   = words + nwords;
   uint32_t x[16];
   uint32_t a = pContext->A;
   uint32_t b = pContext->B;
   uint32_t c = pContext->C;
   uint32_t d = pContext->D;
   uint32_t e = pContext->E;

  // First increment the byte count.  RFC 1321 specifies the possible length of the file
  // up to 2^64 bits.  Here we only compute the number of bytes.  Do a double word increment.
   pContext->total[0] += len;
   if (pContext->total[0] < len)
      ++pContext->total[1];

   #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))

   #define M(I) ( tm =  x[I    &0x0f] ^ x[(I-14)&0x0f] \
                     ^  x[(I-8)&0x0f] ^ x[(I- 3)&0x0f] \
                     , (x[I    &0x0f] = rol(tm, 1)))

   #define R(A,B,C,D,E,F,K,M)  do { E += rol( A, 5 )     \
                                         + F( B, C, D )  \
                                         + K             \
                                         + M;            \
                                    B  = rol( B, 30 );   \
                                  } while(0)

   while (words < endp)
   {
      uint32_t tm;
      int      t;

      for (t = 0; t < 16; t++)
      {
         x[t] = SWAP (*words);
         words++;
      }

      R( a, b, c, d, e, F1, K1, x[ 0] );
      R( e, a, b, c, d, F1, K1, x[ 1] );
      R( d, e, a, b, c, F1, K1, x[ 2] );
      R( c, d, e, a, b, F1, K1, x[ 3] );
      R( b, c, d, e, a, F1, K1, x[ 4] );
      R( a, b, c, d, e, F1, K1, x[ 5] );
      R( e, a, b, c, d, F1, K1, x[ 6] );
      R( d, e, a, b, c, F1, K1, x[ 7] );
      R( c, d, e, a, b, F1, K1, x[ 8] );
      R( b, c, d, e, a, F1, K1, x[ 9] );
      R( a, b, c, d, e, F1, K1, x[10] );
      R( e, a, b, c, d, F1, K1, x[11] );
      R( d, e, a, b, c, F1, K1, x[12] );
      R( c, d, e, a, b, F1, K1, x[13] );
      R( b, c, d, e, a, F1, K1, x[14] );
      R( a, b, c, d, e, F1, K1, x[15] );
      R( e, a, b, c, d, F1, K1, M(16) );
      R( d, e, a, b, c, F1, K1, M(17) );
      R( c, d, e, a, b, F1, K1, M(18) );
      R( b, c, d, e, a, F1, K1, M(19) );
      R( a, b, c, d, e, F2, K2, M(20) );
      R( e, a, b, c, d, F2, K2, M(21) );
      R( d, e, a, b, c, F2, K2, M(22) );
      R( c, d, e, a, b, F2, K2, M(23) );
      R( b, c, d, e, a, F2, K2, M(24) );
      R( a, b, c, d, e, F2, K2, M(25) );
      R( e, a, b, c, d, F2, K2, M(26) );
      R( d, e, a, b, c, F2, K2, M(27) );
      R( c, d, e, a, b, F2, K2, M(28) );
      R( b, c, d, e, a, F2, K2, M(29) );
      R( a, b, c, d, e, F2, K2, M(30) );
      R( e, a, b, c, d, F2, K2, M(31) );
      R( d, e, a, b, c, F2, K2, M(32) );
      R( c, d, e, a, b, F2, K2, M(33) );
      R( b, c, d, e, a, F2, K2, M(34) );
      R( a, b, c, d, e, F2, K2, M(35) );
      R( e, a, b, c, d, F2, K2, M(36) );
      R( d, e, a, b, c, F2, K2, M(37) );
      R( c, d, e, a, b, F2, K2, M(38) );
      R( b, c, d, e, a, F2, K2, M(39) );
      R( a, b, c, d, e, F3, K3, M(40) );
      R( e, a, b, c, d, F3, K3, M(41) );
      R( d, e, a, b, c, F3, K3, M(42) );
      R( c, d, e, a, b, F3, K3, M(43) );
      R( b, c, d, e, a, F3, K3, M(44) );
      R( a, b, c, d, e, F3, K3, M(45) );
      R( e, a, b, c, d, F3, K3, M(46) );
      R( d, e, a, b, c, F3, K3, M(47) );
      R( c, d, e, a, b, F3, K3, M(48) );
      R( b, c, d, e, a, F3, K3, M(49) );
      R( a, b, c, d, e, F3, K3, M(50) );
      R( e, a, b, c, d, F3, K3, M(51) );
      R( d, e, a, b, c, F3, K3, M(52) );
      R( c, d, e, a, b, F3, K3, M(53) );
      R( b, c, d, e, a, F3, K3, M(54) );
      R( a, b, c, d, e, F3, K3, M(55) );
      R( e, a, b, c, d, F3, K3, M(56) );
      R( d, e, a, b, c, F3, K3, M(57) );
      R( c, d, e, a, b, F3, K3, M(58) );
      R( b, c, d, e, a, F3, K3, M(59) );
      R( a, b, c, d, e, F4, K4, M(60) );
      R( e, a, b, c, d, F4, K4, M(61) );
      R( d, e, a, b, c, F4, K4, M(62) );
      R( c, d, e, a, b, F4, K4, M(63) );
      R( b, c, d, e, a, F4, K4, M(64) );
      R( a, b, c, d, e, F4, K4, M(65) );
      R( e, a, b, c, d, F4, K4, M(66) );
      R( d, e, a, b, c, F4, K4, M(67) );
      R( c, d, e, a, b, F4, K4, M(68) );
      R( b, c, d, e, a, F4, K4, M(69) );
      R( a, b, c, d, e, F4, K4, M(70) );
      R( e, a, b, c, d, F4, K4, M(71) );
      R( d, e, a, b, c, F4, K4, M(72) );
      R( c, d, e, a, b, F4, K4, M(73) );
      R( b, c, d, e, a, F4, K4, M(74) );
      R( a, b, c, d, e, F4, K4, M(75) );
      R( e, a, b, c, d, F4, K4, M(76) );
      R( d, e, a, b, c, F4, K4, M(77) );
      R( c, d, e, a, b, F4, K4, M(78) );
      R( b, c, d, e, a, F4, K4, M(79) );

      a = pContext->A += a;
      b = pContext->B += b;
      c = pContext->C += c;
      d = pContext->D += d;
      e = pContext->E += e;
   }
}

void SHA1Init (t_pSHA1Context pContext)
{
   pContext->A = 0x67452301;
   pContext->B = 0xefcdab89;
   pContext->C = 0x98badcfe;
   pContext->D = 0x10325476;
   pContext->E = 0xc3d2e1f0;

   pContext->total[0] = pContext->total[1] = 0;
   pContext->buflen   = 0;
}

static inline void set_uint32 (char *cp, uint32_t v)
{
   memcpy (cp, &v, sizeof v);
}

void SHA1Finish (t_pSHA1Context pContext, void *pDigest)
{
   uint32_t bytes = pContext->buflen;                        // Take yet unprocessed bytes into account.
   size_t   size  = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;

   pContext->total[0] += bytes;                              // Now count remaining bytes.
   if (pContext->total[0] < bytes)
      ++pContext->total[1];

   pContext->buffer[size - 2] = SWAP ((pContext->total[1] << 3) | (pContext->total[0] >> 29)); // Put the 64-bit file length in *bits* at the end of the buffer.
   pContext->buffer[size - 1] = SWAP  (pContext->total[0] << 3);

   memcpy (&((char *) pContext->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);

   sha1_process_block (pContext->buffer, size * 4, pContext);     // Process last bytes.

   char *r = (char *) pDigest;
   set_uint32 (r + 0 * sizeof pContext->A, SWAP (pContext->A));
   set_uint32 (r + 1 * sizeof pContext->B, SWAP (pContext->B));
   set_uint32 (r + 2 * sizeof pContext->C, SWAP (pContext->C));
   set_uint32 (r + 3 * sizeof pContext->D, SWAP (pContext->D));
   set_uint32 (r + 4 * sizeof pContext->E, SWAP (pContext->E));
}


void SHA1Append (t_pSHA1Context pContext, const void *buffer, size_t len)
{
   // When we already have some bits in our internal buffer concatenate both inputs first.
   if (pContext->buflen != 0)
   {
      size_t left_over = pContext->buflen;
      size_t add       = 128 - left_over > len ? len : 128 - left_over;

      memcpy (&((char *) pContext->buffer)[left_over], buffer, add);
      pContext->buflen += add;

      if (pContext->buflen > 64)
      {
         sha1_process_block (pContext->buffer, pContext->buflen & ~63, pContext);

         pContext->buflen &= 63;
         /* The regions in the following copy operation cannot overlap.  */
         memcpy (pContext->buffer,
                 &((char *) pContext->buffer)[(left_over + add) & ~63],
                 pContext->buflen);
      }
      buffer = (const char *) buffer + add;
      len -= add;
    }

   // Process available complete blocks.
   if (len >= 64)
   {
      #if !_STRING_ARCH_unaligned
         #define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
         if (UNALIGNED_P (buffer))
            while (len > 64)
            {
               sha1_process_block (memcpy (pContext->buffer, buffer, 64), 64, pContext);
               buffer = (const char *) buffer + 64;
               len -= 64;
            }
         else
      #endif
         {
            sha1_process_block (buffer, len & ~63, pContext);
            buffer = (const char *) buffer + (len & ~63);
            len &= 63;
         }
   }

   // Move remaining bytes in internal buffer.
   if (len > 0)
   {
      size_t left_over = pContext->buflen;

      memcpy (&((char *) pContext->buffer)[left_over], buffer, len);
      left_over += len;
      if (left_over >= 64)
      {
         sha1_process_block (pContext->buffer, 64, pContext);
         left_over -= 64;
         memcpy (pContext->buffer, &pContext->buffer[16], left_over);
      }
      pContext->buflen = left_over;
   }
}