1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
** Meschach Library
**
** This Meschach Library is provided "as is" without any express
** or implied warranty of any kind with respect to this software.
** In particular the authors shall not be liable for any direct,
** indirect, special, incidental or consequential damages arising
** in any way from use of the software.
**
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
** 1. All copies contain this copyright notice.
** 2. All modified copies shall carry a notice stating who
** made the last modification and the date of such modification.
** 3. No charge is made for this software or works derived from it.
** This clause shall not be construed as constraining other software
** distributed on the same medium as this software, nor is a
** distribution fee considered a charge.
**
***************************************************************************/
/*
File containing Lanczos type routines for finding eigenvalues
of large, sparse, symmetic matrices
*/
#include <stdio.h>
#include <math.h>
#include "matrix.h"
#include "sparse.h"
static char rcsid[] = "$Id: lanczos.c,v 1.4 1994/01/13 05:28:24 des Exp $";
#ifdef ANSI_C
extern VEC *trieig(VEC *,VEC *,MAT *);
#else
extern VEC *trieig();
#endif
/* lanczos -- raw lanczos algorithm -- no re-orthogonalisation
-- creates T matrix of size == m,
but no larger than before beta_k == 0
-- uses passed routine to do matrix-vector multiplies */
void lanczos(A_fn,A_params,m,x0,a,b,beta2,Q)
VEC *(*A_fn)(); /* VEC *(*A_fn)(void *A_params,VEC *in, VEC *out) */
void *A_params;
int m;
VEC *x0, *a, *b;
Real *beta2;
MAT *Q;
{
int j;
VEC *v, *w, *tmp;
Real alpha, beta;
if ( ! A_fn || ! x0 || ! a || ! b )
error(E_NULL,"lanczos");
if ( m <= 0 )
error(E_BOUNDS,"lanczos");
if ( Q && ( Q->m < x0->dim || Q->n < m ) )
error(E_SIZES,"lanczos");
a = v_resize(a,(unsigned int)m);
b = v_resize(b,(unsigned int)(m-1));
v = v_get(x0->dim);
w = v_get(x0->dim);
tmp = v_get(x0->dim);
beta = 1.0;
/* normalise x0 as w */
sv_mlt(1.0/v_norm2(x0),x0,w);
(*A_fn)(A_params,w,v);
for ( j = 0; j < m; j++ )
{
/* store w in Q if Q not NULL */
if ( Q )
set_col(Q,j,w);
alpha = in_prod(w,v);
a->ve[j] = alpha;
v_mltadd(v,w,-alpha,v);
beta = v_norm2(v);
if ( beta == 0.0 )
{
v_resize(a,(unsigned int)j+1);
v_resize(b,(unsigned int)j);
*beta2 = 0.0;
if ( Q )
Q = m_resize(Q,Q->m,j+1);
return;
}
if ( j < m-1 )
b->ve[j] = beta;
v_copy(w,tmp);
sv_mlt(1/beta,v,w);
sv_mlt(-beta,tmp,v);
(*A_fn)(A_params,w,tmp);
v_add(v,tmp,v);
}
*beta2 = beta;
V_FREE(v); V_FREE(w); V_FREE(tmp);
}
extern double frexp(), ldexp();
/* product -- returns the product of a long list of numbers
-- answer stored in mant (mantissa) and expt (exponent) */
static double product(a,offset,expt)
VEC *a;
double offset;
int *expt;
{
Real mant, tmp_fctr;
int i, tmp_expt;
if ( ! a )
error(E_NULL,"product");
mant = 1.0;
*expt = 0;
if ( offset == 0.0 )
for ( i = 0; i < a->dim; i++ )
{
mant *= frexp(a->ve[i],&tmp_expt);
*expt += tmp_expt;
if ( ! (i % 10) )
{
mant = frexp(mant,&tmp_expt);
*expt += tmp_expt;
}
}
else
for ( i = 0; i < a->dim; i++ )
{
tmp_fctr = a->ve[i] - offset;
tmp_fctr += (tmp_fctr > 0.0 ) ? -MACHEPS*offset :
MACHEPS*offset;
mant *= frexp(tmp_fctr,&tmp_expt);
*expt += tmp_expt;
if ( ! (i % 10) )
{
mant = frexp(mant,&tmp_expt);
*expt += tmp_expt;
}
}
mant = frexp(mant,&tmp_expt);
*expt += tmp_expt;
return mant;
}
/* product2 -- returns the product of a long list of numbers
-- answer stored in mant (mantissa) and expt (exponent) */
static double product2(a,k,expt)
VEC *a;
int k; /* entry of a to leave out */
int *expt;
{
Real mant, mu, tmp_fctr;
int i, tmp_expt;
if ( ! a )
error(E_NULL,"product2");
if ( k < 0 || k >= a->dim )
error(E_BOUNDS,"product2");
mant = 1.0;
*expt = 0;
mu = a->ve[k];
for ( i = 0; i < a->dim; i++ )
{
if ( i == k )
continue;
tmp_fctr = a->ve[i] - mu;
tmp_fctr += ( tmp_fctr > 0.0 ) ? -MACHEPS*mu : MACHEPS*mu;
mant *= frexp(tmp_fctr,&tmp_expt);
*expt += tmp_expt;
if ( ! (i % 10) )
{
mant = frexp(mant,&tmp_expt);
*expt += tmp_expt;
}
}
mant = frexp(mant,&tmp_expt);
*expt += tmp_expt;
return mant;
}
/* dbl_cmp -- comparison function to pass to qsort() */
static int dbl_cmp(x,y)
Real *x, *y;
{
Real tmp;
tmp = *x - *y;
return (tmp > 0 ? 1 : tmp < 0 ? -1: 0);
}
/* lanczos2 -- lanczos + error estimate for every e-val
-- uses Cullum & Willoughby approach, Sparse Matrix Proc. 1978
-- returns multiple e-vals where multiple e-vals may not exist
-- returns evals vector */
VEC *lanczos2(A_fn,A_params,m,x0,evals,err_est)
VEC *(*A_fn)();
void *A_params;
int m;
VEC *x0; /* initial vector */
VEC *evals; /* eigenvalue vector */
VEC *err_est; /* error estimates of eigenvalues */
{
VEC *a;
STATIC VEC *b=VNULL, *a2=VNULL, *b2=VNULL;
Real beta, pb_mant, det_mant, det_mant1, det_mant2;
int i, pb_expt, det_expt, det_expt1, det_expt2;
if ( ! A_fn || ! x0 )
error(E_NULL,"lanczos2");
if ( m <= 0 )
error(E_RANGE,"lanczos2");
a = evals;
a = v_resize(a,(unsigned int)m);
b = v_resize(b,(unsigned int)(m-1));
MEM_STAT_REG(b,TYPE_VEC);
lanczos(A_fn,A_params,m,x0,a,b,&beta,MNULL);
/* printf("# beta =%g\n",beta); */
pb_mant = 0.0;
if ( err_est )
{
pb_mant = product(b,(double)0.0,&pb_expt);
/* printf("# pb_mant = %g, pb_expt = %d\n",pb_mant, pb_expt); */
}
/* printf("# diags =\n"); out_vec(a); */
/* printf("# off diags =\n"); out_vec(b); */
a2 = v_resize(a2,a->dim - 1);
b2 = v_resize(b2,b->dim - 1);
MEM_STAT_REG(a2,TYPE_VEC);
MEM_STAT_REG(b2,TYPE_VEC);
for ( i = 0; i < a2->dim - 1; i++ )
{
a2->ve[i] = a->ve[i+1];
b2->ve[i] = b->ve[i+1];
}
a2->ve[a2->dim-1] = a->ve[a2->dim];
trieig(a,b,MNULL);
/* sort evals as a courtesy */
qsort((void *)(a->ve),(int)(a->dim),sizeof(Real),(int (*)())dbl_cmp);
/* error estimates */
if ( err_est )
{
err_est = v_resize(err_est,(unsigned int)m);
trieig(a2,b2,MNULL);
/* printf("# a =\n"); out_vec(a); */
/* printf("# a2 =\n"); out_vec(a2); */
for ( i = 0; i < a->dim; i++ )
{
det_mant1 = product2(a,i,&det_expt1);
det_mant2 = product(a2,(double)a->ve[i],&det_expt2);
/* printf("# det_mant1=%g, det_expt1=%d\n",
det_mant1,det_expt1); */
/* printf("# det_mant2=%g, det_expt2=%d\n",
det_mant2,det_expt2); */
if ( det_mant1 == 0.0 )
{ /* multiple e-val of T */
err_est->ve[i] = 0.0;
continue;
}
else if ( det_mant2 == 0.0 )
{
err_est->ve[i] = HUGE_VAL;
continue;
}
if ( (det_expt1 + det_expt2) % 2 )
/* if odd... */
det_mant = sqrt(2.0*fabs(det_mant1*det_mant2));
else /* if even... */
det_mant = sqrt(fabs(det_mant1*det_mant2));
det_expt = (det_expt1+det_expt2)/2;
err_est->ve[i] = fabs(beta*
ldexp(pb_mant/det_mant,pb_expt-det_expt));
}
}
#ifdef THREADSAFE
V_FREE(b); V_FREE(a2); V_FREE(b2);
#endif
return a;
}
/* sp_lanczos -- version that uses sparse matrix data structure */
void sp_lanczos(A,m,x0,a,b,beta2,Q)
SPMAT *A;
int m;
VEC *x0, *a, *b;
Real *beta2;
MAT *Q;
{ lanczos(sp_mv_mlt,A,m,x0,a,b,beta2,Q); }
/* sp_lanczos2 -- version of lanczos2() that uses sparse matrix data
structure */
VEC *sp_lanczos2(A,m,x0,evals,err_est)
SPMAT *A;
int m;
VEC *x0; /* initial vector */
VEC *evals; /* eigenvalue vector */
VEC *err_est; /* error estimates of eigenvalues */
{ return lanczos2(sp_mv_mlt,A,m,x0,evals,err_est); }
|