1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/* routines from the section 8 of tutorial.txt */
#include "matrix.h"
#define M3D_LIST 3 /* list number */
#define TYPE_MAT3D 0 /* the number of a type */
/* type for 3 dimensional matrices */
typedef struct {
int l,m,n; /* actual dimensions */
int max_l, max_m, max_n; /* maximal dimensions */
Real ***me; /* pointer to matrix elements */
/* we do not consider segmented memory */
Real *base, **me2d; /* me and me2d are additional pointers
to base */
} MAT3D;
/* function for creating a variable of MAT3D type */
MAT3D *m3d_get(l,m,n)
int l,m,n;
{
MAT3D *mat;
int i,j,k;
/* check if arguments are positive */
if (l <= 0 || m <= 0 || n <= 0)
error(E_NEG,"m3d_get");
/* new structure */
if ((mat = NEW(MAT3D)) == (MAT3D *)NULL)
error(E_MEM,"m3d_get");
else if (mem_info_is_on()) {
/* record how many bytes is allocated */
mem_bytes_list(TYPE_MAT3D,0,sizeof(MAT3D),M3D_LIST);
/* record a new allocated variable */
mem_numvar_list(TYPE_MAT3D,1,M3D_LIST);
}
mat->l = mat->max_l = l;
mat->m = mat->max_m = m;
mat->n = mat->max_n = n;
/* allocate memory for 3D array */
if ((mat->base = NEW_A(l*m*n,Real)) == (Real *)NULL)
error(E_MEM,"m3d_get");
else if (mem_info_is_on())
mem_bytes_list(TYPE_MAT3D,0,l*m*n*sizeof(Real),M3D_LIST);
/* allocate memory for 2D pointers */
if ((mat->me2d = NEW_A(l*m,Real *)) == (Real **)NULL)
error(E_MEM,"m3d_get");
else if (mem_info_is_on())
mem_bytes_list(TYPE_MAT3D,0,l*m*sizeof(Real *),M3D_LIST);
/* allocate memory for 1D pointers */
if ((mat->me = NEW_A(l,Real **)) == (Real ***)NULL)
error(E_MEM,"m3d_get");
else if (mem_info_is_on())
mem_bytes_list(TYPE_MAT3D,0,l*sizeof(Real **),M3D_LIST);
/* pointers to 2D matrices */
for (i=0,k=0; i < l; i++)
for (j=0; j < m; j++)
mat->me2d[k++] = &mat->base[(i*m+j)*n];
/* pointers to rows */
for (i=0; i < l; i++)
mat->me[i] = &mat->me2d[i*m];
return mat;
}
/* deallocate a variable of type MAT3D */
int m3d_free(mat)
MAT3D *mat;
{
/* do not try to deallocate the NULL pointer */
if (mat == (MAT3D *)NULL)
return -1;
/* first deallocate base */
if (mat->base != (Real *)NULL) {
if (mem_info_is_on())
/* record how many bytes is deallocated */
mem_bytes_list(TYPE_MAT3D,mat->max_l*mat->max_m*mat->max_n*sizeof(Real),
0,M3D_LIST);
free((char *)mat->base);
}
/* deallocate array of 2D pointers */
if (mat->me2d != (Real **)NULL) {
if (mem_info_is_on())
/* record how many bytes is deallocated */
mem_bytes_list(TYPE_MAT3D,mat->max_l*mat->max_m*sizeof(Real *),
0,M3D_LIST);
free((char *)mat->me2d);
}
/* deallocate array of 1D pointers */
if (mat->me != (Real ***)NULL) {
if (mem_info_is_on())
/* record how many bytes is deallocated */
mem_bytes_list(TYPE_MAT3D,mat->max_l*sizeof(Real **),0,M3D_LIST);
free((char *)mat->me);
}
/* deallocate MAT3D structure */
if (mem_info_is_on()) {
mem_bytes_list(TYPE_MAT3D,sizeof(MAT3D),0,M3D_LIST);
mem_numvar_list(TYPE_MAT3D,-1,M3D_LIST);
}
free((char *)mat);
return 0;
}
/*=============================================*/
char *m3d_names[] = {
"MAT3D"
};
#define M3D_NUM (sizeof(m3d_names)/sizeof(*m3d_names))
int (*m3d_free_funcs[M3D_NUM])() = {
m3d_free
};
static MEM_ARRAY m3d_sum[M3D_NUM];
/* test routing for allocating/deallocating static variables */
void test_stat(k)
int k;
{
static MAT3D *work;
if (!work) {
work = m3d_get(10,10,10);
mem_stat_reg_list((void **)&work,TYPE_MAT3D,M3D_LIST);
work->me[9][9][9] = -3.14;
}
if (k == 9)
printf(" work[9][9][9] = %g\n",work->me[9][9][9]);
}
void main()
{
MAT3D *M;
int i,j,k;
mem_info_on(TRUE);
/* can be the first command */
mem_attach_list(M3D_LIST,M3D_NUM,m3d_names,m3d_free_funcs,m3d_sum);
M = m3d_get(3,4,5);
mem_info_file(stdout,M3D_LIST);
/* make use of M->me[i][j][k], where i,j,k are non-negative and
i < 3, j < 4, k < 5 */
mem_stat_mark(1);
for (i=0; i < 3; i++)
for (j=0; j < 4; j++)
for (k=0; k < 5; k++) {
test_stat(i+j+k);
M->me[i][j][k] = i+j+k;
}
mem_stat_free_list(1,M3D_LIST);
mem_info_file(stdout,M3D_LIST);
printf(" M[%d][%d][%d] = %g\n",2,3,4,M->me[2][3][4]);
mem_stat_mark(2);
test_stat(9);
mem_stat_free_list(2,M3D_LIST);
m3d_free(M); /* if M is not necessary */
mem_info_file(stdout,M3D_LIST);
}
|